高考专题穿插滚动练(三)
- 格式:docx
- 大小:97.50 KB
- 文档页数:10
高三语文人教版一轮复习:滚动测试卷三(含答案解析)滚动测试卷三本试卷共24小题,满分150分,考试用时150分钟一、本大题4小题,每小题3分,共12分。
1.下列词语中加点的字,每对读音都不相同的一组是()A.梦魇./笑靥.戏谑./琐屑.感喟./匮.乏B.谥.号/对峙.啁.啾/绸.缪请帖./字帖.C.拮.据/狡黠.箴.言/斟.酌狡狯./市侩.D.辟.谣/精辟.诅.咒/趔趄.角.色/角.斗答案:B解析:A项,yǎn/yè,xuè/xiè,kuì;B项,shì/zhì,zhōu/chóu,tiě/tiè;C 项,jié/xiá,zhēn,kuài;D 项,pì/pì,zǔ/q iè,jué。
2.下面语段中画线的词语,使用不恰当的一项是()9月9日,上海芭蕾舞团的保留剧目、大型民族芭蕾舞剧《梁祝》在广州炫目上演。
芭蕾舞剧将《梁祝》这个凄美的爱情故事编成四幕舞剧:“共读”“送别”“抗婚”“化蝶”。
全剧的布景采用了春、夏、秋、冬四季随剧情的发展而变换的方式。
剧中的服饰、头饰美轮美奂,极具中国特色。
精妙绝伦的演出得到了观众的一致好评。
A.炫目B.凄美C.美轮美奂D.精妙绝伦答案:C解析:C项,“美轮美奂”,形容房屋的高大和众多,用来形容服饰不贴切;A项,“炫目”,光彩夺目,眩人眼目,表示精彩,符合语境;B项,“凄美”,凄凉而美丽,符合语境;D项,“精妙绝伦”,精巧美妙到了极点,符合语境。
3.下列句子,没有语病的一项是()A.最新统计数字显示,6日是春运的第8天,中国铁路发送旅客503.2万人,比前一日增加约28.5万人左右,增幅明显。
全国铁路开行临时旅客列车564列。
B.虽然惩治腐败是我们党的一贯立场和方针,而且惩治腐败的力度逐年加大,取得的成绩有目共睹,赢得了人民群众的衷心拥护,但无须讳言的是,腐败并未得到有效遏制。
2024届山东省高三新高考实战模拟全真演练物理试题(三)一、单选题:本题共7小题,每小题4分,共28分 (共7题)第(1)题下列说法正确的是( )A.电磁波在真空中以光速c传播B.在空气中传播的声波是横波C.声波只能在空气中传播D.光需要介质才能传播第(2)题如图所示,一高考倒计时牌通过一根轻绳悬挂在定滑轮上。
挂上后发现倒计时牌是倾斜的,已知∠AOB=90°,计时牌的重力大小为G。
不计一切摩擦,则平衡时绳OB中的张力大小为( )A.B.C.D.G第(3)题图甲为利用光电管研究光电效应的电路图,其中光电管阴极K的材料是钾,钾的逸出功为。
图乙为实验中用某一频率的光照射光电管时,测量得到的光电管伏安特性曲线,当电压为时,光电流恰好为零。
已知普朗克常量为h,光电子的电荷量为e。
下列说法正确的是()A.该实验的入射光频率为B.该实验的光电子获得的最大初动能为C.光电管两极间的正向电压越大,光电流越大D.当入射光的频率小于时,仍可以发生光电效应第(4)题某汽车无线充电站的无线充电设备充电效率约为80%,一辆新能源汽车最大充电容量为,从0到100km/h的加速时间为7s。
当汽车电池容量低于最大容量20%,要求进入充电站进行充电。
下列说法正确的是()A.充电过程能量不守恒B.从电池容量20%到充满电,需要消耗电能C.电机正常工作时的电流等于输入电压与电动机电阻的比值D.保持最大功率恒定不变加速时,汽车的加速度减小第(5)题下列实验中用到了模拟实验方法的是( )A.①②③④全都是B.只有②③④C.只有③④D.只有④第(6)题某种风力发电机的原理如图所示。
发电机的线圈固定,磁体在叶片驱动下绕线圈对称轴匀速转动的角速度为ω。
已知磁体间的磁场近似为匀强磁场,磁感应强度的大小为B,线圈的匝数为N、面积为S。
下列说法正确的是()A.线圈中感应电动势的有效值B.1s内线圈中感应电流的方向改变次C.当线圈处在图中所示的位置时,线圈中的感应电动势达到最大值D.以图中线圈所处位置开始计时,线圈中感应电动势的瞬时值表达式为第(7)题如图所示,质量为2m的物块甲和质量为m的小球乙静止于固定光滑斜面上,二者间用平行于斜面的轻质弹簧相连,甲用细线拴在挡板上。
题型组合滚动练3(建议用时:20分钟)阅读下面一段文字,完成1~3题。
有一种人我最不喜欢和他下棋,那便是太有(修养/涵养)的人。
杀死他一大片,他神色自若,不动火,不生气,好像无关痛痒,使你觉得索然寡味....。
君子无所争,下棋却是要争的。
________________,他的头上青筋暴露,黄豆般的汗珠一颗颗地在额上陈列出来,或哭丧着脸惨笑..着嘴作不服状,或抓耳挠腮,或长...,或咕嘟吁短叹....,或口中(振振有词/念念有词),或一串串噎嗝..打个不休,或...,或自怨自艾红头胀脸....如关公,种种现象,不一而足。
这时候你便可以点起一支烟,或啜一碗茶,静静地(鉴赏/欣赏)对方苦闷的表现。
我想猎人追逐一只野兔的时候,其愉快的心情大概与这相仿。
因此我悟出一点道理,和人下棋的时候,如果有机会使对方受窘,当然应“无所不用其极”;____________,便努力作不介意..状,因为既然不能积极地给对方以苦痛,只好消极地减少对方的乐趣。
1.文中加点的词语,有错别字的一项是()A.咕嘟索然寡味B.噎嗝长吁短叹C.介意红头胀脸D.惨笑自怨自艾C[C项,“红头胀脸”应为“红头涨脸”。
]2.依次选用文中括号里的词语,最恰当的一项是()A.涵养振振有词鉴赏B.修养念念有词鉴赏C.修养振振有词欣赏D.涵养念念有词欣赏D[“修养”指理论、知识、艺术、思想等方面的一定水平;养成的正确的待人处事的态度。
“涵养”指能控制情绪的功夫。
根据下文的“不动火,不生气”可知,应选用“涵养”。
“振振有词”形容理由似乎很充分,说个不休。
“念念有词”指旧时迷信的人小声念咒语或说祈祷的话,也指人不停地自言自语。
此处选用“念念有词”更符合语境。
“欣赏”指享受美好的事物,领略其中的情趣。
“鉴赏”指鉴定和欣赏(文物、艺术品等)。
根据语境,应选用“欣赏”。
] 3.在文中两处横线上依次填入语句,衔接最恰当的一项是()A.当你给对方一个严重威胁的时候如果对方使我受窘B.当对方面临一个严重威胁的时候如果为对方所窘C.当对方面临一个严重威胁的时候如果对方使我受窘D.当你给对方一个严重威胁的时候如果为对方所窘D[第一空,“当你给对方一个严重威胁的时候”的叙述角度是“你”,而“当对方面临一个严重威胁的时候”的叙述角度是“对方”。
阶段滚动检测(三)一、选择题1.(2016·某某“四地六校”联考)已知集合A ={x |x 2-2x -3≤0},B ={x |log 2(x 2-x )>1},则A ∩B 等于() A .(2,3] B .(2,3) C .(-3,-2)D .[-3,-2)2.(2016·)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的() A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.(2016·某某质检)已知命题p :“∃x ∈R ,e x-x -1≤0”,则綈p 为() A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<04.(2016·某某)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎪⎫x +12=f ⎝⎛⎭⎪⎫x -12,则f (6)等于()A .-2B .-1C .0D .25.设a ≠0,函数f (x )=⎩⎪⎨⎪⎧4log 2(-x ),x <0,|x 2+ax |,x ≥0.若f [f (-2)]=4,则f (a )等于()A .8B .4C .2D .16.已知a >0,且a ≠1,函数y =log a x ,y =a x,y =x +a 在同一坐标系中的图象可能是()7.(2017·某某质检)已知函数f (x )=32,2,(1),2,x x x x ⎧≥⎪⎨⎪-<⎩若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值X 围是() A .(-1,1) B .(0,1) C .(0,1]D .(-1,0)8.如图,将45°直角三角板和30°直角三角板拼在一起,其中45°直角三角板的斜边与30°直角三角板的30°角所对的直角边重合.若DB →=x ·DC →+y ·DA →,x >0,y >0,则x ,y 的值分别为()A.3,1 B .1+3, 3 C .2, 3D.3,1+ 39.已知sin(x -2 017π)=13,x ∈⎝ ⎛⎭⎪⎫π,3π2,则tan 2x 等于() A.24B .-24C.427D .4 210.已知△ABC 三边a ,b ,c 上的高分别为12,22,1,则cos A 等于()A.32 B .-22 C .-24D .-3411.(2015·课标全国Ⅰ)设函数f (x )=e x(2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值X 围是()A.⎣⎢⎡⎭⎪⎫-32e ,1 B.⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34D.⎣⎢⎡⎭⎪⎫32e ,1 12.已知O 是锐角△ABC 的外心,tan A =22,若cos B sin C AB →+cos C sin BAC →=2mAO →,则m 等于() A.33B.32 C .3 D.53二、填空题13.若f (x )=x +2⎠⎛01f (t )d t ,则f (1)=________.14.若tan α=3,则sin 2α+3cos 2αsin 2α+2sin αcos α-5=________.15.如图,梯形ABCD 中,AB ∥CD ,AB =6,AD =DC =2,若AC →·BD →=-14,则AD →·BC →=________.16.关于函数f (x )=cos 2x -23sin x cos x ,有下列命题: ①对任意x 1,x 2∈R ,当x 1-x 2=π时,f (x 1)=f (x 2)成立;②f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递增;③函数f (x )的图象关于点(π12,0)对称;④将函数f (x )的图象向左平移5π12个单位长度后所得到的图象与函数y =2sin 2x 的图象重合.其中正确的命题是________.(注:把你认为正确的序号都填上) 三、解答题17.已知函数f (x )=⎩⎪⎨⎪⎧-x -1,x <-2,x +3,-2≤x ≤12,5x +1,x >12.(1)求函数f (x )的最小值;(2)已知m ∈R ,p :关于x 的不等式f (x )≥m 2+2m -2对任意x ∈R 恒成立,q :函数y =(m2-1)x是增函数,若p 正确,q 错误,某某数m 的取值X 围.18.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ;(2)若c =t a +(1-t )b ,且b·c =0,求t 及|c |.19.设向量a =(3sin x ,cos x ),b =(cos x ,cos x ),记f (x )=a·b . (1)求函数f (x )的最小正周期;(2)试用“五点法”画出函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,11π12上的简图,并指出该函数的图象可由y =sin x (x ∈R )的图象经过怎样的平移和伸缩变换得到;(3)若函数g (x )=f (x )+m ,x ∈⎣⎢⎡⎦⎥⎤-π6,π3的最小值为2,试求出函数g (x )的最大值.20.已知函数f (x )=x 2x -a,a ∈R .(1)求函数f (x )的单调区间;(2)若f (x )在(1,2)上是单调函数,求a 的取值X 围.21.在△ABC 中,AB →=(-3sin x ,sin x ),AC →=(sin x ,cos x ). (1)设f (x )=AB →·AC →,若f (A )=0,求角A 的值;(2)若对任意的实数t ,恒有|AB →-tAC →|≥|BC →|,求△ABC 面积的最大值.22.某地棚户区改造建筑用地平面示意图如图所示,经规划调研确定,棚改规划建筑用地区域近似为圆面,该圆面的内接四边形ABCD 是原棚户区建筑用地,测量可知边界AB =AD =4万米,BC =6万米,CD =2万米.(1)请计算原棚户区建筑用地ABCD 的面积及AC 的长;(2)因地理条件的限制,边界AD ,DC 不能变更,而边界AB ,BC 可以调整,为了提高棚户区建筑用地的利用率,请在ABC 上设计一点P ,使得棚户区改造后的新建筑用地APCD 的面积最大,并求出最大值. 答案精析1.A[因为A ={x |x 2-2x -3≤0}={x |(x -3)(x +1)≤0}={x |-1≤x ≤3}=[-1,3],B ={x |log 2(x 2-x )>1}={x |x 2-x >2}={x |x <-1或x >2}=(-∞,-1)∪(2,+∞),所以A ∩B =(2,3]. 故选A.]2.D[若|a |=|b |成立,则以a ,b 为邻边构成的四边形为菱形,a +b ,a -b 表示该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b |=|a -b |不一定成立;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边构成的四边形为矩形,而矩形的邻边长度不一定相等,所以|a |=|b |不一定成立.所以“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.]3.C[已知全称命题p :∀x ∈M ,p (x ),则否定为綈p :∃x 0∈M ,綈p (x 0),故选C.] 4.D[∵当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,即f (x )=f (x +1),∴T =1,∴f (6)=f (1).当x <0时,f (x )=x 3-1且-1≤x ≤1时,f (-x )=-f (x ),∴f (6)=f (1)=-f (-1)=2,故选D.] 5.A[由f (-2)=4log 22=2,f (2)=|4+2a |=4,解得a =-4,所以f (a )=f (-4)=4log 24=8,故选A.]6.C[∵函数y =a x与y =log a x 互为反函数,∴它们的图象关于直线y =x 对称,∴选项B 的图象不正确;当0<a <1时,y =log a x 与y =a x都随x 的增大而减小,y =x +a 的图象与y 轴的交点在y =1的下方,只有选项C 的图象正确;当a >1时,y =log a x 与y =ax都随x 的增大而增大,y =x +a 的图象与y 轴的交点在y =1的上方,没有选项符合要求.] 7.B[根据题意作出函数f (x )=⎩⎪⎨⎪⎧2x,x ≥2,?x -1?3,x <2的图象,如图.关于x 的方程f (x )=k 有两个不同的实根等价于函数f (x )=⎩⎪⎨⎪⎧2x,x ≥2,?x -1?3,x <2的图象与直线y =k 有两个不同的公共点,则由图象可知当k ∈(0,1)时,满足题意.故选B.] 8.B[设AD =DC =1,则AC =2,AB =22,BC = 6.在△BCD 中,由余弦定理,得DB 2=DC2+CB 2-2DC ·CB ·cos(45°+90°)=7+2 3.以D 为原点,DA 为x 轴,DC 为y 轴建立平面直角坐标系(图略),则D (0,0),A (1,0),C (0,1),由DB →=x ·DC →+y ·DA →,得B (y ,x ),∴CB →=(y ,x -1),DB →=(y ,x ),∴6=(x -1)2+y 2,x 2+y 2=7+23,∴x =1+3,y = 3.] 9.C[因为sin(x -2 017π)=13,所以sin x =-13,又x ∈⎝ ⎛⎭⎪⎫π,3π2,所以cos x =-223,所以tan x =24, 所以tan 2x =2×241-⎝ ⎛⎭⎪⎫242=427.]10.C[设△ABC 面积为S ⇒a =4S ,b =22S ,c =2S ⇒cos A =(22)2+22-422×22×2=-24,故选C.]11.D[由已知函数关系式,先找到满足f (x 0)<0的整数x 0,由x 0的唯一性列不等式组求解. ∵f (0)=-1+a <0,∴x 0=0.又∵x 0=0是唯一的使f (x )<0的整数,∴⎩⎪⎨⎪⎧f (-1)≥0,f (1)≥0,即⎩⎪⎨⎪⎧e -1[2×(-1)-1]+a +a ≥0,e(2×1-1)-a +a ≥0,解得a ≥32e.又∵a <1,∴32e≤a <1,经检验a =34,符合题意,故选D.]12.A[取AB 的中点D ,连接OD , 则OD ⊥AB , ∴OD →·AB →=0, ∵AO →=AD →+DO →,∴cos B sin C AB →+cos C sin B AC →=2mAO → =2m (AD →+DO →),∴cos B sin C AB →2+cos C sin B AC →·AB → =2mAD →·AB →+2mDO →·AB →,∴cos B sin C |AB →|2+cos C sin B |AC →||AB →|cos A =2m ·12|AB →|2=m |AB →|2, 由正弦定理可得cos B sin C sin 2C +cos C sin B sin B sin C cos A =m sin 2C ,即cos B +cos C cos A =m sin C ,又cos B =-cos(A +C )=-cos A cos C +sin A sin C , ∴sin A sin C =m sin C ,∴m =sin A , 又tan A =22,∴m =sin A =33.] 13.0解析 记a =⎠⎛01f (t )d t ,则f (x )=x +2a ,故⎠⎛01f (x )d x =⎠⎛01(x +2a )d x =12+2a ,所以a =12+2a ,a =-12,故f (x )=x -1,f (1)=0.14.-1235解析 由题意知cos α≠0, ∵sin 2α+3cos 2αsin 2α+2sin αcos α-5=sin 2α+3cos 2α-4sin 2α+2sin αcos α-5cos 2α =tan 2α+3-4tan 2α+2tan α-5, ∴tan 2α+3-4tan 2α+2tan α-5=9+3-36+6-5=-1235, 即sin 2α+3cos 2αsin 2α+2sin αcos α-5=-1235. 15.-2解析 ∵AC →·BD →=(AD →+DC →)·(BC →+CD →)=AD →·BC →+(AD →-BC →-CD →)·CD →=AD →·BC →+(AD →+DC →+CB →)·CD →=AD →·BC →+AB →·CD →, ∴AD →·BC →-6×2=-14⇒AD →·BC →=-2. 16.①③解析 f (x )=cos 2x -23sin x cos x =cos 2x -3sin 2x =2cos ⎝⎛⎭⎪⎫2x +π3. 因为f (x 1)=2cos ⎝ ⎛⎭⎪⎫2x 1+π3=2cos ⎣⎢⎡⎦⎥⎤2(x 2+π)+π3=2cos ⎝⎛⎭⎪⎫2x 2+π3=f (x 2),故①正确;当x ∈⎣⎢⎡⎦⎥⎤-π6,π3时,2x +π3∈[0,π],所以函数f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递减,故②错误;f ⎝ ⎛⎭⎪⎫π12=2cos ⎝⎛⎭⎪⎫2×π12+π3=2cos π2=0,故③正确;函数f (x )的图象向左平移5π12个单位长度后得到的图象所对应的函数解析式为y =2cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +5π12+π3=-2cos ⎝ ⎛⎭⎪⎫2x +π6,易知该图象与函数y =2sin 2x 的图象不重合,故④错误.17.解 (1)作出函数f (x )的图象,如图所示.可知函数f (x )在x =-2处取得最小值1.(2)若p 正确,则由(1)得m 2+2m -2≤1,即m 2+2m -3≤0, 所以-3≤m ≤1.若q 正确,则函数y =(m 2-1)x是增函数, 则m 2-1>1,解得m <-2或m > 2.又p 正确q 错误,则⎩⎨⎧-3≤m ≤1,-2≤m ≤2,解得-2≤m ≤1.即实数m 的取值X 围是[-2,1].18.解 (1)由(2a -3b )·(2a +b )=61,得a·b =-6, ∴cos θ=a·b |a||b|=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)∵b·c =b ·[t a +(1-t )b ]=t a·b +(1-t )b 2=-15t +9=0,∴t =35,∴|c |2=⎝ ⎛⎭⎪⎫35a +25b 2=10825,∴|c |=635.19.解 (1)f (x )=a·b =3sin x cos x +cos 2x =32sin 2x +1+cos 2x 2=sin(2x +π6)+12,∴函数f (x )的最小正周期T =2π2=π.(2)列表如下:x-π12 2π12 5π12 8π12 11π12 2x +π6π2 π3π2 2πsin(2x +π6)0 1 0 -1 0 y123212-1212描点,连线得函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,11π12上的简图如图所示:y =sin x 的图象向左平移π6个单位长度后得到y =sin(x +π6)的图象,再保持纵坐标不变,横坐标缩短为原来的12后得到y =sin(2x +π6)的图象,最后将y =sin(2x +π6)的图象向上平移12个单位长度后得到y =sin(2x +π6)+12的图象. (3)g (x )=f (x )+m =sin(2x +π6)+12+m . ∵x ∈⎣⎢⎡⎦⎥⎤-π6,π3, ∴2x +π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,∴sin(2x +π6)∈⎣⎢⎡⎦⎥⎤-12,1, ∴g (x )的值域为⎣⎢⎡⎦⎥⎤m ,32+m . 又函数g (x )的最小值为2,∴m =2,∴g (x )max =32+m =72. 20.解 (1)f (x )的定义域为{x |x ≠a }.f ′(x )=x (x -2a )(x -a )2. ①当a =0时,f ′(x )=1,则f (x )的单调递增区间为(-∞,0),(0,+∞).②当a >0时,由f ′(x )>0,得x >2a 或x <0,此时0<a <2a ;由f ′(x )<0,得0<x <a 或a <x <2a ,则f (x )的单调递增区间为(2a ,+∞),(-∞,0),单调递减区间为(0,a ),(a,2a ).③当a <0时,由f ′(x )>0,得x >0或x <2a ,此时2a <a <0;由f ′(x )<0,得2a <x <a 或a <x <0, 则函数f (x )的单调递增区间为(-∞,2a ),(0,+∞),单调递减区间为(2a ,a ),(a,0).(2)①当a ≤0时,由(1)可知,f (x )在(1,2)上单调递增,满足题意;②当0<2a ≤1,即0<a ≤12时,由(1)可知,f (x )在(2a ,+∞)上单调递增,即在(1,2)上单调递增,满足题意;③当1<2a <2,即12<a <1时,由(1)可得,f (x )在(1,2)上不具有单调性,不满足题意; ④当2a =2,即a =1时,由(1)可知,f (x )在(a,2a )上单调递减,即在(1,2)上单调递减,满足题意;⑤当1<a <2时,因为f (x )的定义域为{x |x ≠a },显然f (x )在(1,2)上不具有单调性,不满足题意;⑥当a ≥2时,由(1)可知,f (x )在(0,a )上单调递减,即在(1,2)上单调递减,满足题意.综上所述,a ≤12或a =1或a ≥2. 21.解 (1)f (x )=AB →·AC →=-3sin 2x +sin x cos x =-3×1-cos 2x 2+sin 2x 2=sin ⎝⎛⎭⎪⎫2x +π3-32. ∵f (A )=0,∴sin ⎝⎛⎭⎪⎫2A +π3=32, 又2A +π3∈⎝ ⎛⎭⎪⎫π3,2π+π3, ∴2A +π3=2π3,∴A =π6. (2)由|AB →-tAC →|≥|BC →|,得|CB →+(1-t )AC →|≥|BC →|,则|CB →|2+2(1-t )CB →·AC →+(1-t )2|AC →|2≥|BC →|2,故对任意的实数t ,恒有2(1-t )CB →·AC →+(1-t )2|AC →|2≥0,故CB →·AC →=0,即BC ⊥AC .∵|AB →|=4sin 2x ≤2,|AC →|=1,∴BC =AB 2-AC 2≤3,∴△ABC 的面积S =12BC ·AC ≤32, ∴△ABC 面积的最大值为32. 22.解 (1)根据题意知,四边形ABCD 内接于圆,∴∠ABC +∠ADC =180°.在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos∠ABC ,即AC 2=42+62-2×4×6×cos∠ABC .在△ADC 中,由余弦定理,得 AC 2=AD 2+DC 2-2AD ·DC ·cos∠ADC ,即AC 2=42+22-2×4×2×cos∠ADC .又cos ∠ABC =-cos ∠ADC ,∴cos ∠ABC =12,AC 2=28, 即AC =27万米,又∠ABC ∈(0,π),∴∠ABC =π3. ∴S 四边形ABCD =S △ABC +S △ADC =12×4×6×sin π3+12×2×4×sin 2π3=83(平方万米). (2)由题意知,S 四边形APCD =S △ADC +S △APC ,且S △ADC =12AD ·CD ·sin 2π3=23(平方万米). 设AP =x ,CP =y ,则 S △APC =12xy sin π3=34xy . 在△APC 中,由余弦定理,得AC 2=x 2+y 2-2xy ·cosπ3=x 2+y 2-xy =28, 又x 2+y 2-xy ≥2xy -xy =xy ,当且仅当x =y 时取等号,∴xy ≤28.∴S 四边形APCD =23+34xy ≤23+34×28=93(平方万米), 故所求面积的最大值为93平方万米,此时点P 为ABC 的中点.。
滚动突破练三(2023·湖北武汉4月调研)我国乌兰布和沙漠正在开展菌草种植、沙漠土壤化改造、葡萄产业等生态实践。
某科研团队将自主研发的植物纤维黏合剂施加到沙子间,使沙漠表层的沙子“土壤化”。
下图示意沙漠种植实验区。
该团队的沙漠实地种植试验证实,“土壤化”的沙子非常适宜某些植物生长,并且具有很强的抗风蚀能力。
据此完成1~3题。
1.有学者认为未改造的沙漠土不是土壤,主要依据是()A.几乎不含水分B.矿物质含量少C.空气含量太少D.有机质含量少2.经该团队改造的土壤具有较强的抗风蚀能力,主要原因是()A.减少散状颗粒B.增加土壤水分C.减少土壤空气D.改变地表起伏3.与普通土壤相比,种植试验区的植物根系异常发达,原因最可能是()A.有机质含量高B.育种技术先进C.土层松散透气D.光照时间超长(2023·河南信阳第二次质量检测)国内研究一般把人口持续净流出3年及3年以上的城市认为是收缩型城市。
东北地区由于经济增长“失速”、投资下滑等因素,人口不断流失,成为我国城市收缩问题最为严重的区域。
据此完成4~5题。
4.东北地区收缩型城市多为()A.资源枯竭型城市B.位置偏远型城市C.被动虹吸型城市D.产业变迁型城市5.收缩型城市今后发展的关键是()A.加大资源开发,推动工业发展B.改善交通,构建立体交通运输网C.治理污染,改善生态环境D.加大科技投入,优化产业结构(2023·浙江台州二模)有专家建议南水北调东线方案由“单线”变“双线”,修建西干线,将东线部分水量分流到“引黄入冀补淀工程”,再经该工程调入白洋淀。
后续再由白洋淀北调水量到北京。
下图为华北平原三大调水工程路线图。
据此完成6~7题。
6.南水北调东线“双线”方案的提出,主要是基于受水区()A.经济社会发展对水质的要求提高B.沿线不合理用水导致盐碱化严重C.国土空间开发利用格局发生变化D.人口增加对水资源的需求量激增7.将东线水引入“引黄入冀补淀工程”对雄安新区经济可持续发展的重要意义是()A.提高供水稳定性B.扩大用水广泛性C.缓解输水矛盾性D.维持生物多样性(2023·湖南邵阳三模)抓住“一带一路”倡议历史机遇,发挥特色优势,福建企业加快“走出去”的步伐,在实现产业转移的同时助力产业结构的升级。
阶段滚动练3(六~七单元)一、选择题1.(2021江苏扬州中学开学测试,18)下图甲是将加热杀死的S型细菌与R型活菌混合注射到小鼠体内后两种细菌的含量变化,图乙是利用同位素标记技术完成噬菌体侵染细菌试验的部分操作步骤。
下列相关叙述不正确的是( )A.图甲中AB对应的时间段内,小鼠体内还没形成大量的抗R型细菌的抗体B.图甲中,后期消灭的大量S型细菌是由R型细菌转化并增殖而来的C.图乙沉淀物中新形成的子代噬菌体完全没有放射性D.图乙中若用32P标记亲代噬菌体,裂解后子代噬菌体中大部分具有放射性2.R型肺炎双球菌无荚膜,菌落粗糙,对青霉素敏感。
S型肺炎双球菌有荚膜,菌落光滑,对青霉素敏感。
在多代培育的S型菌中分别出一种抗青霉素的S型(记为PenrS型)突变菌株。
现用S型菌、PenrS型菌与R 型菌进行一系列试验,其中对试验结果的猜测,不正确的是( )项目甲组乙组丙组丁组培育基含青霉素的培育基一般培育基含青霉素的培育基一般培育基试验处理S型菌的DNA和活的R型菌PenrS型菌的DNA和活的R型菌PenrS型菌的DNA和活的R型菌PenrS型菌的DNA、DNA酶和活R型菌结果猜测同时消灭光滑型和粗糙型两种菌落同时消灭光滑型和粗糙型两种菌落两种菌落都不行能消灭仅消灭粗糙型菌落A.甲组 B.乙组 C.丙组 D.丁组3.(2021安徽马鞍山二中期中,10)如图表示一个DNA分子的片段,下列有关表述正确的是( )A .④代表的物质中储存着遗传信息B.不同生物的DNA分子中④的种类无特异性C.转录时该片段的两条链都可作为模板链D.DNA分子中A与T碱基对含量越高,其结构越稳定4.(2021湖南长沙长郡中学月考,4)DNA分子中的碱基C被氧化后会转变为碱基U,细胞中的一种糖苷酶能够识别出碱基U,将其切除,之后核酸内切酶能识别和切除残留下的脱氧核糖和磷酸基团,最终由其他酶将缺口修复。
下列相关叙述正确的是( )A.细胞中糖苷酶被水解得到的单体可能是葡萄糖和氨基酸B.糖苷酶能识别和切割DNA分子中的磷酸二酯键C.DNA缺口修复需DNA聚合酶和DNA连接酶发挥作用D.若基因损伤未被准时修复肯定导致其100%的子代DNA具有突变基因5.下图表示DNA复制的过程,结合图示推断,下列有关叙述不正确的是( )A.DNA复制过程中首先需要解旋酶破坏DNA双链之间的氢键,解开双链B.DNA分子的复制具有双向复制的特点,生成的两条子链的方向相反C.从图示可知,DNA分子具有多起点复制的特点,缩短了复制所需的时间D.DNA分子的复制需要DNA聚合酶将单个脱氧核苷酸连接成为DNA片段6.Qβ噬菌体的遗传物质(QβRNA)是一条单链RNA,当噬菌体侵染大肠杆菌后,QβRNA马上作为模板翻译出成熟蛋白、外壳蛋白和RNA复制酶。
专题一~三 规范滚动训练(三)(建议用时45分钟)解答题(解答应写出文字说明,证明过程或演算步骤) 1.设数列{a n }的前n 项积为T n ,且T n +2a n =2(n ∈N *). (1)求证:数列{1T n}是等差数列;(2)设b n =(1-a n )(1-a n +1),求数列{b n }的前n 项和S n . 解:(1)∵T n +2a n =2,∴当n =1时,T 1+2a 1=2, ∴T 1=23,即1T 1=32.又当n ≥2时,T n =2-2×T nT n -1,得 T n ·T n -1=2T n -1-2T n , ∴1T n -1T n -1=12,∴数列{1T n}是以32为首项,12为公差的等差数列.(2)由(1)知,数列{1T n}为等差数列,∴1T n =32+12(n -1)=n +22,∴a n =2-T n 2=n +1n +2,∴b n =(1-a n )(1-a n +1)=1(n +2)(n +3)=1n +2-1n +3,∴S n =⎝ ⎛⎭⎪⎫13-14+⎝ ⎛⎭⎪⎫14-15+…+⎝ ⎛⎭⎪⎫1n +2-1n +3=13-1n +3=n 3n +9.2.已知在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,且⎝ ⎛⎭⎪⎫b -c 2sin B +⎝ ⎛⎭⎪⎫c -b 2sin C -a sin A =0. (1)求角A 的大小;(2)若a =3,求b +c 的取值范围.解:(1)因为⎝ ⎛⎭⎪⎫b -c 2sin B +⎝ ⎛⎭⎪⎫c -b 2sin C -a sin A =0,由正弦定理得⎝ ⎛⎭⎪⎫b -c 2b +⎝ ⎛⎭⎪⎫c -b 2c -a 2=0,化简得b 2+c 2-a 2-bc =0, 即cos A =b 2+c 2-a 22bc =12,A =π3. (2)由正弦定理可得b sin B =c sin C =a sin A =3sin π3=2, 所以b =2sin B ,c =2sin C ,b +c =2(sin B +sin C )=2⎣⎢⎡⎦⎥⎤sin B +sin ⎝ ⎛⎭⎪⎫2π3-B=2⎝ ⎛⎭⎪⎫sin B +32cos B +12sin B =3sin B +3cos B=23sin ⎝ ⎛⎭⎪⎫B +π6. 因为0<B <2π3,所以π6<B +π6<5π6, 即12<sin ⎝ ⎛⎭⎪⎫B +π6≤1,所以b +c ∈(3,23].3.某县共有90个农村淘宝服务网点,随机抽取6个网点统计其元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本数据的平均数;(2)若网购金额(单位:万元)不小于18的服务网点定义为优秀服务网点,其余为非优秀服务网点,根据茎叶图推断这90个服务网点中优秀服务网点的个数; (3)从随机抽取的6个服务网点中再任取2个作网购商品的调查,求恰有1个网点是优秀服务网点的概率.解:(1)由题意知,样本数据的平均数 X =4+6+12+12+18+206=12.(2)样本中优秀服务网点有2个,频率为26=13,由此估计这90个服务网点中有90×13=30个优秀服务网点.(3)由于样本中优秀服务网点有2个,分别记为a 1,a 2,非优秀服务网点有4个,分别记为b 1,b 2,b 3,b 4,从随机抽取的6个服务网点中再任取2个的可能情况有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,b 4),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,b 4),(b 1,b 2),(b 1,b 3),(b 1,b 4),(b 2,b 3),(b 2,b 4),(b 3,b 4),共15种.记“恰有1个是优秀服务网点”为事件M ,则事件M 包含的可能情况有:(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,b 4),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,b 4),共8种.故所求概率P (M )=815.4.某iphone 手机专卖店对某市市民进行iphone 手机认可度的调查,在已购买iphone 手机的1 000名市民中,随机抽取100名,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:(1)求频数分布表中x ,y 的值,并补全频率分布直方图;(2)在抽取的这100名市民中,从年龄在25,30)、30,35)内的市民中用分层抽样的方法抽取5人参加iphone 手机宣传活动,现从这5人中随机选取2人各赠送一部iphone 6s 手机,求这2人中恰有1人的年龄在30,35)内的概率. 解:(1)由频数分布表和频率分布直方图可知, ⎩⎨⎧5+x +35+y +10=1000.04×5×100=x , 解得⎩⎨⎧x =20y =30,频率分布直方图中年龄在40,45)内的人数为30,对应的频率组距为0.35=0.06,所以补全的频率分布直方图如下:(2)由频数分布表知,在抽取的5人中,年龄在25,30)内的市民的人数为5×525=1,记为A1,年龄在30,35)内的市民的人数为5×2025=4,分别记为B1,B2,B3,B4.从这5人中任取2人的所有基本事件为:{A1,B1},{A1,B2},{A1,B3},{A1,B4},{B1,B2},{B1,B3},{B1,B4},{B2,B3},{B2,B4},{B3,B4},共10个.记“恰有1人的年龄在30,35)内”为事件M,则M所包含的基本事件有4个:{A1,B1},{A1,B2},{A1,B3},{A1,B4}.所以这2人中恰有1人的年龄在30,35)内的概率为P(M)=410=25.。
题型组合滚动练(三)(分值,54分;建议用时,50分钟)序号 1 2 3 4 5 6 9 11 得分答案阅读下面的文字,完成1~4题。
(12分,每小题3分)中国的语言文字存在数千年,被历代中国人作为母语使用,已达________的境地。
()。
有人断言,中国未来的作家不太可能站得比唐诗更加高远。
因为唐朝的诗人一生都在为穷尽文字之美而专心致志,今天________的学问,让作家们失去了对汉字纯正而深刻的把握。
知识的丰富恰恰让作家们处于能解读,却不会创造的尴尬境地①:能看透文章的浅薄,却不能使自己的文章深厚②,能体味到唐诗的美妙,却写不出美妙的唐诗。
中国历代文人对母语的创新________,唐诗写乏了出现了宋词,宋词写到尽头出现了元曲③。
几千年来,中国朝代更迭,政治体制变化无常,但是中国的人文精神却从未改变,并随时间推移愈发顽强。
中国文人独立的个性和品质经过几千年的锤炼,深入骨髓④,成为基因。
但在当下,母语的创新却________,原因十分复杂,最根本的一条原因,或许是导致创作者价值取向出现了问题之所在,以汉语言为母语的写作者们失去了对母语的倚重和深入研究。
1.文中四处画横线的标点,使用错误的一项是()A.①B.②C.③D.④2.依次填入文中横线上的词语,全都恰当的一项是()A.出神入化复杂俯拾皆是故步自封B.出神入化繁杂不胜枚举裹足不前C.登堂入室复杂俯拾皆是故步自封D.登堂入室繁杂不胜枚举裹足不前3.下列在文中括号内补写的语句,最恰当的一项是()A.纵然身在天涯海角,张口一句汉语,便知你从故乡来。
B.尽管你身在天涯海角,张口一句汉语,便知你从故乡来。
C.纵然你在天涯海角,都改变不了你是中国人的事实。
D.你的语言会暴露了你的身份,虽然你在天涯海角。
4.文中画横线的部分有语病,下列修改最恰当的一项是()A.原因十分复杂,最根本的一条,或许是导致创作者的价值取向出现了问题B.原因十分复杂,最根本的一条原因,或许是创作者的价值取向出现了问题C.原因十分复杂,最根本的一条,或许是创作者的价值取向出现了问题D.原因十分复杂,最根本的一条,或许是创作者价值取向出现了问题之所在5.下列各句中,表达得体的一句是(3分)()A.令爱在这次小学生书法大赛中获奖,多亏您的悉心指导,我们全家都表示十分感谢。
滚动过关检测三 集合、常用逻辑用语、不等式、函数与导数、三角函数与解三角形一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2022·河北保定模拟]已知P ={1,2,3},Q ={y |y =2cos θ,θ∈R },则P ∩Q =( )A .{1}B .{1,2}C .{2,3}D .{1,2,3}2.[2022·广东清远一中月考]“cos α=32”是“cos 2α=12”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.已知a =log 35,b =log 23,c =2-0.3,则a ,b ,c 的大小关系为( )A .c <b <aB .b <c <aC .c <a <bD .a <b <c4.已知函数f (x )=A sin(ωx +φ)A >0,ω>0,|φ|<π2的部分图象如图所示,则( )A .f (x )=2sin ⎝⎛⎭⎫2x +π6 B .f (x )=2sin ⎝⎛⎭⎫2x +π3 C .f (x )=2sin ⎝⎛⎭⎫x +π3 D .f (x )=2sin ⎝⎛⎭⎫x -π6 5.[2022·山东淄博模拟]函数f (x )=(e x +e -x )tan x 的部分图象大致为( )6.[2022·河北衡水中学模拟]已知cos θ-sin θ=43,则θ的终边在( ) A .第一象限 B .第二象限C .第三象限D .第四象限7.[2022·湖南株洲模拟]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若23a cos C -3b cos C =3c cos B ,则角C 的大小为( )A.π6B.π4C.π3D.2π38.[2022·皖南八校联考]已知函数f (x )=(3a )x -x 3a (a >1),当x ≥2e 时,f (x )≥0恒成立,则实数a 的取值范围为 A.⎝⎛⎭⎫e 3,+∞ B.⎣⎡⎭⎫2e 3,+∞ C .(1,e) D.⎝⎛⎦⎤1,2e 3 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.下列说法正确的有( )A .终边在y 轴上的角的集合为θ⎪⎪ θ=π2+2k π,k ∈Z B .已知3a =4b =12,则1a +1b=1 C .已知x ,y ∈R +,且1x +4y=1,则x +y 的最小值为8 D .已知幂函数f (x )=kx a 的图象过点(2,4),则k +a =310.[2022·辽宁丹东模拟]已知a ,b ∈R ,且3a <3b <1,则( )A .a 2<b 2B .ln|a |>ln|b |C.b a +a b>2 D .a +b +2ab >0 11.[2022·河北石家庄一中月考]对于△ABC ,有如下判断,其中正确的判断是( )A .若cos A =cosB ,则△ABC 为等腰三角形B .若△ABC 为锐角三角形,有A +B >π2,则sin A >cos B C .若a =8,c =10,B =60°,则符合条件的△ABC 有两个D .若sin 2A +sin 2B <sin 2C ,则△ABC 是钝角三角形12.[2022·辽宁沈阳模拟]函数f (x )为定义在R 上的偶函数,且在[0,+∞)上单调递增,函数g (x )=x [f (x )-f (2)],则( )A .函数h (x )=f (x )cos x 为奇函数B .f (x )的解析式可能是f (x )=e x +e -x -x 2C .函数g (x )有且只有3个零点D .不等式g (x )≤0的解集为[-2,2]三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.设函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0log 2x ,x >0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=________. 14.[2022·湖北石首一中月考]在△ABC 中,已知sin A sin B sin C =357,则此三角形最大内角度数为________.15.已知cos ⎝⎛⎭⎫π6-x =13,则cos ⎝⎛⎭⎫5π6+x -sin 2⎝⎛⎭⎫x -π6=________. 16.[2022·浙江杭州模拟]函数f (x )=2x -x 2的零点个数为________,若函数f (x )=a x -x 2(a >1)恰有两个零点,则a =________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)[2022·北京海淀模拟]设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin B =3b cos A .(1)求角A 的大小;(2)再从以下三组条件中选择一组条件作为已知条件,使三角形存在且唯一确定,并求△ABC 的面积. 第①组条件:a =19,c =5;第②组条件:cos C =13,c =42; 第③组条件:AB 边上的高h =3,a =3.18.(12分)[2022·山东日照模拟]已知函数f (x )=cos(πx +φ)⎝⎛⎭⎫0<φ<π2的部分图象如图所示.(1)求φ及图中x 0的值;(2)设g (x )=f (x )+f ⎝⎛⎭⎫x +13,求函数g (x )在区间⎣⎡⎦⎤-12,13上的最大值和最小值.19.(12分)[2021·新高考Ⅰ卷]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD sin ∠ABC =a sin C .(1)证明:BD = b ;(2)若AD =2DC ,求cos ∠ABC .20.(12分)已知:f (x )=3sin(π+x )sin ⎝⎛⎭⎫x -π2+cos 2⎝⎛⎭⎫π2+x -12. (1)求函数f (x )的单调递增区间;(2)在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若f (A )=1,a =2,求△ABC 面积的最大值.21.(12分)[2022·湖北九师联盟]已知函数f (x )=ln x ,g (x )=x 2-x +1.(1)求函数h (x )=f (x )-g (x )的极值;(2)证明:有且只有两条直线与函数f (x ),g (x )的图象都相切.22.(12分)[2022·广东茂名五校联考]已知函数f (x )=ln x +x 2-ax .(1)当a =3时,求曲线y =f (x )在点P (1,f (1))处的切线方程;(2)若x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,证明:f (x 1)-f (x 2)>ln a 28+64-a 416a 2.。
穿插滚动练(三)1.已知集合A ={x |log 2x <1},B ={x |0<x <c ,其中c >0}.若A ∪B =B ,则c 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,2] D .[2,+∞)答案 D解析 A ={x |0<x <2},由A ∪B =B ,得A ⊆B . 所以c ≥2,故选D.2.设函数f (x )=⎩⎪⎨⎪⎧12x -1(x ≥0),1x (x <0),若f (a )=a ,则实数a 的值为( )A .±1B .-1C .-2或-1D .±1或-2答案 B解析 当a ≥0时,f (a )=12×a -1=a ,a =-2,不合题意,舍去;当a <0时,f (a )=1a=a ,a =-1(a =1舍去),故选B.3.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100xB .y =50x 2-50x +100 C .y =50×2xD .y =100log 2x +100答案 C解析 根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型. 4.在实数的原有运算法则中,我们补充定义新运算“”如下:当a ≥b 时,a b =a ;当a <b 时,a b =b .则函数f (x )=(1x )·x -(2x )(x ∈[-2,2])的最大值等于(“·”和“-”仍为通常的乘法和减法)( ) A .-1B .1C .2D .12 答案 C解析 f (x )=⎩⎪⎨⎪⎧x -2(x ∈[-2,1]),x 2-2(x ∈(1,2]),x =2时有最大值,所以函数最大值是2.5.若角α的终边上有一点P (-4,a ),且sin α·cos α=34,则a 的值为( ) A .4 3B .±4 3C .-43或-43 3D. 3答案 C解析 依题意可知角α的终边在第三象限, 点P (-4,a )在其终边上且sin α·cos α=34, 得-4a a 2+16=34,即3a 2+16a +163=0, 解得a =-43或-433,故选C.6.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( ) A.100101B.99101C.99100D.101100答案 A解析 设等差数列{a n }的首项为a 1,公差为d .∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×(5-1)2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n .∴1a n a n +1=1n (n +1)=1n -1n +1,∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.7.设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =x ·f ′(x )的图象的一部分,则f (x )的极大值与极小值分别是( ) A .f (1)与f (-1) B .f (-1)与f (1) C .f (-2)与f (2) D .f (2)与f (-2)答案 C解析 由图象知f ′(2)=f ′(-2)=0. ∵x >2时,y =x ·f ′(x )>0,∴f ′(x )>0, ∴y =f (x )在(2,+∞)上单调递增;同理,f (x )在(-∞,-2)上单调递增,在(-2,2)上单调递减, ∴y =f (x )的极大值为f (-2),极小值为f (2),故选C.8.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则y =f (x )的图象可能是( )答案 B解析 由于f (-x )=f (x ),所以函数y =f (x )是偶函数,图象关于y 轴对称,所以A 、C 错误;由于f (x +2)=f (x ),所以T =2是函数y =f (x )的一个周期,D 错误.所以选B.9.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( ) A .2B .3C .6D .9 答案 D解析 f ′(x )=12x 2-2ax -2b ,∵f (x )在x =1处有极值, ∴f ′(1)=12-2a -2b =0,∴a +b =6. 又a >0,b >0,∴a +b ≥2ab ,∴2ab ≤6,∴ab ≤9,当且仅当a =b =3时等号成立, ∴ab 的最大值为9.10.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a ,表示的平面区域是一个三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43答案 D解析 先把前三个不等式表示的平面区域画出来,如图. 此时可行域为△AOB 及其内部, 交点B 为(23,23),故当x +y =a 过点B 时,a =43,所以a ≥43时可行域仍为△AOB ,当x +y =a 恰过A 点时,a =1+0=1, 且当0<a ≤1时可行域也为三角形. 故0<a ≤1或a ≥43.11.已知集合A ={x |12<2x<8,x ∈R },B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________. 答案 (2,+∞)解析 A ={x |12<2x<8,x ∈R }={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2.12.数列1,12,12,13,13,13,14,14,14,14,…的前100项的和等于________.答案19114解析 S 100=1×1+2×12+3×13+4×14+…+13×113+9×114=19114.13.命题“∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围是________. 答案 [-22,22]解析 “∃x ∈R,2x 2-3ax +9<0”为假命题, 则“∀x ∈R,2x 2-3ax +9≥0”为真命题. 因此Δ=9a 2-4×2×9≤0, 故-22≤a ≤2 2.14.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +ʃa 03t 2d t ,x ≤0,若f (f (1))=1,则a =________.答案 1解析 由题意知f (1)=lg1=0, ∴f (0)=0+a 3-03=1,∴a =1. 15.设S n 是数列{a n }的前n 项和,若S 2n S n(n ∈N *)是非零常数,则称数列{a n }为“和等比数列”.若数列{2n b}是首项为2,公比为4的等比数列,则数列{b n }________(填“是”或“不是”)“和等比数列”. 答案 是解析 由题意2n b =22n -1,即b n =2n -1,从而S 2n =4n 2,S n =n 2,S 2nS n=4(常数). 16.已知△ABC 为锐角三角形,向量m =(3cos 2A ,sin A ),n =(1,-sin A ),且m ⊥n . (1)求A 的大小;(2)当AB →=p m ,AC →=q n (p >0,q >0),且满足p +q =6时,求△ABC 面积的最大值. 解 (1)∵m ⊥n ,∴3cos 2A -sin 2A =0. ∴3cos 2A -1+cos 2A =0,∴cos 2A =14.又∵△ABC 为锐角三角形, ∴cos A =12,∴A =π3.(2)由(1)可得m =(34,32),n =(1,-32).∴|AB →|=214p ,|AC →|=72q .∴S △ABC =12|AB →|·|AC →|·sin A =2132pq .又∵p +q =6,且p >0,q >0,∴p ·q ≤p +q2.∴p ·q ≤3,∴0<p ·q ≤9. ∴△ABC 面积的最大值为2132×9=18932.17.设函数f (x )=a 2ln x -x 2+ax ,a >0. (1)求f (x )的单调区间;(2)求所有的实数a ,使e -1≤f (x )≤e 2对x ∈[1,e]恒成立. 注:e 为自然对数的底数.解 (1)因为f (x )=a 2ln x -x 2+ax ,其中x >0,所以f ′(x )=a 2x -2x +a =-(x -a )(2x +a )x.由于a >0,所以f (x )的增区间为(0,a ),减区间为(a ,+∞). (2)由题意得f (1)=a -1≥e -1,即a ≥e. 由(1)知f (x )在[1,e]内单调递增, 要使e -1≤f (x )≤e 2对x ∈[1,e]恒成立.只要⎩⎪⎨⎪⎧f (1)=a -1≥e -1,f (e )=a 2-e 2+a e ≤e 2,解得a =e.18.已知数列{a n },其前n 项和为S n ,点(n ,S n )在以F (0,14)为焦点,坐标原点为顶点的抛物线上,数列{b n }满足b n =2a n . (1)求数列{a n },{b n }的通项公式;(2)设c n =a n ·b n ,求数列{c n }的前n 项和T n .解 (1)因为以F (0,14)为焦点,坐标原点为顶点的抛物线方程为x 2=y ,又点(n ,S n )在抛物线上,所以S n =n 2. 当n ≥2时,S n -1=(n -1)2,两式相减,得S n -S n -1=a n =n 2-(n -1)2=2n -1. 当n =1时,a 1=S 1=1,满足上式.所以数列{a n }的通项公式为a n =2n -1(n ∈N *). 故b n =2a n =22n -1(n ∈N *).(2)由(1),知c n =(2n -1)·22n -1,所以T n =1·21+3·23+5·25+…+(2n -1)·22n -1,①则4T n =1·23+3·25+5·27+…+(2n -1)·22n +1,② ①-②,得-3T n =21+2·23+2·25+…+2·22n -1-(2n -1)·22n +1=4n +1-103-(2n -1)·22n +1=4·4n-103-(4n -2)·4n=(10-12n )4n-103,所以T n =10+(12n -10)4n9(n ∈N *).19.(2013·广东)设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.(1)解 2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4.(2)解 当n ≥2时,2S n =na n +1-13n 3-n 2-23n ,2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),两式相减得2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23,整理得(n +1)a n =na n +1-n (n +1), 即a n +1n +1-a n n =1,又a 22-a 11=1, 故数列⎩⎨⎧⎭⎬⎫a n n 是首项为a 11=1,公差为1的等差数列,所以a nn=1+(n -1)×1=n ,所以a n =n 2, 所以数列{a n }的通项公式为a n =n 2,n ∈N *. (3)证明1a 1+1a 2+1a 3+…+1a n =1+14+132+142+…+1n 2<1+14+12×3+13×4+…+1n (n -1) =1+14+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n=54+12-1n =74-1n <74, 所以对一切正整数n ,有1a 1+1a 2+…+1a n <74.20.已知数列{a n }中,a 1=1,a 2=3,且a n +1=a n +2a n -1(n ≥2).(1)设b n =a n +1+λa n ,是否存在实数λ,使数列{b n }为等比数列?且公比小于0.若存在,求出λ的值,若不存在,请说明理由;(2)在(1)的条件下,求数列{a n }的前n 项和S n . 解 (1)假设存在实数λ,使数列{b n }为等比数列, 设b nb n -1=q (n ≥2), 即a n +1+λa n =q (a n +λa n -1), 得a n +1=(q -λ)a n +q λa n -1.与已知a n +1=a n +2a n -1比较,令⎩⎪⎨⎪⎧q -λ=1,q λ=2.解得⎩⎪⎨⎪⎧λ=1q =2(舍)或⎩⎪⎨⎪⎧λ=-2,q =-1.所以存在实数λ,使数列{b n }为等比数列. (2)由(1)知当λ=-2时,q =-1,b 1=1, 则数列{b n }是首项为1,公比为-1的等比数列. ∴b n =(-1)n +1.∴a n +1-2a n =(-1)n +1(n ≥1),所以a n +12n +1-a n 2n =(-1)n +12n +1=(-12)n +1(n ≥1),当n ≥2时,a n 2n =a 121+(a 222-a 121)+(a 323-a 222)+…+(a n 2n -a n -12n -1)=12+(-12)2+(-12)3+…+(-12)n=12+(-12)2[1-(-12)n -1]1-(-12)=12+16[1-(-12)n -1]. 因为a 121=12也适合上式,所以a n 2n =12+16[1-(-12)n -1](n ≥1).所以a n =13[2n +1+(-1)n].则S n =13[(22+23+24+…+2n +1)+(-1)1+(-1)2+(-1)3+…+(-1)n]=13[4(1-2n )1-2+(-1)(1-(-1)n)1-(-1)] =13[(2n +2-4)+(-1)n-12]. 21.(2014·四川)已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.71828…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围. 解 (1)由f (x )=e x-ax 2-bx -1, 有g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x-2a .因此,当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ]. 当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b ;当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减, 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理,g (x )在区间(x 0,1)内存在零点x 2. 所以g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点;当12<a <e 2, 此时g (x )在区间[0,ln(2a )]上单调递减, 在区间(ln(2a ),1]上单调递增.因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0有a +b =e -1<2,则g (0)=1-b =a -e +2>0,g (1)=e -2a -b =1-a >0,解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )).若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]上单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0,故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增, 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点. 综上可知,a 的取值范围是(e -2,1).。