于都县第三中学2018-2019学年高二上学期第二次月考试卷数学
- 格式:pdf
- 大小:673.42 KB
- 文档页数:14
于都县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 定义在R 上的奇函数f (x ),满足,且在(0,+∞)上单调递减,则xf (x )>0的解集为( )A .B .C .D .2. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±3 3. 已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( ) A .2B .﹣2C .8D .﹣84. (理)已知tan α=2,则=( )A .B .C .D .5. 已知集合M={﹣1,0,1},N={x|x=2a ,a ∈M},则集合M ∩N=( ) A .{0} B .{0,﹣2} C .{﹣2,0,2} D .{0,2}6. 设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )A .B .C .D .7. 下列命题中正确的是( ) (A )若p q ∨为真命题,则p q ∧为真命题( B ) “0a >,0b >”是“2b aa b+≥”的充分必要条件 (C ) 命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠或2x ≠,则2320x x -+≠”(D ) 命题:p 0R x ∃∈,使得20010x x +-<,则:p ⌝R x ∀∈,使得210x x +-≥8. 已知集合2{320,}A x x x x R =-+=∈,{05,}B x x x N =<<∈,则满足条件A C B ⊆⊆的集合C 的个数为A 、B 、2C 、3D 、49. 若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( )A .5B .4C .3D .210.若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )A .06=--y xB .06=++y xC .06=+-y xD .06=-+y x11.已知a=,b=20.5,c=0.50.2,则a ,b ,c 三者的大小关系是( )A .b >c >aB .b >a >cC .a >b >cD .c >b >a12.△ABC 的外接圆圆心为O ,半径为2, ++=,且||=||,在方向上的投影为( )A .﹣3B .﹣C .D .3二、填空题13.已知(x 2﹣)n)的展开式中第三项与第五项的系数之比为,则展开式中常数项是 .14.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 .15.若关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,则k= .16.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .17.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.18.已知双曲线的一条渐近线方程为y=x ,则实数m 等于 .三、解答题19.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3﹣1的等差中项.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1+2b 2+3b 3+…+nb n =a n (n ∈N *),求{b n }的通项公式b n .20.如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2﹣6x﹣91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.21.已知全集U=R,集合A={x|x2﹣4x﹣5≤0},B={x|x<4},C={x|x≥a}.(Ⅰ)求A∩(∁U B);(Ⅱ)若A⊆C,求a的取值范围.22.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,求z2.23.已知=(sinx,cosx),=(sinx,sinx),设函数f(x)=﹣.(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;(2)求f(x)在区间[π,]上的最大值和最小值.24.已知函数f(x)=在(,f())处的切线方程为8x﹣9y+t=0(m∈N,t∈R)(1)求m和t的值;(2)若关于x的不等式f(x)≤ax+在[,+∞)恒成立,求实数a的取值范围.于都县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∵函数f(x)是奇函数,在(0,+∞)上单调递减,且f ()=0,∴f (﹣)=0,且在区间(﹣∞,0)上单调递减,∵当x<0,当﹣<x<0时,f(x)<0,此时xf(x)>0当x>0,当0<x<时,f(x)>0,此时xf(x)>0综上xf(x)>0的解集为故选B2.【答案】B【解析】解:∵A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},∴2a﹣1=9或a2=9,当2a﹣1=9时,a=5,A∩B={4,9},不符合题意;当a2=9时,a=±3,若a=3,集合B违背互异性;∴a=﹣3.故选:B.【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.3.【答案】B【解析】解:∵f(x+4)=f(x),∴f(2015)=f(504×4﹣1)=f(﹣1),又∵f(x)在R上是奇函数,∴f(﹣1)=﹣f(1)=﹣2.故选B.【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题.4.【答案】D【解析】解:∵tanα=2,∴===.故选D.5. 【答案】A【解析】解:N={x|x=2a ,a ∈M}={﹣2,0,2}, 则M ∩N={0}, 故选:A【点评】本题主要考查集合的基本运算,求出集合N 是解决本题的关键.6. 【答案】C【解析】解:∵集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n}, P={x|0≤x ≤1},且M ,N 都是集合P 的子集,∴根据题意,M 的长度为,N 的长度为, 当集合M ∩N 的长度的最小值时, M 与N 应分别在区间[0,1]的左右两端,故M ∩N 的长度的最小值是=.故选:C .7. 【答案】D【解析】对选项A ,因为p q ∨为真命题,所以,p q 中至少有一个真命题,若一真一假,则p q ∧为假命题,故选项A 错误;对于选项B ,2b aab+≥的充分必要条件是,a b 同号,故选项B 错误;命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠且2x ≠,则2320x x -+≠”,故选项C 错误;故选D .8. 【答案】D【解析】{|(1)(2)0,}{1,2}A x x x x =--=∈=R , {}{}|05,1,2,3,4=<<∈=N B x x x . ∵⊆⊆A C B ,∴C 可以为{}1,2,{}1,2,3,{}1,2,4,{}1,2,3,4. 9. 【答案】A【解析】解:函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,可得b=0,并且1+a=2a ,解得a=1,所以函数为:f (x )=x 2+1,x ∈[﹣2,2],函数的最大值为:5. 故选:A .【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.10.【答案】D【解析】考点:直线方程11.【答案】A【解析】解:∵a=0.50.5,c=0.50.2,∴0<a<c<1,b=20.5>1,∴b>c>a,故选:A.12.【答案】C【解析】解:由题意,++=,得到,又||=||=||,△OAB是等边三角形,所以四边形OCAB是边长为2的菱形,所以在方向上的投影为ACcos30°=2×=;故选C.【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形OBAC的形状,利用向量解答.二、填空题13.【答案】45.【解析】解:第三项的系数为C n2,第五项的系数为C n4,由第三项与第五项的系数之比为可得n=10,则T i+1=C10i(x2)10﹣i(﹣)i=(﹣1)i C10i=,令40﹣5r=0,解得r=8,故所求的常数项为(﹣1)8C108=45,故答案为:45.14.【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系15.【答案】﹣1或0.【解析】解:满足约束条件的可行域如下图阴影部分所示:kx﹣y+1≥0表示地(0,1)点的直线kx﹣y+1=0下方的所有点(包括直线上的点)由关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,可得直线kx ﹣y+1=0与y 轴垂直,此时k=0或直线kx ﹣y+1=0与y=x 垂直,此时k=﹣1 综上k=﹣1或0 故答案为:﹣1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx ﹣y+1=0与y 轴垂直或与y=x 垂直,是解答的关键.16.【答案】 [] .【解析】解:由题设知C 41p (1﹣p )3≤C 42p 2(1﹣p )2,解得p ,∵0≤p ≤1,∴,故答案为:[].17.【答案】【解析】解:(1)证明:l 1的斜率显然存在,设为k ,其方程为y -2pt 2=k (x -2pt ).① 将①与拋物线x 2=2py 联立得, x 2-2pkx +4p 2t (k -t )=0,解得x 1=2pt ,x 2=2p (k -t ),将x 2=2p (k -t )代入x 2=2py 得y 2=2p (k -t )2,∴P 点的坐标为(2p (k -t ),2p (k -t )2).由于l 1与l 2的倾斜角互补,∴点Q 的坐标为(2p (-k -t ),2p (-k -t )2), ∴k PQ =2p (-k -t )2-2p (k -t )22p (-k -t )-2p (k -t )=-2t ,即直线PQ 的斜率为-2t .(2)由y =x 22p 得y ′=xp,∴拋物线C 在M (2pt ,2pt 2)处的切线斜率为k =2ptp =2t .其切线方程为y -2pt 2=2t (x -2pt ), 又C 的准线与y 轴的交点T 的坐标为(0,-p2). ∴-p2-2pt 2=2t (-2pt ).解得t =±12,即t 的值为±12.18.【答案】 4 .【解析】解:∵双曲线的渐近线方程为 y=x , 又已知一条渐近线方程为y=x ,∴ =2,m=4,故答案为4.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为 y=x ,是解题的关键.三、解答题19.【答案】【解析】解:(1)设等比数列{a n }的公比为q ,由a 2是a 1和a 3﹣1的等差中项得:2a 2=a 1+a 3﹣1,∴,∴2q=q 2,∵q ≠0,∴q=2,∴;(2)n=1时,由b 1+2b 2+3b 3+…+nb n =a n ,得b 1=a 1=1. n ≥2时,由b 1+2b 2+3b 3+…+nb n =a n ① b 1+2b 2+3b 3+…+(n ﹣1)b n ﹣1=a n ﹣1②①﹣②得:.,∴.【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.20.【答案】【解析】解:(方法一)设动圆圆心为M(x,y),半径为R,设已知圆的圆心分别为O1、O2,将圆的方程分别配方得:(x+3)2+y2=4,(x﹣3)2+y2=100,当动圆与圆O1相外切时,有|O1M|=R+2…①当动圆与圆O2相内切时,有|O2M|=10﹣R…②将①②两式相加,得|O1M|+|O2M|=12>|O1O2|,∴动圆圆心M(x,y)到点O1(﹣3,0)和O2(3,0)的距离和是常数12,所以点M的轨迹是焦点为点O1(﹣3,0)、O2(3,0),长轴长等于12的椭圆.∴2c=6,2a=12,∴c=3,a=6∴b2=36﹣9=27∴圆心轨迹方程为,轨迹为椭圆.(方法二):由方法一可得方程,移项再两边分别平方得:2两边再平方得:3x2+4y2﹣108=0,整理得所以圆心轨迹方程为,轨迹为椭圆.【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键.21.【答案】【解析】解:(Ⅰ)∵全集U=R,B={x|x<4},∴∁U B={x|x≥4},又∵A={x|x2﹣4x﹣5≤0}={x|﹣1≤x≤5},∴A∩(∁U B)={x|4≤x≤5};(Ⅱ)∵A={x|﹣1≤x≤5},C={x|x≥a},且A⊆C,∴a的范围为a≤﹣1.【点评】此题考查了交、并、补集的混合运算,以及集合的包含关系判断及应用,熟练掌握各自的定义是解本题的关键.22.【答案】【解析】解:∴z1=2﹣i设z2=a+2i(a∈R)∴z1z2=(2﹣i)(a+2i)=(2a+2)+(4﹣a)i∵z1z2是实数∴4﹣a=0解得a=4所以z2=4+2i【点评】本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为0.23.【答案】【解析】解:(1)∵=(sinx,cosx),=(sinx,sinx),∴f(x)=﹣=sin2x+sinxcosx﹣=(1﹣cos2x)+sin2x﹣=﹣cos2x+sin2x﹣=sin(2x﹣),∴函数的周期为T==π,由2kπ﹣≤2x﹣≤2kπ+(k∈Z)解得kπ﹣≤x≤kπ+,∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z);(2)由(1)知f(x)=sin(2x﹣),当x∈[π,]时,2x﹣∈[,],∴﹣≤sin(2x﹣)≤1,故f(x)在区间[π,]上的最大值和最小值分别为1和﹣.【点评】本题考查向量的数量积的运算,三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,属于中档题.24.【答案】【解析】解:(1)函数f(x)的导数为f′(x)=,由题意可得,f()=,f′()=,即=,且=,由m∈N,则m=1,t=8;(2)设h(x)=ax+﹣,x≥.h()=﹣≥0,即a≥,h′(x)=a﹣,当a≥时,若x>,h′(x)>0,①若≤x≤,设g(x)=a﹣,g′(x)=﹣<0,g(x)在[,]上递减,且g()≥0,则g(x)≥0,即h′(x)≥0在[,]上恒成立.②由①②可得,a≥时,h′(x)>0,h(x)在[,+∞)上递增,h(x)≥h()=≥0,则当a≥时,不等式f(x)≤ax+在[,+∞)恒成立;当a<时,h()<0,不合题意.综上可得a≥.【点评】本题考查导数的运用:求切线方程和求单调区间,主要考查不等式恒成立问题转化为求函数最值,正确求导和分类讨论是解题的关键.。
于都县第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内2. 函数f (x )=,则f (﹣1)的值为( )A .1B .2C .3D .43. 已知函数()cos (0)f x x x ωωω+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=-D .6x π=4. 设集合 A={ x|﹣3≤2x ﹣1≤3},集合 B 为函数 y=lg ( x ﹣1)的定义域,则 A ∩B=( ) A .(1,2) B .[1,2]C .[1,2)D .(1,2]5. 如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为( )A .B . C. D . 6. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.7. 若f (x )为定义在区间G 上的任意两点x 1,x 2和任意实数λ(0,1),总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( )①f (x )=,②f (x )=,③f (x )=,④f (x )=.A .4B .3C .2D .18. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .99. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2B .3C .4D .510.,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A )13 ( B ) 49 (C ) 23 (D ) 8911.某几何体三视图如下图所示,则该几何体的体积是( )A .1+B .1+C .1+D .1+π12.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )A .B .C .D .二、填空题13.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )A .2B .3C .2D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力. 14.下列四个命题:①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面其中正确命题的序号是 .15.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .16.在△ABC 中,a=4,b=5,c=6,则= .17.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 .18.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .三、解答题19.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.20.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的极坐标. 21.0.0050.02频率组距O千克(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF.(1)求证EF∥BC;(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.22.永泰青云山特产经营店销售某种品牌蜜饯,蜜饯每盒进价为8元,预计这种蜜饯以每盒20元的价格销售时该店一天可销售20盒,经过市场调研发现每盒蜜饯的销售价格在每盒20元的基础上每减少一元则增加销售4盒,每增加一元则减少销售1盒,现设每盒蜜饯的销售价格为x元.(1)写出该特产店一天内销售这种蜜饯所获得的利润y(元)与每盒蜜饯的销售价格x的函数关系式;(2)当每盒蜜饯销售价格x为多少时,该特产店一天内利润y(元)最大,并求出这个最大值.23.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)若,判断直线与平面是否垂直?并说明理由.24.已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.于都县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】B【解析】解:假设过点P 且平行于l 的直线有两条m 与n∴m ∥l 且n ∥l由平行公理4得m ∥n这与两条直线m 与n 相交与点P 相矛盾 又因为点P 在平面内 所以点P 且平行于l 的直线有一条且在平面内所以假设错误. 故选B .【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.2. 【答案】A【解析】解:由题意可得f (﹣1)=f (﹣1+3)=f (2)=log 22=1 故选:A【点评】本题考查分度函数求值,涉及对数的运算,属基础题.3. 【答案】D 【解析】试题分析:由已知()2sin()6f x x πω=+,T π=,所以22πωπ==,则()2sin(2)6f x x π=+,令 2,62x k k Z πππ+=+∈,得,26k x k Z ππ=+∈,可知D 正确.故选D .考点:三角函数()sin()f x A x ωϕ=+的对称性. 4. 【答案】D【解析】解:由A 中不等式变形得:﹣2≤2x ≤4,即﹣1≤x ≤2, ∴A=[﹣1,2],由B 中y=lg (x ﹣1),得到x ﹣1>0,即x >1, ∴B=(1,+∞), 则A ∩B=(1,2], 故选:D .5.【答案】C【解析】考点:平面图形的直观图.6.【答案】B第7.【答案】C【解析】解:由区间G上的任意两点x1,x2和任意实数λ(0,1),总有f(λx1+(1﹣λ)x2)≤λf(x1)+(1﹣λ)f(x2),等价为对任意x∈G,有f″(x)>0成立(f″(x)是函数f(x)导函数的导函数),①f(x)=的导数f′(x)=,f″(x)=,故在(2,3)上大于0恒成立,故①为“上进”函数;②f(x)=的导数f′(x)=,f″(x)=﹣•<0恒成立,故②不为“上进”函数;③f(x)=的导数f′(x)=,f″(x)=<0恒成立,故③不为“上进”函数;④f(x)=的导数f′(x)=,f″(x)=,当x∈(2,3)时,f″(x)>0恒成立.故④为“上进”函数.故选C .【点评】本题考查新定义的理解和运用,同时考查导数的运用,以及不等式恒成立问题,属于中档题.8. 【答案】C 【解析】解:∵函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f (x )=sin ωx+cos ωx=2sin (ωx+).再根据f()=2sin (+)=﹣2,可得+=2k π+,k ∈Z ,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7, 故选:C .【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.9. 【答案】C【解析】解:函数f (x )=+6x ﹣1,可得f ′(x )=x 2﹣8x+6, ∵a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,∴a 2014,a 2016是方程x 2﹣8x+6=0的两实数根,则a 2014+a 2016=8.数列{a n }中,满足a n+2=2a n+1﹣a n , 可知{a n }为等差数列,∴a 2014+a 2016=a 2000+a 2030,即a 2000+a 2012+a 2018+a 2030=16, 从而log 2(a 2000+a 2012+a 2018+a 2030)=log 216=4. 故选:C .【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.10.【答案】C【解析】由1(),21(2),2AD AB AC BE AB AC ⎧=+⎪⎪⎨⎪=-+⎪⎩解得2233,4233AB AD BE AC AD BE⎧=-⎪⎪⎨⎪=+⎪⎩ 22422()()33333AB AC AD BE AD BE ⋅=-⋅+=.11.【答案】A【解析】解:由三视图知几何体的下部是正方体,上部是圆锥,且圆锥的高为4,底面半径为1;正方体的边长为1,∴几何体的体积V=V正方体+=13+××π×12×1=1+.故选:A.【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及图中数据所对应的几何量.12.【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.二、填空题13.【答案】A【解析】14.【答案】③.【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误;②经过空间不共线三点有且只有一个平面,故错误;③过两平行直线有且只有一个平面,正确;④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是③,故答案为:③15.【答案】(1,±2).【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=﹣2a2+2=,求得a=±2∴点P的坐标为(1,±2)故答案为:(1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.16.【答案】1.【解析】解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.【点评】本题考查余弦定理,考查学生的计算能力,比较基础.17.【答案】A<G.【解析】解:由题意可得A=,G=±,由基本不等式可得A≥G,当且仅当a=b取等号,由题意a,b是互异的负数,故A<G.故答案是:A<G.【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.18.【答案】﹣2≤a≤2【解析】解:原命题的否定为“∀x∈R,2x2﹣3ax+9≥0”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需△=9a2﹣4×2×9≤0,解得:﹣2≤a≤2.故答案为:﹣2≤a≤2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.三、解答题19.【答案】(本小题满分12分)解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数. (Ⅰ)由(0.0050.0150.020.025)101a ++++⨯=得0.035a = (3分)每天销售量的中位数为0.15701074.30.35+⨯=千克 (6分) (Ⅱ)若当天的销售量为[50,60),则超市获利554202180⨯-⨯=元;若当天的销售量为[60,70),则超市获利654102240⨯-⨯=元; 若当天的销售量为[70,100),则超市获利754300⨯=元, (10分) ∴获利的平均值为0.151800.22400.65300270⨯+⨯+⨯=元. (12分) 20.【答案】【解析】解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 故圆O 的直角坐标方程为:x 2+y 2=x+y ,即x 2+y 2﹣x ﹣y=0.直线l :,即ρsin θ﹣ρcos θ=1,则直线的直角坐标方程为:y ﹣x=1,即x ﹣y+1=0.(2)由,可得 ,直线l 与圆O 公共点的直角坐标为(0,1),故直线l 与圆O 公共点的一个极坐标为.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题.21.【答案】【解析】解:(1)证明:∵AE =AF , ∴∠AEF =∠AFE .又B ,C ,F ,E 四点共圆, ∴∠ABC =∠AFE ,∴∠AEF =∠ACB ,又∠AEF =∠AFE ,∴EF ∥BC . (2)由(1)与∠B =60°知△ABC 为正三角形, 又EB =EF =2, ∴AF =FC =2,设DE =x ,DF =y ,则AD =2-y , 在△AED 中,由余弦定理得 DE 2=AE 2+AD 2-2AD ·AE cos A .即x2=(2-y)2+22-2(2-y)·2×1,2∴x2-y2=4-2y,①由切割线定理得DE2=DF·DC,即x2=y(y+2),∴x2-y2=2y,②由①②联解得y=1,x=3,∴ED= 3.22.【答案】【解析】解:(1)当0<x≤20时,y=[20+4(20﹣x)](x﹣8)=﹣4x2+132x﹣800,当20<x<40时,y=[20﹣(x﹣20)](x﹣8)=﹣x2+48x﹣320,∴(2)①当,∴当x=16.5时,y取得最大值为289,②当20<x<40时,y=﹣(x﹣24)2+256,∴当x=24时,y取得最大值256,综上所述,当蜜饯价格是16.5元时,该特产店一天的利润最大,最大值为289元.23.【答案】【解析】【知识点】垂直平行【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面.因为,平面,平面,所以平面.又因为,所以平面平面.又因为平面,所以平面.(Ⅱ)证明:因为底面,底面,所以.又因为,,所以平面.又因为底面,所以.(Ⅲ)结论:直线与平面不垂直.证明:假设平面,由平面,得.由棱柱中,底面,可得,,又因为,所以平面,所以.又因为,所以平面,所以.这与四边形为矩形,且矛盾,故直线与平面不垂直.24.【答案】【解析】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC•(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,所以A=;(2)S△ABC=bcsinA=,所以bc=4,a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.。
于都县第二中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( ) A .20 B .24C .30D .362. 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( ) A .2:1 B .5:2 C .1:4 D .3:13. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是( )A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点4. 函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( ) A .0<a ≤ B .0≤a ≤ C .0<a < D .a >5. 椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.6. 若多项式 x 2+x 10=a 0+a 1(x+1)+…+a 8(x+1)8+a 9(x+1)9+a 10(x+1)10,则 a 8=( )A .45B .9C .﹣45D .﹣97. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣8. 如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A . =B .∥ C . D .9. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位: 小时)间的关系为0e ktP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1% 的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.10.设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )A.18B.12C.9D.0【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力. 11.若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( )A .[0,+∞)B .[0,3]C .(﹣3,0]D .(﹣3,+∞)12.执行如图所示的一个程序框图,若f (x )在[﹣1,a]上的值域为[0,2],则实数a 的取值范围是( )A .(0,1]B .[1,]C .[1,2]D .[,2]二、填空题13.设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1]上,f (x )=其中a ,b ∈R .若=,则a+3b 的值为 .14.数据﹣2,﹣1,0,1,2的方差是 .15.若等比数列{a n }的前n 项和为S n ,且,则= .16.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .17.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的 周长为 .1111]18.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则= .三、解答题19.设函数f (x )=a (x+1)2ln (x+1)+bx (x >﹣1),曲线y=f (x )过点(e ﹣1,e 2﹣e+1),且在点(0,0)处的切线方程为y=0. (Ⅰ)求a ,b 的值;(Ⅱ)证明:当x ≥0时,f (x )≥x 2;(Ⅲ)若当x ≥0时,f (x )≥mx 2恒成立,求实数m 的取值范围.20. 坐标系与参数方程线l :3x+4y ﹣12=0与圆C :(θ为参数 )试判断他们的公共点个数.21.A={x|x 2﹣3x+2=0},B={x|ax ﹣2=0},若B ⊆A ,求a .22.已知函数322()1f x x ax a x =+--,0a >. (1)当2a =时,求函数()f x 的单调区间;(2)若关于的不等式()0f x ≤在[1,)+∞上有解,求实数的取值范围.23.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)在某一个周期内的图象时,,x2,x3的值,并写出函数f(x)的解析式;1(Ⅱ)将f(x)的图象向右平移个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上的图象的最高点和最低点分别为M,N,求向量与夹角θ的大小.24.设函数f(x)=|x﹣a|﹣2|x﹣1|.(Ⅰ)当a=3时,解不等式f(x)≥1;(Ⅱ)若f(x)﹣|2x﹣5|≤0对任意的x∈[1,2]恒成立,求实数a的取值范围.于都县第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x3项的系数之和为20,故选:A.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.2.【答案】D【解析】解:设球的半径为R,圆锥底面的半径为r,则πr2=×4πR2=,∴r=.∴球心到圆锥底面的距离为=.∴圆锥的高分别为和.∴两个圆锥的体积比为:=1:3.故选:D.3.【答案】B【解析】解:∵f′(x)=1﹣x+x2﹣x3+…+x2014=(1﹣x)(1+x2+…+x2012)+x2014;∴f′(x)>0在(﹣1,0)上恒成立;故f(x)在(﹣1,0)上是增函数;又∵f(0)=1,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;故f(x)在(﹣1,0)上恰有一个零点;故选B.【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.4.【答案】B【解析】解:当a=0时,f(x)=﹣2x+2,符合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.5.【答案】B6.【答案】A【解析】解:a8 是x10=[﹣1+(x+1)]10的展开式中第九项(x+1)8的系数,∴a8==45,故选:A.【点评】本题主要考查二项展开式的通项公式,二项展开式系数的性质以及多项恒等式系数相等的性质,属于基础题.7.【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D8.【答案】D【解析】解:由图可知,,但不共线,故,故选D .【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题.9. 【答案】15【解析】10.【答案】A.【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称, ∴6个实根的和为3618⋅=,故选A. 11.【答案】 D【解析】解:令f (x )=﹣2x 3+ax 2+1=0,易知当x=0时上式不成立;故a==2x ﹣,令g (x )=2x ﹣,则g ′(x )=2+=2,故g (x )在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g (x )=2x ﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D.12.【答案】B【解析】解:由程序框图知:算法的功能是求f(x)=的值,当a<0时,y=log2(1﹣x)+1在[﹣1,a]上为减函数,f(﹣1)=2,f(a)=0⇒1﹣a=,a=,不符合题意;当a≥0时,f′(x)=3x2﹣3>⇒x>1或x<﹣1,∴函数在[0,1]上单调递减,又f(1)=0,∴a≥1;又函数在[1,a]上单调递增,∴f(a)=a3﹣3a+2≤2⇒a≤.故实数a的取值范围是[1,].故选:B.【点评】本题考查了选择结构的程序框图,考查了导数的应用及分段函数值域的求法,综合性强,体现了分类讨论思想,解题的关键是利用导数法求函数在不定区间上的最值.二、填空题13.【答案】﹣10.【解析】解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.14.【答案】2.【解析】解:∵数据﹣2,﹣1,0,1,2,∴=,∴S2=[(﹣2﹣0)2+(﹣1﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]=2,故答案为2;【点评】本题考查方差的定义与意义:一般地设n个数据,x,x2,…x n的平均数,是一道基础题;115.【答案】.【解析】解:∵等比数列{a n}的前n项和为S n,且,∴S4=5S2,又S2,S4﹣S2,S6﹣S4成等比数列,∴(S4﹣S2)2=S2(S6﹣S4),∴(5S2﹣S2)2=S2(S6﹣5S2),解得S6=21S2,∴==.故答案为:.【点评】本题考查等比数列的求和公式和等比数列的性质,用S2表示S4和S6是解决问题的关键,属中档题.16.【答案】.【解析】解:由题意可得,2a,2b,2c成等差数列∴2b=a+c∴4b2=a2+2ac+c2①∵b2=a2﹣c2②①②联立可得,5c2+2ac﹣3a2=0∵∴5e2+2e﹣3=0∵0<e<1∴故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题17.【答案】8cm【解析】考点:平面图形的直观图.18.【答案】﹣5.【解析】解:求导得:f′(x)=3ax2+2bx+c,结合图象可得x=﹣1,2为导函数的零点,即f′(﹣1)=f′(2)=0,故,解得故==﹣5故答案为:﹣5三、解答题19.【答案】【解析】解:(Ⅰ)f′(x)=2a(x+1)ln(x+1)+a(x+1)+b,∵f′(0)=a+b=0,f(e﹣1)=ae2+b(e﹣1)=a(e2﹣e+1)=e2﹣e+1∴a=1,b=﹣1.…(Ⅱ)f(x)=(x+1)2ln(x+1)﹣x,设g(x)=(x+1)2ln(x+1)﹣x﹣x2,(x≥0),g′(x)=2(x+1)ln(x+1)﹣x,(g′(x))′=2ln(x+1)+1>0,∴g′(x)在[0,+∞)上单调递增,∴g′(x)≥g′(0)=0,∴g(x)在[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴f(x)≥x2.…(Ⅲ)设h(x)=(x+1)2ln(x+1)﹣x﹣mx2,h′(x)=2(x+1)ln(x+1)+x﹣2mx,(Ⅱ)中知(x+1)2ln(x+1)≥x2+x=x(x+1),∴(x+1)ln(x+1)≥x,∴h′(x)≥3x﹣2mx,①当3﹣2m≥0即时,h′(x)≥0,∴h(x)在[0,+∞)单调递增,∴h(x)≥h(0)=0,成立.②当3﹣2m <0即时,h ′(x )=2(x+1)ln (x+1)+(1﹣2m )x ,h ′′(x )=2ln (x+1)+3﹣2m ,令h ′′(x )=0,得,当x ∈[0,x 0)时,h ′(x )<h ′(0)=0,∴h (x )在[0,x 0)上单调递减, ∴h (x )<h (0)=0,不成立.综上,.…20.【答案】【解析】解:圆C :的标准方程为(x+1)2+(y ﹣2)2=4由于圆心C (﹣1,2)到直线l :3x+4y ﹣12=0的距离d==<2故直线与圆相交 故他们的公共点有两个.【点评】本题考查的知识点是直线与圆的位置关系,圆的参数方程,其中将圆的参数方程化为标准方程,进而求出圆心坐标和半径长是解答本题的关键.21.【答案】【解析】解:解:集合A={x|x 2﹣3x+2=0}={1,2}∵B ⊆A ,∴(1)B=∅时,a=0 (2)当B={1}时,a=2 (3))当B={2}时,a=1 故a 值为:2或1或0.22.【答案】(1)()f x 的单调递增区间是(),2-∞-和2,3⎛⎫+∞ ⎪⎝⎭,单调递减区间为2(2,)3-;(2)[1,)+∞. 【解析】试题分析:(1) 2a =时,利用导数与单调性的关系,对函数求导,并与零作比较可得函数的单调区间;(2) 对函数求导,对参数分类讨论,利用函数的单调性求函数的最小值,使最小值小于或等于零,可得的取值范围.试题解析:(1)当2a =时,32()241f x x x x =+--,所以2'()344(32)(2)f x x x x x =+-=-+, 由'()0f x >,得23x >或2x <-, 所以函数()f x 的单调递减区间为2(2,)3-.(2)要使()0f x ≤在[1,)+∞上有解,只要()f x 在区间[1,)+∞上的最小值小于等于0. 因为22'()32(3)()f x x ax a x a x a =+-=-+, 令'()0f x =,得103ax =>,20x a =-<.1考点:导数与函数的单调性;分类讨论思想. 23.【答案】【解析】解:(Ⅰ)由条件知,,,∴,,∴,.(Ⅱ)∵函数f(x)的图象向右平移个单位得到函数g(x)的图象,∴,∵函数g(x)在区间[0,m](m∈(3,4))上的图象的最高点和最低点分别为M,N,∴最高点为,最低点为,∴,,∴,又0≤θ≤π,∴.【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.24.【答案】【解析】解:(Ⅰ)f(x)≥1,即|x﹣3|﹣|2x﹣2|≥1x时,3﹣x+2x﹣2≥1,∴x≥0,∴0≤x≤1;1<x<3时,3﹣x﹣2x+2≥1,∴x≤,∴1<x≤;x≥3时,x﹣3﹣2x+2≥1,∴x≤﹣2∴1<x≤,无解,…所以f(x)≥1解集为[0,].…(Ⅱ)当x∈[1,2]时,f(x)﹣|2x﹣5|≤0可化为|x﹣a|≤3,∴a﹣3≤x≤a+3,…∴,…∴﹣1≤a≤4.…。
于都县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图是一个多面体的三视图,则其全面积为( )A .B .C .D .2. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D .3. 下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2xxB 、()1f x x =- 与()f x =C 、()f x x =与()f x =D 、()f x x =与2()f x =4. 若偶函数y=f (x ),x ∈R ,满足f (x+2)=﹣f (x ),且x ∈[0,2]时,f (x )=1﹣x ,则方程f (x )=log 8|x|在[﹣10,10]内的根的个数为( ) A .12B .10C .9D .85. 已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4) D .(4,0) 6. 已知一个算法的程序框图如图所示,当输出的结果为21时,则输入的值为( )A .2B .1-C .1-或2D .1-或10 7. “x ≠0”是“x >0”是的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( ) A.B.C.D.9. 函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( ) A .f (2)<f (π)<f (5) B .f (π)<f (2)<f (5)C .f (2)<f (5)<f (π)D .f (5)<f (π)<f (2) 10.如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A.B.C.D.11.下列四个命题中的真命题是( )A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示C .不经过原点的直线都可以用方程1x y a b+=表示D .经过定点()0,A b 的直线都可以用方程y kx b =+表示12.已知命题p :2≤2,命题q :∃x 0∈R ,使得x 02+2x 0+2=0,则下列命题是真命题的是( ) A .¬p B .¬p ∨qC .p ∧qD .p ∨q二、填空题13.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想. 14.数据﹣2,﹣1,0,1,2的方差是 .15.定义某种运算⊗,S=a ⊗b 的运算原理如图;则式子5⊗3+2⊗4= .1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 623816.在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.17.求函数在区间[]上的最大值.18.不等式的解为.三、解答题19.已知等差数列{a n},等比数列{b n}满足:a1=b1=1,a2=b2,2a3﹣b3=1.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记c n=a n b n,求数列{c n}的前n项和S n.20.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.21.已知函数f(x)=a x(a>0且a≠1)的图象经过点(2,).(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a(x≥0)的值域.22.已知抛物线C:x2=2y的焦点为F.(Ⅰ)设抛物线上任一点P(m,n).求证:以P为切点与抛物线相切的方程是mx=y+n;(Ⅱ)若过动点M(x0,0)(x0≠0)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明.23.设{a n}是公比小于4的等比数列,S n为数列{a n}的前n项和.已知a1=1,且a1+3,3a2,a3+4构成等差数列.(1)求数列{a n}的通项公式;(2)令b n=lna3n+1,n=12…求数列{b n}的前n项和T n.24.已知数列{a n}是等比数列,首项a1=1,公比q>0,且2a1,a1+a2+2a3,a1+2a2成等差数列.(Ⅰ)求数列{a n}的通项公式(Ⅱ)若数列{b n}满足a n+1=(),T n为数列{b n}的前n项和,求T n.于都县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,∴三棱柱的面积是3××2=6+,故选C.【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.2.【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,l1与l2平行.所以,解得m=﹣7.故选:A.【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.3.【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。
于都县高中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的()A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件2.在三角形中,若,则的大小为()A .B .C .D .3.设函数f(x)=的最小值为﹣1,则实数a的取值范围是()A.a≥﹣2 B.a>﹣2 C.a≥﹣D.a>﹣4.已知等差数列{a n}满足2a3﹣a+2a13=0,且数列{b n} 是等比数列,若b8=a8,则b4b12=()A.2 B.4 C.8 D.165.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C. D.6.已知,y满足不等式430,35250,1,x yx yx-+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y=+的最大值为()A.3 B.132C.12 D.157.设定义在R上的函数f(x)对任意实数x,y,满足f(x)+f(y)=f(x+y),且f(3)=4,则f(0)+f (﹣3)的值为()A.﹣2 B.﹣4 C.0 D.48.已知定义在R上的可导函数y=f(x)是偶函数,且满足xf′(x)<0,=0,则满足的x的范围为()A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C .(,1)∪(2,+∞)D .(0,)∪(2,+∞)9. ()()22f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )A .0a >B .0a <<C .02a <<D .以上都不对10.已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 11.函数f (x )=3x +x ﹣3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2.3) D .(3,4)12.已知两点M (1,),N (﹣4,﹣),给出下列曲线方程: ①4x+2y ﹣1=0;②x 2+y 2=3;③+y 2=1;④﹣y 2=1.在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) A .①③ B .②④ C .①②③ D .②③④二、填空题13.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .14.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系 是 .15.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________. 16.设集合A={﹣3,0,1},B={t 2﹣t+1}.若A ∪B=A ,则t= .17.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈, 则2λμ-的取值范围是___________.18.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为.三、解答题19.设圆C满足三个条件①过原点;②圆心在y=x上;③截y轴所得的弦长为4,求圆C的方程.20.某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行(1)现有三条y对x的回归直线方程:=﹣10x+170;=﹣20x+250;=﹣15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由.(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入﹣成本)21.(本题满分15分)如图AB 是圆O 的直径,C 是弧AB 上一点,VC 垂直圆O 所在平面,D ,E 分别为VA ,VC 的中点. (1)求证:DE ⊥平面VBC ;(2)若6VC CA ==,圆O 的半径为5,求BE 与平面BCD 所成角的正弦值.【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.22.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:; (Ⅲ)若,判断直线与平面是否垂直?并说明理由.23.已知函数.(1)求f(x)的周期和及其图象的对称中心;(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.24.如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点.(1)求BD长;(2)当CE⊥OD时,求证:AO=AD.于都县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.故选:B.【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.2.【答案】A【解析】由正弦定理知,不妨设,,,则有,所以,故选A答案:A3.【答案】C【解析】解:当x≥时,f(x)=4x﹣3≥2﹣3=﹣1,当x=时,取得最小值﹣1;当x<时,f(x)=x2﹣2x+a=(x﹣1)2+a﹣1,即有f(x)在(﹣∞,)递减,则f(x)>f()=a﹣,由题意可得a﹣≥﹣1,解得a≥﹣.故选:C.【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题.4.【答案】D【解析】解:由等差数列的性质可得a3+a13=2a8,即有a82=4a8,解得a8=4(0舍去),即有b8=a8=4,由等比数列的性质可得b4b12=b82=16.故选:D.5.【答案】B【解析】解:设圆锥底面圆的半径为r,高为h,则L=2πr,∴=(2πr)2h,∴π=.故选:B.6.【答案】C考点:线性规划问题.【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础.(2)目标函数的意义,有的可以用直线在y轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定. 7. 【答案】B【解析】解:因为f (x )+f (y )=f (x+y ), 令x=y=0,则f (0)+f (0)=f (0+0)=f (0), 所以,f (0)=0; 再令y=﹣x ,则f (x )+f (﹣x )=f (0)=0, 所以,f (﹣x )=﹣f (x ), 所以,函数f (x )为奇函数. 又f (3)=4,所以,f (﹣3)=﹣f (3)=﹣4, 所以,f (0)+f (﹣3)=﹣4. 故选:B .【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f (x )为奇函数是关键,考查推理与运算求解能力,属于中档题.8. 【答案】D【解析】解:当x >0时,由xf ′(x )<0,得f ′(x )<0,即此时函数单调递减, ∵函数f (x )是偶函数,∴不等式等价为f (||)<,即||>,即>或<﹣,解得0<x <或x >2,故x 的取值范围是(0,)∪(2,+∞) 故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.9. 【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数()()22f x a x a =-+在区间[]0,1上恒正,则(0)0(1)0f f >⎧⎨>⎩,即2020a a a >⎧⎨-+>⎩,解得02a <<,故选C.考点:函数的单调性的应用. 10.【答案】A 【解析】试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=,由,1d r k =∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系. 11.【答案】A【解析】解:∵f (0)=﹣2<0,f (1)=1>0,∴由零点存在性定理可知函数f (x )=3x +x ﹣3的零点所在的区间是(0,1). 故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.12.【答案】 D【解析】解:要使这些曲线上存在点P 满足|MP|=|NP|,需曲线与MN 的垂直平分线相交. MN的中点坐标为(﹣,0),MN斜率为=∴MN 的垂直平分线为y=﹣2(x+),∵①4x+2y ﹣1=0与y=﹣2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.②x 2+y 2=3与y=﹣2(x+),联立,消去y 得5x 2﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN 的垂直平分线有交点,③中的方程与y=﹣2(x+),联立,消去y 得9x 2﹣24x ﹣16=0,△>0可知③中的曲线与MN 的垂直平分线有交点,④中的方程与y=﹣2(x+),联立,消去y 得7x 2﹣24x+20=0,△>0可知④中的曲线与MN 的垂直平分线有交点, 故选D二、填空题13.【答案】 [﹣1,﹣) .【解析】解:作出y=|x ﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k ∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.14.【答案】12()()f x f x ] 【解析】考点:不等式,比较大小.【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等. 15.【答案】【解析】(2a +b )·a =(2,-2+t )·(1,-1) =2×1+(-2+t )·(-1) =4-t =2,∴t =2. 答案:216.【答案】 0或1 .【解析】解:由A∪B=A知B⊆A,∴t2﹣t+1=﹣3①t2﹣t+4=0,①无解或t2﹣t+1=0②,②无解或t2﹣t+1=1,t2﹣t=0,解得t=0或t=1.故答案为0或1.【点评】本题考查集合运算及基本关系,掌握好概念是基础.正确的转化和计算是关键.-17.【答案】[]1,1【解析】考点:向量运算.【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.18.【答案】12【解析】考点:分层抽样三、解答题19.【答案】【解析】解:根据题意画出图形,如图所示:当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,∵与y轴截取的弦OA=4,∴OB=C1D=OD=C1B=2,即圆心C1(2,2),在直角三角形ABC中,根据勾股定理得:AC1=2,1则圆C1方程为:(x﹣2)2+(y﹣2)2=8;当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,由C2在直线y=x上,得到C2B=C2D,则四边形OB′C2D′为正方形,∵与y轴截取的弦OA′=4,∴OB′=C2D′,=OD′=C2B′=2,即圆心C2(﹣2,﹣2),在直角三角形A′B′C中,根据勾股定理得:A′C2=2,2则圆C1方程为:(x+2)2+(y+2)2=8,∴圆C的方程为:(x﹣2)2+(y﹣2)2=8或(x+2)2+(y+2)2=8.【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题.20.【答案】【解析】(1)=(8+8.2+8.4+8.6+8.8+9)=8.5,=(90+84+83+80+75+68)=80;∵(,)在回归直线上,∴选择=﹣20x+250;(2)利润w=(x﹣5)(﹣20x+250)=﹣20x2+350x﹣1250=﹣20(x﹣8.75)2+281.25,∴当x=8.75元时,利润W最大为281.25(万元),∴当单价定8.75元时,利润最大281.25(万元).21.【答案】(1)详见解析;(2. 【解析】(1)∵D ,E 分别为VA ,VC 的中点,∴//DE AC ,…………2分∵AB 为圆O 的直径,∴AC BC ⊥,…………4分 又∵VC ⊥圆O ,∴VC AC ⊥,…………6分 ∴DE BC ⊥,DE VC ⊥,又∵VCBC C =,∴DE VBC ⊥面;…………7分(2)设点E 平面BCD 的距离为d ,由D BCE E BCD V V --=得1133BCEBCD DE S d S ∆∆⨯⨯=⨯⨯,解得d =12分 设BE 与平面BCD 所成角为θ,∵8BC =,BE =sin d BE θ==.…………15分 22.【答案】【解析】【知识点】垂直平行 【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面. 因为,平面,平面,所以平面.又因为, 所以平面平面.又因为平面, 所以平面.(Ⅱ)证明:因为底面,底面,所以. 又因为,,所以平面. 又因为底面,所以.(Ⅲ)结论:直线与平面不垂直.证明:假设平面,由平面,得. 由棱柱中,底面,可得,,又因为,所以平面,所以.又因为,所以平面,所以.这与四边形为矩形,且矛盾,故直线与平面不垂直.23.【答案】【解析】解:(1)由,∴f(x)的周期为4π.由,故f(x)图象的对称中心为.(2)由(2a﹣c)cosB=bcosC,得(2sinA﹣sinC)cosB=sinBcosC,∴2sinAcosB﹣cosBsinC=sinBcosC,∴2sinAcosB=sin(B+C),∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,∴.∴,故函数f(A)的取值范围是.24.【答案】【解析】解:(1)∵OC=OD,∴∠OCD=∠ODC,∴∠OAC=∠ODB.∵∠BOD=∠A,∴△OBD∽△AOC.∴,∵OC=OD=6,AC=4,∴,∴BD=9.…(2)证明:∵OC=OE,CE⊥OD.∴∠COD=∠BOD=∠A.∴∠AOD=180°﹣∠A﹣∠ODC=180°﹣∠COD﹣∠OCD=∠ADO.∴AD=AO …【点评】本题考查三角形相似,角的求法,考查推理与证明,距离的求法.。
于都县实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设函数y=sin2x+cos2x 的最小正周期为T ,最大值为A ,则( )A .T=π,B .T=π,A=2C .T=2π,D .T=2π,A=22. cos80cos130sin100sin130︒︒-︒︒等于( )A B .12 C .12- D . 3. 已知集合 M={x||x|≤2,x ∈R},N={﹣1,0,2,3},则M ∩N=( )A .{﹣1,0,2}B .{﹣1,0,1,2}C .{﹣1,0,2,3}D .{0,1,2,3}4. 某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为( )A .5B .7C .9D .11 5. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .6. 若,则下列不等式一定成立的是( ) A . B .C .D .7. 如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A .B .C .D .8. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或D .或9. 某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如表几组样本数据:0.7,则这组样本数据的回归直线方程是( )A . =0.7x+0.35B . =0.7x+1C . =0.7x+2.05D . =0.7x+0.4510.已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O 是坐标原点,且,那么实数a 的取值范围是( )A .B .C .D .11.设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D .(﹣,+∞)12.下列函数中,为奇函数的是( ) A .y=x+1 B .y=x 2 C .y=2x D .y=x|x|二、填空题13.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中: ①f (x )是周期函数;②f (x ) 的图象关于x=1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上为减函数; ⑤f (2)=f (0). 正确命题的个数是 .14.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .15.若曲线f (x )=ae x +bsinx (a ,b ∈R )在x=0处与直线y=﹣1相切,则b ﹣a= .16.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .17.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .18.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.三、解答题19.已知p :2x 2﹣3x+1≤0,q :x 2﹣(2a+1)x+a (a+1)≤0(1)若a=,且p ∧q 为真,求实数x 的取值范围. (2)若p 是q 的充分不必要条件,求实数a 的取值范围.20.(本题满分14分)已知函数x a x x f ln )(2-=.(1)若)(x f 在]5,3[上是单调递减函数,求实数a 的取值范围;(2)记x b x a x f x g )1(2ln )2()()(--++=,并设)(,2121x x x x <是函数)(x g 的两个极值点,若27≥b , 求)()(21x g x g -的最小值.21.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且满足2bcosC=2a ﹣c . (Ⅰ)求B ; (Ⅱ)若△ABC 的面积为,b=2求a ,c 的值.22.(本小题满分12分)数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .23.(本小题满分10分)已知函数f (x )=|x -a |+|x +b |,(a ≥0,b ≥0). (1)求f (x )的最小值,并求取最小值时x 的范围; (2)若f (x )的最小值为2,求证:f (x )≥a +b .24.设集合{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,判断集合A 与B 的关系; (2)若A B B =,求实数组成的集合C .于都县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:由三角函数的公式化简可得:=2()=2(sin2xcos+cos2xsin)=2sin(2x+),∴T==π,A=2故选:B2.【答案】D【解析】试题分析:原式()()=︒︒-︒︒=︒+︒=︒=︒+︒=-︒cos80cos130sin80sin130cos80130cos210cos30180cos30=.考点:余弦的两角和公式.3.【答案】A【解析】解:由M中不等式解得:﹣2≤x≤2,即M=[﹣2,2],∵N={﹣1,0,2,3},∴M∩N={﹣1,0,2},故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.4.【答案】C【解析】解:若果树前n年的总产量S与n在图中对应P(S,n)点则前n年的年平均产量即为直线OP的斜率由图易得当n=9时,直线OP的斜率最大即前9年的年平均产量最高,故选C5.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。
于都县第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个2. 实数a=0.2,b=log0.2,c=的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a3. 如图可能是下列哪个函数的图象( )A .y=2x ﹣x 2﹣1B .y=C .y=(x 2﹣2x )e xD .y=4. 已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I (A ∩B )等于( ) A .{3,4} B .{1,2,5,6} C .{1,2,3,4,5,6} D .∅5. 特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成( ) A .若x ∉R ,则x 2+1≥0B .∃x ∉R ,x 2+1≥0C .∀x ∈R ,x 2+1<0D .∀x ∈R ,x 2+1≥06. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )A .11B .12C .13D .14 7. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )A.B.C.D.8.已知a=21.2,b=(﹣)﹣0.8,c=2log52,则a,b,c的大小关系为()A.c<b<a B.c<a<b C.b<a<c D.b<c<a9.如图是一个多面体的三视图,则其全面积为()A.B.C.D.10.运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为()A.y=x+2 B.y=C.y=3x D.y=3x311.在△ABC中,a=1,b=4,C=60°,则边长c=()A.13 B. C. D.2112.设函数f(x)=,f(﹣2)+f(log210)=()A.11 B.8 C.5 D.2二、填空题13.抛物线y=x 2的焦点坐标为( )A .(0,)B .(,0)C .(0,4)D .(0,2)14.下列命题:①终边在y 轴上的角的集合是{a|a=,k ∈Z};②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;③把函数y=3sin (2x+)的图象向右平移个单位长度得到y=3sin2x 的图象;④函数y=sin (x﹣)在[0,π]上是减函数其中真命题的序号是 .15.已知x 、y 之间的一组数据如下:x 0 1 2 3 y 8 2 64则线性回归方程所表示的直线必经过点 .16.以抛物线y 2=20x 的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 .17.设R m ∈,实数x ,y 满足23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.18.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .三、解答题19.已知函数f (x )=2x 2﹣4x+a ,g (x )=log a x (a >0且a ≠1). (1)若函数f (x )在[﹣1,3m]上不具有单调性,求实数m 的取值范围; (2)若f (1)=g (1) ①求实数a 的值;②设t 1=f (x ),t 2=g (x ),t 3=2x ,当x ∈(0,1)时,试比较t 1,t 2,t 3的大小.20.甲乙两个地区高三年级分别有33000人,30000人,为了了解两个地区全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个地区一共抽取了105名学生的数学成绩,并作出了如下的频数分布统计表,规定考试成绩在[120,150]内为优秀.(Ⅱ)根据抽样结果分别估计甲地区和乙地区的优秀率;若将此优秀率作为概率,现从乙地区所有学生中随机抽取3人,求抽取出的优秀学生人数ξ的数学期望;(Ⅲ)根据抽样结果,从样本中优秀的学生中随机抽取3人,求抽取出的甲地区学生人数η的分布列及数学期望.21..已知定义域为R的函数f(x)=是奇函数.(1)求a 的值;(2)判断f (x )在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明);(3)若对于任意t ∈R ,不等式f (t 2﹣2t )+f (2t 2﹣k )<0恒成立,求k 的取值范围.22.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.23.证明:f (x )是周期为4的周期函数;(2)若f(x)=(0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.18.已知函数f(x)=是奇函数.24.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离.于都县第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况, 所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥; 至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题.2. 【答案】C【解析】解:根据指数函数和对数函数的性质,知log 0.2<0,0<0.2<1,,即0<a <1,b <0,c >1,∴b <a <c . 故选:C .【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键. 3. 【答案】 C【解析】解:A 中,∵y=2x ﹣x 2﹣1,当x 趋向于﹣∞时,函数y=2x 的值趋向于0,y=x 2+1的值趋向+∞, ∴函数y=2x ﹣x 2﹣1的值小于0,∴A 中的函数不满足条件;B 中,∵y=sinx 是周期函数,∴函数y=的图象是以x 轴为中心的波浪线,∴B 中的函数不满足条件;C 中,∵函数y=x 2﹣2x=(x ﹣1)2﹣1,当x <0或x >2时,y >0,当0<x <2时,y <0; 且y=e x>0恒成立,∴y=(x 2﹣2x )e x的图象在x 趋向于﹣∞时,y >0,0<x <2时,y <0,在x 趋向于+∞时,y 趋向于+∞;∴C 中的函数满足条件;D 中,y=的定义域是(0,1)∪(1,+∞),且在x ∈(0,1)时,lnx <0,∴y=<0,∴D中函数不满足条件.故选:C.【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.4.【答案】B【解析】解:∵A={1,2,3,4},B={3,4,5,6},∴A∩B={3,4},∵全集I={1,2,3,4,5,6},∴∁I(A∩B)={1,2,5,6},故选B.【点评】本题考查交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.5.【答案】D【解析】解:∵命题“∃x∈R,使x2+1<0”是特称命题∴否定命题为:∀x∈R,都有x2+1≥0.故选D.6.【答案】A【解析】考点:得出数列的性质及前项和.【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“10a>,0d<”判断前项和的符号问题是解答的关键.7.【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有4×6=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.8.【答案】A【解析】解:∵b=(﹣)﹣0.8=20.8<21.2=a,且b>1,又c=2log52=log54<1,∴c<b<a.故选:A.9.【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,∴三棱柱的面积是3××2=6+,故选C.【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.10.【答案】C【解析】解:模拟程序框图的运行过程,得;该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上.故选:C.【点评】本题考查了程序框图的应用问题,是基础题目.11.【答案】B【解析】解:∵a=1,b=4,C=60°,∴由余弦定理可得:c===.故选:B.12.【答案】B【解析】解:∵f(x)=,∴f(﹣2)=1+log24=1+2=3,=5,∴f(﹣2)+f(log210)=3+5=8.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.二、填空题13.【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,∴焦点坐标为(0,2).故选:D.【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.14.【答案】③.【解析】解:①、终边在y轴上的角的集合是{a|a=,k∈Z},故①错误;②、设f(x)=sinx﹣x,其导函数y′=cosx﹣1≤0,∴f(x)在R上单调递减,且f(0)=0,∴f(x)=sinx﹣x图象与轴只有一个交点.∴f(x)=sinx与y=x 图象只有一个交点,故②错误;③、由题意得,y=3sin[2(x﹣)+]=3sin2x,故③正确;④、由y=sin(x﹣)=﹣cosx得,在[0,π]上是增函数,故④错误.故答案为:③.【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中4个命题的真假,是解答本题的关键.15.【答案】(,5).【解析】解:∵,=5∴线性回归方程y=a+bx所表示的直线必经过点(1.5,5)故选C【点评】解决线性回归直线的方程,利用最小二乘法求出直线的截距和斜率,注意由公式判断出回归直线一定过样本中心点.16.【答案】(x﹣5)2+y2=9.【解析】解:抛物线y2=20x的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x±4y=0由题意,r=3,则所求方程为(x﹣5)2+y2=9故答案为:(x﹣5)2+y2=9.【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题..17.【答案】[3,6]【解析】18.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c cb b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.1 三、解答题19.【答案】【解析】解:(1)因为抛物线y=2x 2﹣4x+a 开口向上,对称轴为x=1, 所以函数f (x )在(﹣∞,1]上单调递减,在[1,+∞)上单调递增, 因为函数f (x )在[﹣1,3m]上不单调, 所以3m >1,…(2分)得,…(3分)(2)①因为f (1)=g (1),所以﹣2+a=0,…(4分) 所以实数a 的值为2.…②因为t 1=f (x )=x 2﹣2x+1=(x ﹣1)2, t 2=g (x )=log 2x , t 3=2x ,所以当x ∈(0,1)时,t 1∈(0,1),…(7分)t2∈(﹣∞,0),…(9分)t3∈(1,2),…(11分)所以t2<t1<t3.…(12分)【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.20.【答案】【解析】解:(Ⅰ)∵抽样比f==,∴甲地区抽取人数==55人,乙地区抽取人数==50人,∴由频数分布表知:解得x=6,y=7.(Ⅱ)由频数分布表知甲地区优秀率==,乙地区优秀率==,现从乙地区所有学生中随机抽取3人,抽取出的优秀学生人数ξ的可能取值为0,1,2,3,ξ~B(3,),∴Eξ=3×=.(Ⅲ)从样本中优秀的学生中随机抽取3人,抽取出的甲地区学生人数η的可能取值为0,1,2,3,P(η=0)==,P(η=1)==,P(η=2)==,P(η=3)==,∴η的分布列为:Eη==1.【点评】本题考查频数分布表的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型.21.【答案】【解析】解:(1)因为f(x)为R上的奇函数所以f(0)=0即=0,∴a=1 …(2)f(x)==﹣1+,在(﹣∞,+∞)上单调递减…(3)f(t2﹣2t)+f(2t2﹣k)<0⇔f(t2﹣2t)<﹣f(2t2﹣k)=f(﹣2t2+k),又f(x)=在(﹣∞,+∞)上单调递减,∴t2﹣2t>﹣2t2+k,即3t2﹣2t﹣k>0恒成立,∴△=4+12k<0,∴k<﹣.…(利用分离参数也可).22.【答案】【解析】【命题意图】本题综合考查了线面垂直、线线垂直、线面平行等位置关系的证明,对空间想象能力及逻辑推理有较高要求,对于证明中辅助线的运用是一个难点,本题属于中等难度.23.【答案】【解析】(1)证明:由函数f(x)的图象关于直线x=1对称,有f(x+1)=f(1﹣x),即有f(﹣x)=f(x+2).又函数f(x)是定义在R上的奇函数,有f(﹣x)=﹣f(x).故f(x+2)=﹣f(x).从而f(x+4)=﹣f(x+2)=f(x).即f(x)是周期为4的周期函数.(2)解:由函数f(x)是定义在R上的奇函数,有f(0)=0.x∈[﹣1,0)时,﹣x∈(0,1],.故x∈[﹣1,0]时,.x∈[﹣5,﹣4]时,x+4∈[﹣1,0],.从而,x∈[﹣5,﹣4]时,函数f(x)的解析式为.【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.24.【答案】【解析】解:(1)证明:因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC.由∠BCD=90°,得CD⊥BC,又PD∩DC=D,PD、DC⊂平面PCD,所以BC⊥平面PCD.因为PC⊂平面PCD,故PC⊥BC.(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等.又点A到平面PBC的距离等于E到平面PBC的距离的2倍.由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F.易知DF=,故点A到平面PBC的距离等于.(方法二)等体积法:连接AC.设点A到平面PBC的距离为h.因为AB∥DC,∠BCD=90°,所以∠ABC=90°.从而AB=2,BC=1,得△ABC的面积S△ABC=1.由PD⊥平面ABCD及PD=1,得三棱锥P﹣ABC的体积.因为PD⊥平面ABCD,DC⊂平面ABCD,所以PD⊥DC.又PD=DC=1,所以.由PC⊥BC,BC=1,得△PBC的面积.由V=V P﹣ABC,,得,A﹣PBC故点A到平面PBC的距离等于.【点评】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.。
于都县三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.2. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞)B .(0,1)C .(﹣1,0)D .(﹣∞,﹣1)3. 已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( )A .12B .11C .10D .94. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5) C .(4,﹣3,1) D .(﹣5,3,4)5. 如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )A .4B .5C .D .6.若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(﹣1,0)∪(2,+∞)C.(2,+∞)D.(﹣1,0)7.一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是()A.i≤5?B.i≤4?C.i≥4?D.i≥5?8.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A.B.C.D.9.运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为()A .y=x+2B .y=C .y=3xD .y=3x 310.已知函数f (x )=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)11.已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )A .B .C .D . =0.08x+1.2312.设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,下面的不等式在R 内恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x二、填空题13.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S 的最小值是 .14.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 .15.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .16.设函数,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同的实数根,则实数a 的取值范围是 .17.设抛物线24y x =的焦点为F ,,A B 两点在抛物线上,且A ,B ,F 三点共线,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若32PF =,则M 点的横坐标为 .18.如图是正方体的平面展开图,则在这个正方体中①BM与ED平行;②CN与BE是异面直线;③CN与BM成60 角;④DM与BN是异面直线.以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).三、解答题19.如图,在Rt△ABC中,∠ACB=,AC=3,BC=2,P是△ABC内一点.(1)若P是等腰三角形PBC的直角顶角,求PA的长;(2)若∠BPC=,设∠PCB=θ,求△PBC的面积S(θ)的解析式,并求S(θ)的最大值.20.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.(1)求证:平面AEC⊥平面PDB;(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小.21.(本小题满分10分)选修4-1:几何证明选讲如图,直线PA 与圆O 相切于点A ,PBC 是过点O 的割线,CPE APE ∠=∠,点H 是线段ED 的中 点.(1)证明:D F E A 、、、四点共圆;(2)证明:PC PB PF ⋅=2.22.一艘客轮在航海中遇险,发出求救信号.在遇险地点A 南偏西45方向10海里的B 处有一艘海难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东75,正以每小时9海里的速度向 一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;中,求角B的正弦值.(2)若最短时间内两船在C处相遇,如图,在ABC23.已知函数f(x)=e﹣x(x2+ax)在点(0,f(0))处的切线斜率为2.(Ⅰ)求实数a的值;(Ⅱ)设g(x)=﹣x(x﹣t﹣)(t∈R),若g(x)≥f(x)对x∈[0,1]恒成立,求t的取值范围;(Ⅲ)已知数列{a n}满足a1=1,a n+1=(1+)a n,求证:当n≥2,n∈N时f()+f()+L+f()<n•()(e为自然对数的底数,e≈2.71828).24.已知函数f(x)=2cos2ωx+2sinωxcosωx﹣1,且f(x)的周期为2.(Ⅰ)当时,求f(x)的最值;(Ⅱ)若,求的值.于都县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C.【解析】易得//BP 平面11CC D D ,所有满足1PBD PBX ∠=∠的所有点X 在以BP 为轴线,以1BD 所在直线为母线的圆锥面上,∴点Q 的轨迹为该圆锥面与平面11CC D D 的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点Q 的轨迹是双曲线,故选C.2. 【答案】D【解析】解:若a=0,则函数f (x )=﹣3x 2+1,有两个零点,不满足条件.若a ≠0,函数的f (x )的导数f ′(x )=6ax 2﹣6x=6ax (x ﹣),若 f (x )存在唯一的零点x 0,且x 0>0,若a >0,由f ′(x )>0得x >或x <0,此时函数单调递增,由f ′(x )<0得0<x <,此时函数单调递减,故函数在x=0处取得极大值f (0)=1>0,在x=处取得极小值f (),若x 0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.若a <0,由f ′(x )>0得<x <0,此时函数递增,由f ′(x )<0得x <或x >0,此时函数单调递减,即函数在x=0处取得极大值f (0)=1>0,在x=处取得极小值f (),若存在唯一的零点x 0,且x 0>0,则f ()>0,即2a ()3﹣3()2+1>0,()2<1,即﹣1<<0,解得a <﹣1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.3.【答案】B【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)对称,函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,设A,B,C,D的横坐标分别为a,b,c,d,则a+d=4,b+c=4,由图象知另一交点横坐标为3,故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.故选:B .【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.4. 【答案】C【解析】解:设C (x ,y ,z ),∵点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C ,∴,解得x=4,y=﹣3,z=1,∴C (4,﹣3,1).故选:C .5. 【答案】D【解析】试题分析:因为根据几何体的三视图可得,几何体为下图,,AD AB AG 相互垂直,面AEFG ⊥面,//,3,1ABCDE BC AE AB AD AG DE ====,根据几何体的性质得:AC GC ==GE ===4,BG AD EF CE ====所以最长为GC =考点:几何体的三视图及几何体的结构特征.6.【答案】C【解析】解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,结合函数的定义域知,f′(x)>0的解集为(2,+∞).故选:C.7.【答案】B【解析】解:模拟执行程序框图,可得i=1,sum=0,s=0满足条件,i=2,sum=1,s=满足条件,i=3,sum=2,s=+满足条件,i=4,sum=3,s=++满足条件,i=5,sum=4,s=+++=1﹣+﹣+﹣+﹣=.由题意,此时不满足条件,退出循环,输出s的,则判断框中应填入的条件是i≤4.故选:B.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.8.【答案】A【解析】直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.9.【答案】C【解析】解:模拟程序框图的运行过程,得;该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上.故选:C.【点评】本题考查了程序框图的应用问题,是基础题目.10.【答案】C【解析】解:∵f(x)=﹣log2x,∴f(2)=2>0,f(4)=﹣<0,满足f(2)f(4)<0,∴f(x)在区间(2,4)内必有零点,故选:C11.【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程.12.【答案】A【解析】解:∵2f(x)+xf′(x)>x2,令x=0,则f(x)>0,故可排除B,D.如果f(x)=x2+0.1,时已知条件2f(x)+xf′(x)>x2成立,但f(x)>x 未必成立,所以C也是错的,故选A故选A.二、填空题13.【答案】.【解析】解:设剪成的小正三角形的边长为x,则:S==,(0<x<1)令3﹣x=t,t∈(2,3),∴S===,当且仅当t=即t=2时等号成立;故答案为:.14.【答案】A<G.【解析】解:由题意可得A=,G=±,由基本不等式可得A≥G,当且仅当a=b取等号,由题意a,b是互异的负数,故A<G.故答案是:A<G.【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.15.【答案】5.【解析】解:如图所示:延长BC,过A做AE⊥BC,垂足为E,∵CD⊥BC,∴CD∥AE,∵CD=5,BD=2AD,∴,解得AE=,在RT△ACE,CE===,由得BC=2CE=5,在RT△BCD中,BD===10,则AD=5,故答案为:5.【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.16.【答案】(﹣1,﹣]∪[,).【解析】解:当﹣2≤x<﹣1时,[x]=﹣2,此时f(x)=x﹣[x]=x+2.当﹣1≤x<0时,[x]=﹣1,此时f(x)=x﹣[x]=x+1.当0≤x<1时,﹣1≤x﹣1<0,此时f(x)=f(x﹣1)=x﹣1+1=x.当1≤x<2时,0≤x﹣1<1,此时f(x)=f(x﹣1)=x﹣1.当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(﹣2,1),D(4,1)时有3个不同的交点,当经过点B(﹣1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=﹣1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(﹣1,﹣]∪[,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.17.【答案】2【解析】由题意,得2p =,(1,0)F ,准线为1x =-,设11(,)A x y 、22(,)B x y ,直线AB 的方程为(1)y k x =-,代入抛物线方程消去y ,得2222(24)0k x k x k -++=,所以212224k x x k ++=,121x x =.又设00(,)P x y ,则01212112()[(1)(1)]22y y y k x k x k =+=-+-=,所以021x k =,所以212(,)P k k.因为0213||112PF x k =+=+=,解得22k =,所以M 点的横坐标为2.18.【答案】③④ 【解析】试题分析:把展开图复原成正方体,如图,由正方体的性质,可知:①BM 与ED 是异面直线,所以是错误的;②DN 与BE 是平行直线,所以是错误的;③从图中连接,AN AC ,由于几何体是正方体,所以三角形ANC 为等边三角形,所以,AN AC 所成的角为60︒,所以是正确的;④DM 与BN 是异面直线,所以是正确的.考点:空间中直线与直线的位置关系.三、解答题19.【答案】【解析】解:(1)∵P 为等腰直角三角形PBC 的直角顶点,且BC=2,∴∠PCB=,PC=,∵∠ACB=,∴∠ACP=,在△PAC中,由余弦定理得:PA2=AC2+PC2﹣2AC•PC•cos=5,整理得:PA=;(2)在△PBC中,∠BPC=,∠PCB=θ,∴∠PBC=﹣θ,由正弦定理得:==,∴PB=sinθ,PC=sin(﹣θ),∴△PBC的面积S(θ)=PB•PCsin=sin(﹣θ)sinθ=sin(2θ+)﹣,θ∈(0,),则当θ=时,△PBC面积的最大值为.【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.20.【答案】【解析】(Ⅰ)证明:∵四边形ABCD是正方形,∴AC⊥BD,∵PD⊥底面ABCD,∴PD⊥AC,∴AC⊥平面PDB,∴平面AEC⊥平面PDB.(Ⅱ)解:设AC∩BD=O,连接OE,由(Ⅰ)知AC⊥平面PDB于O,∴∠AEO为AE与平面PDB所的角,∴O,E分别为DB、PB的中点,∴OE∥PD,,又∵PD⊥底面ABCD,∴OE⊥底面ABCD,OE⊥AO,在Rt△AOE中,,∴∠AEO=45°,即AE与平面PDB所成的角的大小为45°.【点评】本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.21.【答案】(1)证明见解析;(2)证明见解析. 【解析】1111]试题解析:解:(1)∵PA 是切线,AB 是弦,∴C BAP ∠=∠,CPE APD ∠=∠, ∴CPE C APD BAP ∠+∠=∠+∠,∵CPE C AED APD BAP ADE ∠+∠=∠∠+∠=∠, ∴AED ADE ∠=∠,即ADE ∆是等腰三角形又点H 是线段ED 的中点,∴ AH 是线段ED 垂直平分线,即ED AH ⊥又由CPE APE ∠=∠可知PH 是线段AF 的垂直平分线,∴AF 与ED 互相垂直且平分, ∴四边形AEFD 是正方形,则D F E A 、、、四点共圆. (5分) (2由割线定理得PC PB PA ⋅=2,由(1)知PH 是线段AF 的垂直平分线,∴PF PA =,从而PC PB PF ⋅=2(10分)考点:与圆有关的比例线段.22.【答案】(1)23小时;(2 【解析】试题解析:(1)设搜救艇追上客轮所需时间为小时,两船在C 处相遇. 在ABC ∆中,4575120BAC ∠=+=,10AB =,9AC t =,21BC t =. 由余弦定理得:2222cos BC AB AC AB AC BAC =+-∠, 所以2221(21)10(9)2109()2t t t =+-⨯⨯⨯-,化简得2369100t t --=,解得23t =或512t =-(舍去). 所以,海难搜救艇追上客轮所需时间为23小时.(2)由2963AC =⨯=,221143BC =⨯=.在ABC ∆中,由正弦定理得6sin 6sin1202sin 1414AC BAC B BC ⨯∠====. 所以角B . 考点:三角形的实际应用.【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,AC BC ,再根据正弦定理和余弦定理,即可求解此类问题,其中正确画出图形是解答的关键. 23.【答案】【解析】解:(Ⅰ)∵f (x )=e ﹣x (x 2+ax ),∴f ′(x )=﹣e ﹣x (x 2+ax )+e ﹣x (2x+a )=﹣e ﹣x (x 2+ax ﹣2x ﹣a );则由题意得f ′(0)=﹣(﹣a )=2, 故a=2.(Ⅱ)由(Ⅰ)知,f (x )=e ﹣x (x 2+2x ),由g(x )≥f (x )得,﹣x (x ﹣t ﹣)≥e ﹣x (x 2+2x ),x ∈[0,1];当x=0时,该不等式成立;当x∈(0,1]时,不等式﹣x+t+≥e﹣x(x+2)在(0,1]上恒成立,即t≥[e﹣x(x+2)+x﹣]max.设h(x)=e﹣x(x+2)+x﹣,x∈(0,1],h′(x)=﹣e﹣x(x+1)+1,h″(x)=x•e﹣x>0,∴h′(x)在(0,1]单调递增,∴h′(x)>h′(0)=0,∴h(x)在(0,1]单调递增,∴h(x)max=h(1)=1,∴t≥1.(Ⅲ)证明:∵a n+1=(1+)a n,∴=,又a1=1,∴n≥2时,a n=a1••…•=1••…•=n;对n=1也成立,∴a n=n.∵当x∈(0,1]时,f′(x)=﹣e﹣x(x2﹣2)>0,∴f(x)在[0,1]上单调递增,且f(x)≥f(0)=0.又∵f()(1≤i≤n﹣1,i∈N)表示长为f(),宽为的小矩形的面积,∴f()<f(x)dx,(1≤i≤n﹣1,i∈N),∴[f()+f()+…+f()]=[f()+f()+…+f()]<f(x)dx.又由(Ⅱ),取t=1得f(x)≤g(x)=﹣x2+(1+)x,∴f(x)dx≤g(x)dx=+,∴[f()+f()+…+f()]<+,∴f()+f()+…+f()<n(+).【点评】本题考查函数、导数等基础知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.24.【答案】【解析】(本题满分为13分)解:(Ⅰ)∵=,…∵T=2,∴,…∴,…∵,∴,∴,…∴,…当时,f(x)有最小值,当时,f(x)有最大值2.…(Ⅱ)由,所以,所以,…而,…所以,…即.…。
于都县第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 抛物线y 2=8x 的焦点到双曲线的渐近线的距离为( )A .1B .C .D . 2. A={x|x <1},B={x|x <﹣2或x >0},则A ∩B=( )A .(0,1)B .(﹣∞,﹣2)C .(﹣2,0)D .(﹣∞,﹣2)∪(0,1)3. 已知复数z 满足:zi=1+i (i 是虚数单位),则z 的虚部为( ) A .﹣i B .i C .1 D .﹣14. 若函数f (x )的定义域为R ,则“函数f (x )是奇函数”是“f (0)=0”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 半径R 的半圆卷成一个圆锥,则它的体积为( )A .πR 3B .πR 3C .πR 3D .πR 36. sin570°的值是( )A .B .﹣C .D .﹣7. 椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.8. 已知曲线C 1:y=e x 上一点A (x 1,y 1),曲线C 2:y=1+ln (x ﹣m )(m >0)上一点B (x 2,y 2),当y 1=y 2时,对于任意x 1,x 2,都有|AB|≥e 恒成立,则m 的最小值为( )A .1B .C .e ﹣1D .e+19.直线:(为参数)与圆:(为参数)的位置关系是()A.相离 B.相切 C.相交且过圆心 D.相交但不过圆心10.如图所示,阴影部分表示的集合是()A.(∁U B)∩A B.(∁U A)∩B C.∁U(A∩B)D.∁U(A∪B)11.如果(m∈R,i表示虚数单位),那么m=()A.1 B.﹣1 C.2 D.0a=,则输出的k值是()12.阅读如右图所示的程序框图,若输入0.45(A)3 (B )4(C) 5 (D) 6二、填空题13.已知x,y满足条件,则函数z=﹣2x+y的最大值是.14.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i<m中的整数m的值是.15.已知函数f(x)=有3个零点,则实数a的取值范围是.16.如图是正方体的平面展开图,则在这个正方体中①BM与ED平行;②CN与BE是异面直线;③CN与BM成60︒角;④DM与BN是异面直线.以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).17.长方体ABCD﹣A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,异面直线A1C1与CE所成角的余弦值为,且四边形ABB1A1为正方形,则球O的直径为.18.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)三、解答题19.(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)20.(本小题满分12分)已知函数1()ln (42)()f x m x m x m x=+-+∈R . (1)当2m >时,求函数()f x 的单调区间; (2)设[],1,3t s ∈,不等式|()()|(ln3)(2)2ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.21.某民营企业生产A ,B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元) (1)分别将A ,B 两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).22.(本小题满分12分)若二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=, 且()01f =.(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.23.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.24.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(1(2)若用解析式y=cx2+d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ωi=x2i,有下列数据处理信息:ω=11,y=38,(ωi-ω)(y i-y)=-811,(ωi-ω)2=374,对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)于都县第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:因为抛物线y2=8x,由焦点公式求得:抛物线焦点为(2,0)又双曲线.渐近线为y=有点到直线距离公式可得:d==1.故选A.【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法.其中应用到点到直线的距离公式,包含知识点多,属于综合性试题.2.【答案】D【解析】解:∵A=(﹣∞,1),B=(﹣∞,﹣2)∪(0,+∞),∴A∩B=(﹣∞,﹣2)∪(0,1),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.【答案】D【解析】解:由zi=1+i,得,∴z的虚部为﹣1.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.4.【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(﹣x)=﹣f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数.由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0””的充分不必要条件.故选:A.5.【答案】A【解析】解:2πr=πR,所以r=,则h=,所以V=故选A6.【答案】B【解析】解:原式=sin(720°﹣150°)=﹣sin150°=﹣.故选B【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.7.【答案】B8.【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.9.【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2. 圆心到直线的距离为:,所以直线与圆相交。
于都县第三中学2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是( )A .α∥β,l ⊂α,n ⊂β⇒l ∥nB .α∥β,l ⊂α⇒l ⊥βC .l ⊥n ,m ⊥n ⇒l ∥mD .l ⊥α,l ∥β⇒α⊥β2. 设是奇函数,且在内是增函数,又,则的解集是( )()f x (0,)+∞(3)0f -=()0x f x ⋅<A . B . {}|303x x x -<<>或{}|3003x x x -<<<<或 C . D . {}|33x x x <->或{}|303x x x <-<<或3. 已知向量=(1,2),=(x ,﹣4),若∥,则x=()A . 4B . ﹣4C . 2D . ﹣24. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .05. 已知均为正实数,且,,,则( ),,x y z 22log xx =-22log yy -=-22log z z -=A . B .C .D .x y z <<z x y <<z y z <<y x z<<6. 在△ABC 中,若A=2B ,则a 等于()A .2bsinAB .2bcosAC .2bsinBD .2bcosB7. 对任意的实数k ,直线y=kx+1与圆x 2+y 2=2的位置关系一定是( )A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心8. 已知函数f (x )=,则的值为()A .B .C .﹣2D .39. 若函数是R 上的单调减函数,则实数a 的取值范围是()A .(﹣∞,2)B .C .(0,2)D .10.用反证法证明命题:“已知a 、b ∈N *,如果ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假设的内容应为()A .a 、b 都能被5整除B .a 、b 都不能被5整除C .a 、b 不都能被5整除D .a 不能被5整除11.已知平面向量=(1,2),=(﹣2,m ),且∥,则=()A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)12.三个数60.5,0.56,log 0.56的大小顺序为( )A .log 0.56<0.56<60.5B .log 0.56<60.5<0.56C .0.56<60.5<log 0.56D .0.56<log 0.56<60.5二、填空题13.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .14.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .15.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .16.已知函数的三个零点成等比数列,则 .5()sin (0)2f x x a x π=-≤≤2log a =17.已知为常数,若,则_________.,a b ()()224+3a 1024f x x x f x b x x =++=++,5a b -=18.抛物线C 1:y 2=2px (p >0)与双曲线C 2:交于A ,B 两点,C 1与C 2的两条渐近线分别交于异于原点的两点C ,D ,且AB ,CD 分别过C 2,C 1的焦点,则= .三、解答题19.已知函数f (x )的导函数f ′(x )=x 2+2ax+b (ab ≠0),且f (0)=0.设曲线y=f (x )在原点处的切线l 1的斜率为k 1,过原点的另一条切线l 2的斜率为k 2.(1)若k 1:k 2=4:5,求函数f (x )的单调区间;(2)若k 2=tk 1时,函数f (x )无极值,且存在实数t 使f (b )<f (1﹣2t )成立,求实数a 的取值范围. 20.已知函数f(x)=log2(x﹣3),(1)求f(51)﹣f(6)的值;(2)若f(x)≤0,求x的取值范围.21.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.22.在直角坐标系xOy中,直线l的参数方程为(t为参数).再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xOy有相同的长度单位.在该极坐标系中圆C的方程为ρ=4sinθ.(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A、B,若点M的坐标为(﹣2,1),求|MA|+|MB|的值.23.某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).24.已知椭圆+=1(a>b>0)的离心率为,且a2=2b.(1)求椭圆的方程;(2)直线l:x﹣y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由.于都县第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:对于A ,α∥β,l ⊂α,n ⊂β,l ,n 平行或 异面,所以错误;对于B ,α∥β,l ⊂α,l 与β 可能相交可能平行,所以错误;对于C ,l ⊥n ,m ⊥n ,在空间,l 与m 还可能异面或相交,所以错误.故选D . 2. 【答案】B 【解析】试题分析:因为为奇函数且,所以,又因为在区间上为增函数且()f x ()30f -=()30f =()f x ()0,+∞,所以当时,,当时,,再根据奇函数图象关于原点对称()30f =()0,3x ∈()0f x <()3,x ∈+∞()0f x >可知:当时,,当时,,所以满足的的取值范围()3,0x ∈-()0f x >(),3x ∈-∞-()0f x <()0x f x ⋅<x 是:或。
故选B 。
()3,0x ∈-()0,3x ∈考点:1.函数的奇偶性;2.函数的单调性。
3. 【答案】D【解析】: 解:∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D .4. 【答案】 B 【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P ,底面四边形的个顶点为A 、B 、C 、D .分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA 、DC ;PB 、AD ;PC 、AB ;PD 、BC )或(PA 、BC ;PD 、AB ;PC 、AD ;PB 、DC )那么安全存放的不同方法种数为2A 44=48.故选B.【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.5.【答案】A【解析】考点:对数函数,指数函数性质.6.【答案】D【解析】解:∵A=2B,∴sinA=sin2B,又sin2B=2sinBcosB,∴sinA=2sinBcosB,根据正弦定理==2R得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB.故选D7.【答案】C【解析】解:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在∵(0,1)在圆x2+y2=2内∴对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是相交但直线不过圆心故选C.8.【答案】A【解析】解:∵函数f(x)=,∴f()==﹣2,=f(﹣2)=3﹣2=.故选:A.9.【答案】B【解析】解:∵函数是R上的单调减函数,∴∴故选B【点评】本题主要考查分段函数的单调性问题,要注意不连续的情况.10.【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”.故选:B.11.【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4,故选B.12.【答案】A【解析】解:∵60.5>60=1,0<0.56<0.50=1,log0.56<log0.51=0.∴log0.56<0.56<60.5.故选:A【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题.二、填空题13.【答案】12【解析】考点:分层抽样14.【答案】 .【解析】解:复数z==﹣i(1+i)=1﹣i,复数z=(i虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.15.【答案】 5 .【解析】解:P(1,4)为抛物线C:y2=mx上一点,即有42=m,即m=16,抛物线的方程为y2=16x,焦点为(4,0),即有|PF|==5.故答案为:5.【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.16.【答案】1 2考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.17.【答案】【解析】试题分析:由,得,()()224+3a 1024f x x x f x b x x =++=++,22()4()31024ax b ax b x x ++++=++即,比较系数得,解得或222224431024a x abx b ax b x x +++++=++22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩1,7a b =-=-,则.1,3a b ==5a b -=考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简的解析式是解答的关键.()f ax b +18.【答案】 .【解析】解:由题意,CD 过C 1的焦点,根据,得x C =,∴b=2a ;由AB 过C 2的焦点,得A (c ,),即A (c ,4a ),∵A (c ,4a )在C 1上,∴16a 2=2pc ,又c=a,∴a=,∴==.故答案为:.【点评】本题考查双曲线、抛物线的简单性质,考查学生的计算能力,属于中档题.三、解答题19.【答案】【解析】解:(1)由已知,k1=f'(0)=b,设l2与曲线y=f(x)的切点为(x0,y0)(x0≠0)则所以,即,则.又4k2=5k1,所以﹣3a2+4b=5b,即b=﹣3a2因此f'(x)=x2+2ax﹣3a2=(x+3a)(x﹣a)①当a>0时,f(x)的增区间为(﹣∞,﹣3a)和(a,+∞),减区间为(﹣3a,a).②当a<0时,f(x)的增区间为(﹣∞,a)和(﹣3a,+∞),减区间为(a,﹣3a).…(2)由(1)若k2=tk1,则,∵ab≠0,∴t≠1,于是,所以,由f(x)无极值可知,,即,所以由f(b)<f(1﹣2t)知,b<1﹣2t,即,就是3a2<4(1﹣t)(1﹣2t),而,故,所以,又a≠0,因此.…【点评】本题考查函数的导数的应用,函数的极值以及函数的单调性考查分类讨论以及转化思想的应用,考查计算能力.20.【答案】【解析】解:(1)∵函数f(x)=log2(x﹣3),∴f(51)﹣f(6)=log248﹣log23=log216=4;(2)若f(x)≤0,则0<x﹣3≤1,解得:x∈(3,4]【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错.21.【答案】【解析】解:(Ⅰ)设甲队以4:2,4:3获胜的事件分别为A,B,∵甲队第5,6场获胜的概率均为,第7场获胜的概率为,∴,,∴甲队以4:2,4:3获胜的概率分别为和.(Ⅱ)随机变量X的可能取值为5,6,7,∴,P(X=6)=,P(X=7)=,∴随机变量X的分布列为X567p.【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力.22.【答案】【解析】解:(1)方程ρ=4sinθ的两边同时乘以ρ,得ρ2=4ρsinθ,将极坐标与直角坐标互化公式代入上式,整理得圆C的直角坐标方程为x2+y2﹣4y=0.(2)由消去t,得直线l的普通方程为y=x+3,因为点M(﹣2,1)在直线l上,可设l的标准参数方程为,代入圆C的方程中,得.设A,B对应的参数分别为t1,t2,由韦达定理,得>0,t1t2=1>0,于是|MA|+|MB|=|t1|+|t2|=,即|MA|+|MB|=.【点评】1.极坐标方程化直角坐标方程,一般通过两边同时平方,两边同时乘以ρ等方式,构造或凑配ρ2,ρcosθ,ρsinθ,再利用互化公式转化.常见互化公式有ρ2=x2+y2,ρcosθ=x,ρsinθ=y,(x≠0)等.2.参数方程化普通方程,关键是消参,常见消参方式有:代入法,两式相加、减,两式相乘、除,方程两边同时平方等.3.运用参数方程解题时,应熟练参数方程中各量的含义,即过定点M0(x0,y0),且倾斜角为α的直线的参数方程为,参数t表示以M0为起点,直线上任意一点M为终点的向量的数量,即当沿直线向上时,t=;当沿直线向下时,t=﹣.23.【答案】【解析】解:(1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,由题设f(x)=k 1x,g(x)=k2,(k1,k2≠0;x≥0)由图知f(1)=,∴k1=又g(4)=,∴k2=从而f(x)=,g(x)=(x≥0)(2)设A产品投入x万元,则B产品投入10﹣x万元,设企业的利润为y万元y=f(x)+g(10﹣x)=,(0≤x≤10),令,∴(0≤t≤)当t=,y max≈4,此时x=3.75∴当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元.【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题.解题的关键是换元,利用二次函数的求最值的方法求解.24.【答案】【解析】解:(1)由题意得e==,a2=2b,a2﹣b2=c2,解得a=,b=c=1故椭圆的方程为x2+=1;(2)设A(x1,y1),B(x2,y2),线段AB的中点为M(x0,y0).联立直线y=x+m与椭圆的方程得,即3x2+2mx+m2﹣2=0,△=(2m)2﹣4×3×(m2﹣2)>0,即m2<3,x1+x2=﹣,所以x0==﹣,y0=x0+m=,即M(﹣,).又因为M点在圆x2+y2=5上,可得(﹣)2+()2=5,解得m=±3与m2<3矛盾.故实数m不存在.【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题.。