2020-2021学年江苏省高考压轴卷:数学试卷及答案解析
- 格式:doc
- 大小:2.10 MB
- 文档页数:13
高三数学第三次模拟考试试卷数 学注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分160分,考试时间120分钟.2.答题前,请您务必将自己的姓名、考试号用0.5毫米黑色字迹的签字笔填写在试卷的指定位置.3.答题时,必须用书写黑色字迹的0.5毫米签字笔写在试卷的指定位置,在其它位置作答一律无效.4.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚.一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合{1,3}A =,{1,2,}B m =,若A B ⊆,则实数m = ▲ 2.已知复数512iz =+(i 是虚数单位),则复数z 的模为 ▲ . 3.为了镇江市中学生运动会,现要在学生人数比例为5:3:2的A 、B 、C 三所学校中,用分层抽样方法抽取n 名志愿者,若在A 学校恰好抽出了6名志愿者, 那么n = ▲ .4. 在一个袋子中装有分别标注数字1,2,3,4的四个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为5的概率是 ▲ . 5.已知F 为双曲线C :2224(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 ▲ .6. 运行右图所示程序框图,若输入值x [2,2],则输出值y 的取值范围是 ▲ .7. 已知,x y 满足约束条件0,2,0,x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z ax y =+的最大值为4,则a 的值为 ▲ .8. 设,a b 为不重合的两条直线,,αβ为不重合的两个平面,给 出下列命题:(1)若a ∥α且b ∥α,则a ∥b ;(2)若a α⊥且a β⊥,则α∥β; (3)若α⊥β,则一定存在平面γ,使得,γαγβ⊥⊥; (4)若α⊥β,则一定存在直线l ,使得,//l l αβ⊥. 上面命题中,所有真命题...的序号是 ▲ .9. 等差数列{}n a 的公差为d ,关于x 的不等式22d x +12d a x ⎛⎫- ⎪⎝⎭+c ≥0的解集为[0,20],则使数列{}n a 的前n 项和n S 最大的正整数n 的值是 ▲ . 10. 设α为锐角,若53)6πcos(=+α,则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .11. 在ABC ∆中,6=AB ,2=AC ,3π2=∠BAC ,若AC y AB x AM +=,且13=+y x ,的最小值为 ▲ .12. 在平面直角坐标系xOy 中,圆O 的方程为221x y +=,()2,0A -,对圆O 上的任意一点P ,存在一定点()(),02B b b ≠-和常数λ,都有PB PA λ=成立,则b λ+的值为 ▲ .13. 已知函数R 2)(2∈+=x x x x f ,,若方程01)(=--x a x f 恰有4个互异的小于1的实数根,则实数a 的取值范围为 ▲ .14. 若实数y x ,满足1222112sin cos =x x e y y--++,则x y 2tan 2的值为 ▲ . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角,,A B C 的对边分别为,,a b c ,且()(sin sin )()sin a c A C b B -+=-. (1)求角A ;(2)若22()cos ()sin ()f x x A x A =+--,求()f x 的单调递增区间.16.(本小题满分14分)如图,在三棱锥P ABC -中,PA PC =,AC AB ⊥,M 为BC 的中点,N 为AC 上一点,且MN ∥平面PAB .求证:(1)直线AB ∥平面PMN ; (2)平面ABC ⊥平面PMN .17.(本小题满分14分)某学校有长度为14米的旧墙一面,现准备利用这面旧墙建造平面图形为矩形,面积为126 m 2的活动室,工程条件是:①建1 m 新墙的费用为a 元;② 修1 m 旧墙的费用是4a 元;③ 拆去1 m 旧墙所得的材料,建1 m 新墙的费用为2a元,经过讨论有两种方案:(1)问如何利用旧墙的一段x 米)14(<x 为矩形厂房的一面边长;(2)矩形活动室的一面墙的边长14x …. 利用旧墙,即x 为多少时建墙的费用最省?(1)(2)两种方案,哪种方案最好?18.(本小题满分16分)在平面直角坐标系xOy 中,已知斜率为1-的直线l 与椭圆22221(0)y x a b a b +=>>相交于A ,B 两点,且AB 的中点为(2,1)M .(1)求椭圆的离心率;(2)设椭圆的右焦点为F ,且5AF BF ⋅=,求椭圆的方程.19.(本小题满分16分)已知正项数列{}n a 满足*112(1)(N )n n a a a S n +-=-∈,其中n S 为数列{}n a 的前n 项和, 2a t =.(1)求数列{}n a 的通项公式; (2)求证:1()2n n n a a S +…,并指出等号成立的条件.20.(本小题满分16分)已知函数()ln f x x =,2()g x kx ax =-,其中,k a 为实数. (1)若1,0k a ==,求方程()()0f x g x +=的零点个数;(2)若0a =,实数k 使得()()f x g x <恒成立,求k 的取值范围; (3)若1k =,试讨论函数()()()h x g x f x =-的单调性.高三教学情况调研(三)数 学 Ⅱ 试 题注意事项:1.本试卷只有解答题,供理工方向考生使用.本试卷第21题有4个小题供选做,每位考生在4个选做题中选答2题,如多答,则按选做题中的前2题计分.第22,23题为必答题.每小题10分,共40分.考试用时30分钟.2.答题前,请您务必将自己的姓名、考试号用0.5毫米黑色字迹的签字笔填写在试卷的指定位置.3.答题时,必须用0.5毫米黑色字迹的签字笔填写在试卷的指定位置,在其它位置作答一律无效.4.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.21.【选做题】本题包括A ,B ,C ,D 四小题,每小题10分. 请选定其中两题......,并.在相应的....答题区域....内作答...,若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤. A .(选修4-1:几何证明选讲)如图,A,B,C是圆O上不共线的三点,OD AB⊥于D,BC和AC分别交DO的延长线于P和Q,求证:OBP CQP∠=∠.B.(选修4—2:矩阵与变换)已知矩阵1221A⎡⎤=⎢⎥-⎣⎦,31B⎡⎤=⎢⎥⎣⎦满足AX B=,求矩阵X.C.(选修4—4:坐标系与参数方程)将参数方程(22)cos,(22)sin,t tt txyθθ--⎧=+⎪⎨=-⎪⎩(θ为参数,t为常数)化为普通方程.D.(选修4—5:不等式选讲)QPDCBAO已知,,x y z 均为正数.求证:111yx z yz zx xy x y z≥++++.【必做题】第22,23题,每小题10分,计20分. 请把答案写在答题纸的指定区域内,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)某考生从6道预选题一次性随机的抽取3道题作答,其中4道填空题,2道解答题. (1)求该考生至少抽到1道解答题的概率;(2)若所取的3道题中有2道填空题,1道解答题.已知该生答对每道填空题的概率均为23,答对每道解答题的概率均为12,且各题答对与否相互独立.用X 表示该考生答对题的个数,求X 的分布列和数学期望.23.(本小题满分10分)设整数9n ≥,在集合{1,2,3,,}n L 中任取三个不同元素,,a b c ()a b c >>,记()f n 为满足a b c ++能被3整除的取法种数.(1) 直接写出(9)f 的值; (2) 求()f n 表达式.数学参考答案一、填空题.1. 3 2.3.30 4.315. 26.[-1,6] 7. 2 8.(2)(3)(4)9.10 10.50231 11.112.3213.)(32-4,0 14.21二、解答题:本大题共6小题,共计90分.15. 解:(1)由B c b C A c a sin )3()sin )(sin (-=+-, 及CcB b A a sin sin sin ==,(不交代定理扣1分) 得b c b c a c a )3())((-=+-即 bc c b a 3222-+= ... ... 3分由余弦定理,(不交代定理扣1分)得: 21cos =A , .. ... 5分 由0<A<π, 则6π=A . ... (7)分 (2)2)32cos(12)32cos(1)6(sin )6(cos )(sin )(cos )(2222ππππ---++=--+=--+=x x x x A x A x x f ... ...10分x 2cos 21=... ...12分 2222,,2k x k k Z k x k k Zππππππππ+≤≤+∈+≤≤+∈令得:(不交代k Z ∈合计扣1分)()[,],2f x k k k Z ππππ++∈则的单调增区间为 ... ...14分16. 证明:(1)因为MN ∥平面PAB ,MN ⊂平面ABC ,平面PAB I 平面ABC AB =,所以MN ∥AB . ········3分因为MN ⊂平面PMN ,AB ⊄平面PMN ,所以AB ∥平面PMN . ·········6分(2)因为M 为BC 的中点,MN ∥AB ,所以N 为AC 的中点. ·········8分又因为PA PC =,所以PN AC ⊥, ·······10分又MN AC ⊥.MN PN ⊂,平面PMN ,MN PN N =I ,所以AC ⊥平面PMN . ·······12分因为AC ⊂平面ABC ,所以平面ABC ⊥平面PMN . ········14分17. 解:设利用旧墙的一面边长x 米,则矩形另一边长为126x 米. ········1分 (1) 当14x <时,总费用25236()(14)(214)7(1)35424a a x f x x x a x a a x x =+-++-=+-≥, 当且仅当12x =时取最小值35a . …… 7分(2) 当14x ≥时,总费用25212649()14(214)2()44a f x a x a x x x =⨯++-=+-,……10分则2126()2(1)0f x a x '=->,故()f x 在[14,)+∞上单调递增, 所以,当14x =时取最小值35.5a . ......13分 答:第(1)种方案最省,即当14x =米时,总费用最省,为35a 元. (14)分18. 解:(1)由题意可知,l 的方程为y=-x+3 ... ... 2分代入12222=+by a x ,得096)(2222222=-+-+b a a x a x a b设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2226a b a +,x 1x 2=222229a b b a a +- ① ... ... 5分由AB 中点为M (2,1)故 2226ab a +=4,即222b a = 故22122=-=ab e ② ... (8)分(2)由①②知椭圆方程为:122222=+by b xx 1+x 2=4,x 1x 2=2326b -因为121212221212222,()()()1243354353AFe AF a ex a x cBF a ex AF BF a ex a ex a ae x x e x x b b b b b ==--=-⋅=--=-++=-+-=-+=则同理:则因此: ... ...10分即:061252=--b b)(52,3舍或-==b b ... ... 14分则18222==b a因此椭圆方程为:191822=+y x ... (16)分19. 解:(1)令1n =,得2121(1)a a a a -=-,即221a a a =⋅, 因0n a >,则11a =,得221a a t a ==, ……2分当2n ≥时 112(1)n n a a a S +-=-, 121(1)n n a a a S --=- 两式相减得:12(1)n n n a a a a +-=- 即12n n a a a +=,因0n a >则12n na a t a +==……5分 综上:1(*)n na t n N a +=∈……6分 从而,{}n a 是以1为首项,t 为公比的等比数列故1n n a t -=. ……7分(2)令111()(1)()1,022n n n n n n a a n t f t S t t t --++=-=++⋅⋅⋅+->当1t =时,(1)0n f =,即1()2n n n a a S +=……9分 当1t ≠时,22(1)'()12(1)2n n n n n t f t t n t---=++⋅⋅⋅+--, 若(0,1)t ∈,22(1)'()[12(1)]02n n n n n t f t n t--->++⋅⋅⋅+--=若(1,)t ∈+∞,22(1)'()[12(1)]02n n n n n t f t n t---<++⋅⋅⋅+--=即'()n f t 在(0,1)t ∈时单调递增,当(1,)t ∈+∞时单调递减, ……14分则()(1)0n n f t f <=,即1()2n n n a a S +<, ……15分故1()2n n n a a S +≤,当且仅当1t =时取“”. ……16分20. 解:(1)1,0k a ==,则2()()ln f x g x x x +=+, 记2()ln F x x x =+,因为()F x 在(0,)+∞上单调递增, ……1分221111()ln 10F e e e e=+=-+<, ……2分 (1)10F =>……3分所以()0F x =仅有一个零点01(,1)x e∈,即方程()()0f x g x +=的零点个数为1. ……4分(2)由0a =,实数k 使得()()f x g x <恒成立, 可得:2ln x k x ≥在0x >时恒成立,则max 2ln ()xk x>, ……5分记2ln (),(0)xG x x x =>, 312ln '()xG x x-=……6分当'()0x G x ∈>,()G x 在上单调递增,当),'()0x G x ∈+∞<,()G x 在)+∞上单调递减,则x ()G x 取得最大值12e, 故k 的取值范围是1(,)2e+∞. ……8分(3)21,()ln ,(0)k h x x ax x x ==--> 若0a …,则2()ln h x x ax x =--,故2121()2x ax h x x a x x --'=--=令()0h x '=,得x =(负值舍去)记b =于是,()h x 在区间(0,)b 上单调递减,在区间(,)b +∞上单调递增; ……10分若0a >,则22ln ,()ln ,0x ax x x ah x x ax x x a ⎧--⎪=⎨-+-<<⎪⎩≥,先讨论2()ln ()h x x ax x x a =--≥的单调性,由2121()2x ax h x x a x x --'=--=令()0h x '=,得0x => 当b a >,即1a <时,()h x 在区间(,)a b 上单调递减,在区间(,)b +∞上单调递增;当b a …,即1a ≥时,()h x 在区间(,)a +∞上单调递增; ……12分再讨论2()ln (0)h x x ax x x a =-+-<<的单调性,注意到2121()2x ax h x x a x x-+-'=-+-=当280a ∆=-…时,即0a <…时,()0h x '≤()h x 在区间(0,)a 上单调递减.当280a ∆=->时,即a >()0h x '=得x a =<,则()h x 在区间)a 上单调递减,在区间上单调递增; (15)分综上,当1a <时,()h x 在区间上单调递减,在区间)+∞上单调递增;当1a 剟()h x 在区间(0,)a 上单调递减,在区间(,)a +∞上单调递增;当a >时,则()h x 在区间)a 上单调递减,在区间上单调递增. ……16分数 学 Ⅱ 试 题A .(选修4-1:几何证明选讲)证:连接OA ,因为OD AB ⊥,OA OB =,所以12BOD AOD AOB ∠=∠=∠, 又12ACB AOB ∠=∠,所以ACB DOB ∠=∠,………5分 又因为180BOP DOP ∠=-∠o ,180QCP ACB ∠=-∠o, 所以BOP QCP ∠=∠,所以B ,O ,C ,Q 四点共圆,所以OBP CQP ∠=∠. ………10分 B .(选修4—2:矩阵与变换)解:设a X b ⎡⎤=⎢⎥⎣⎦,由123211a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦得23,21,a b a b +=⎧⎨-=⎩………6分解得1,1,a b =⎧⎨=⎩此时11X ⎡⎤=⎢⎥⎣⎦.………10分C .(选修4—4:坐标系与参数方程)解:当t0时,y0,x 2cos θ,即y0,且22x -≤≤; ………2分当t ≠0时,cos 22t t x θ-=+,sin 22t ty θ-=-, ………6分所以22221(22)(22)t t t t x y --+=+-. ………10分D.(选修4—5:不等式选讲)证明:因为x ,y ,z 都是为正数,所以12()x y x y yz zx z y x z+=+≥.………5分 同理可得22y z z x zx xy x xy yz y++≥,≥,将上述三个不等式两边分别相加,并除以2,得111x y z yz zx xy x y z++++≥.………10分 【必做题】第22,23题,每小题10分,计20分. 请把答案写在答题纸的指定区域内,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)解(1)记该考生至少抽到1道解答题为事件A , 则()343614()11155C P A P A C =-=-=-=. ………4分 (2)X 所有的可能取值为0,1,2,3.2211(0)(1)(1)3218P X ==-⋅-=; 122221215(1)(1)(1)(1)3323218P X C ==⋅⋅-⋅-+-⋅=; 12222121105(2)(1)()(1)33232189P X C ==⋅⋅-⋅+⋅-==; 22121(3)()32189P X ==⋅==. 所以X 的分布列为:………8分所以155131()0123.18189918E X =⨯+⨯+⨯+⨯=………10分 23.(本小题满分10分)解 (1) (9)12=f . ………2分(2)①当*3(3,)N n k k k =∈≥时,记3n k =,集合为{1,2,3,,31,3}k k -L . 将其分成三个集合:{1,4,,32}A k =-L ,{2,5,,31}B k =-L ,{3,6,,3}C k =L .要使得a b c ++能被3整除,,,a b c 可以从A 取三个或从B 取三个或从C 取三个或从C 取一个,从A 中取一个,从B 中取一个(此数与A 中取的那个数之和能被3整除).故有323112(1)(2)3183254k k kk k k n n n C C C k ---++=+=g 种取法;………5分 ②当*31(3,)N n k k k =+∈≥时,记13n k -=,集合为{1,2,3,,3,31}k k +L . 将其分成三个集合:{1,4,,32,31}A k k =-+L ,{2,5,,31}B k =-L ,{3,6,,3}C k =L . 要使得a b c ++能被3整除,,,a b c 可以从A 取三个或从B 取三个或从C 取三个或从C 取一个,从B 中取一个,从A 中取一个(此数与B 中取的那个数之和能被3整除).故有2323311221(1)(2)(1)(1)(1)31210236254k k k kk k k k k k k k n n n C C C C k k +--+---+-++=++=+=g 种取法; ……7分 ③当*32(3,)N n k k k =+∈≥时,记23n k -=,集合为{1,2,3,,31,32}k k ++L . 将其分成三个集合:{1,4,,32,31}A k k =-+L ,{2,5,,31,32}B k k =-+L ,{3,6,,3}C k =L .要使得a b c ++能被3整除,,,a b c 可以从A 取三个或从B 取三个或从C 取三个或从C 取一个,从B 中取一个,从A 中取一个(此数与B 中取的那个数之和能被3整除).故有232331111(1)(2)(1)(1)(1)318322(1)(1)63254k k k k k k k k k k k k n n n C C C C k k k k ++--+---++++=+++=++=g 种取法;………9分 综上所述,32*32*32*318,3(3,),5431210(),31(3,),5431832,32(3,).54N N N n n n n k k k n n n f n n k k k n n n n k k k ⎧-+=∈⎪⎪⎪-+-==+∈⎨⎪⎪-++=+∈⎪⎩≥≥≥………10分。
2020年江苏省高考学最后一卷一、填空题(本大题共14小题,共70.0分)1.已知集合A={0』,2},B=[x\-l<x<1).C\B=2.若复数z=i(2—z),贝ljz=.3.读如下两个伪代码,完成下列题目.:L1:Readj廿・2不::f+6;北・3上:VPrint j(1)<11)(1) 1输出的结果为・(2) 若I、II输出的结果相同,则伪代码U输入x的值为.4.己知样本2000个,其频率分布直方图如下,那么在[2,8)之间的有个.5.用红、黄、蓝三种不同的颜色给A.B两点涂色,每个点只涂一种颜色,则点A,点3颜色不同的概率为____________.6.函=Asin(a)x+<p)(A>0,co>0)在R上的部分图象如图所示,则s的值为.7.在平面直角坐标系xOy中,双曲线二一y2=i的离心率为2.则实数,“的值是_________8.己知等差数列伊异的前〃项和为S”,若a1+。
2。
=1・则52。
=9.若一个圆锥的母线与底面所成的角为:,体积为1257T.则此圆锥的高为10.如图,在圆C中,CM心,AC为圆的半径,A8是弦,若|而1=6,则衣•AB=・11.若s ina=则s in(a—:) +-^-cosa=12.在平面直角坐标系.9),中.己知圆Af:x2+y2-4x-8y+12=0,圆N与圆M外切于点(0,m),且过点(0,—2),则圆N的标准方程为.13.巳知函数/(幻=仁若函数y=/(/(r))-1有3个零点,则实数A的取值范围为.14.己知△砧C中,4,匕8.“所对的边分别为",b.c,且满足2/+况=6.贝IJA4BC而积的最大值为______.二、解答题(本大题共11小题,共142.0分)15.如图,在三棱锚%BC-Ai^iCi中,AB=AC.zliClBCi,.。
,E分别是AB】,BC的中点.求证:(1)DE〃平面ACC^i;(2)AE1平面B C(\B l16.如图,在△ABC中,ZB=30°.AC=2>[S^。
绝密★启封前2020江苏省高考压轴卷数 学一、 填空题:本大题共14小题,每小题5分,共70分. 1.已知集合{|02}A x x =<<,{|1}B x x =>,则A B =______2.已知复数(1)(2),z i i =+-则|z |= .3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为______.4.根据如图所示的伪代码,可知输出的结果S 为____.5.在平面直角坐标亲xOy 中,若双曲线22221x y a b-=(0a >,0b >)的离心率为32,则该双曲线的渐近线方程为______.6.某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为__________.7.已知点P 在抛物线28y x =上运动,F 为抛物线的焦点,点A 的坐标为(5,2),则PA PF +的最小值是______.8.已知,αβ都是锐角,45sin ,cos()513ααβ=+=,则sin β=_____ 9.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.10.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =____________. 11.三棱锥P ABC -中,已知PA ⊥平面ABC ,ABC 是边长为2的正三角形,E 为PC 的中点,若直线AE 与平面PBC所成角的正弦值为7,则PA 的长为_____. 12.如图,在四边形ABCD 中,1AB CD ==,点,M N 分别是边,AD BC 的中点,延长BA 和CD 交NM 的延长线于不同..的两点,P Q ,则·()PQ AB DC -的值为_________.13.已知函数()ln ,11,12x x f x xx ≥⎧⎪=⎨-<⎪⎩,若()()()1F x f f x m =++有两个零点12,x x ,则12x x 的取值范围______.14.在ABC 中,记角A ,B ,C 所对的边分别是a ,b ,c ,面积为S ,则22Sa bc+的最大值为______.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2A π≠,sin 26cos sin b A A B =.(1)求a 的值;(2)若3A π=,求ABC ∆周长的取值范围.16.如图,在直三棱柱111ABC A B C -中,BC AC ⊥,D ,E 分别是AB ,AC 的中点.(1)求证:11B C ∥平面1A DE;(2)求证:平面1A DE ⊥平面11ACC A .17.如图所示,为美化环境,拟在四边形ABCD 空地上修建两条道路EA 和ED ,将四边形分成三个区域,种植不同品种的花草,其中点E 在边BC 的三等分点处(靠近B 点),3BC =百米,BC CD ⊥,120ABC ∠=,EA =60AED ∠=.(1)求ABE △区域的面积;(2)为便于花草种植,现拟过C 点铺设一条水管CH 至道路ED 上,求水管CH 最短时的长.18.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,点P是椭圆C 上的一个动点,且12PF F ∆. (1)求椭圆C 的方程;(2)设斜率不为零的直线2PF 与椭圆C 的另一个交点为Q ,且PQ 的垂直平分线交y 轴于点1(0,)8T ,求直线PQ 的斜率.19.已知数列{}n a 的前n 项和记为n A ,且()12n n n a a A +=,数列{}n b 是公比为q 的等比数列,它的前n 项和记为n B .若110a b =≠,且存在不小于3的正整数k ,m ,使得k m a b =. (1)若11a =,35a =,求2a 的值; (2)求证:数列{}n a 是等差数列; (3)若2q,是否存在整数m ,k ,使得86k m A B =,若存在,求出m ,k 的值;若不存在,请说明理由.20.已知()22ln 12x f x x x a-=--+,0a >.(1)当2a =时,求函数()f x 图象在1x =处的切线方程;(2)若对任意[)1,x ∈+∞,不等式()0f x ≥恒成立,求a 的取值范围; (3)若()f x 存在极大值和极小值,且极大值小于极小值,求a 的取值范围.数学附加题(满分40分,考试时间30分钟)21. 【选做题】在A,B,C三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)求椭圆22:1164x yC+=在矩阵1412A⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦对应的变换作用下所得曲线C'的方程.B. (选修44:坐标系与参数方程)在平面直角坐标系xOy中,曲线C的参数方程为3242x cosy sinθθ=+⎧⎨=+⎩,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.C. (选修45:不等式选讲)已知x,y,z均为正数,且1113112x y y z++≤+++,求证:4910x y z++≥.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(1)若厂家库房中(视为数量足够多)的每件产品合格的概率为0.7,从中任意取出3件进行检验,求至少有2件是合格品的概率;(2)若厂家发给商家20件产品,其中有4不合格,按合同规定商家从这20件产品中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.23.已知数列{}n a 满足123*12323,N 2222n n n n n nn n C C C C a m n ++++=++++⋯+∈,其中m 为常数,24a =. (1)求1, m a 的值(2)猜想数列{}n a 的通项公式,并证明.参考答案及解析1.【答案】{|12}x x << 【解析】因为集合{|02}A x x =<<,{|1}B x x =>, 所以{|12}AB x x =<<.故答案为:{|12}x x <<2.【解析】12z i i =+-==3.【答案】8【解析】设样本容量为N ,则306,14,70N N ⨯== 高二所抽人数为4014870⨯=. 故答案为:8 4.【答案】205【解析】模拟程序语言,运行过程,可得1I =, 满足条件100I <,执行循环体3,9I S ==; 满足条件100I <,执行循环体5,13I S ==;满足条件100I <,执行循环体99,201I S ==;满足条件100I <,执行循环体101,21013205I S ==⨯+=, 此时,不满足条件100I <,退出循环,输出S 的值为205, 故答案为205.5.【答案】y x = 【解析】由已知可知离心率32c e a ==,2222294c a b a a +==,即2254b a =.∵双曲线22221x y a b-=的焦点在x 轴上∴该双曲线的渐近线方程为b y x a =±,即2y x =±.故答案为:y =. 6.【答案】14【解析】由题意,三名学生各自随机选择两个食堂中的一个用餐的情况共有2228⨯⨯=(种),其中他们在同一个食堂用餐的情况有2种,根据古典概型概率的计算公式得,所求概率为2184=. 7.【答案】7【解析】PA PF +55272A L Pd -≥=+=+= 8.【答案】1665【解析】∵,αβ都是锐角,∴(0,)αβπ+∈, 又45sin ,cos()513ααβ=+=, ∴3cos 5α=,12sin()13αβ+=, ∴sin sin[()]sin()cos cos()sin βαβααβααβα=+-=+-+123541613513565=⨯-⨯=. 故答案为1665. 9.【答案】1【解析】设三棱柱111ABC A B C -的底面积为'S ,高为h ,则9'9'S h S h==,, 再设S 到底面ABC 的距离为'h ,则1''23S h =,得19'23h h⋅⋅=, 所以'23h h =, 则S 到上底面111A B C 的距离为13h , 所以三棱锥111S A B C -的体积为111'91339S h ⋅=⋅=. 故答案为1. 10.【答案】132【解析】 由a 912=a 12+6,得2a 9﹣a 12=12, 即2a 1+16d ﹣a 1﹣11d =12,∴a 1+5d =12,a 6=12. 则S 11=11a 6=11×12=132. 故答案为:13211.【答案】2【解析】设F 是BC 的中点,连接sin cos 210k k ρθρθ-+-=,PA ⊥平面ABC ,PA BC ∴⊥, ABC ∆为正三角形,BC AF ∴⊥,BC ∴⊥平面PAF ,在平面PAF 内作AH PF ⊥,则BC AH ⊥,AH ∴⊥平面PBC ,连接EH ,则AEH ∠是AE 与平面PBC 所成的角, 设PA m =,在直角三角形PAF 中,AH PF PA AF ⋅=⋅,求得PA AF AH PF ⋅==,12AE PC == AE ∵平面PBC所成的角的正弦值为7,sin 7AH AEH AE ∴∠===,解得2m =或m =,即PA 的长为2212.【答案】0【解析】如图,连AC ,取AC 的中点E ,连ME ,NE ,则,ME NE 分别为,ADC CAB ∆∆的中位线,所以11,22EN AB ME DC ==, 所以1()2MN ME EN DC AB =+=+.由PQ 与MN 共线, 所以()PQ MN R λλ=∈,故()()()()2PQ AB DC MN AB DC AB DC ABDC λλ⋅-=⋅-=+⋅-22()02AB DC λ=-=.答案:013.【答案】(),e -∞【解析】当1x ≥时,()ln 0f x x =≥, ()11f x ∴+≥, [()1]ln(()1)f f x f x ∴+=+,当131()1()1[()1]ln(()1)222x x f x f x f f x f x <=->+>+=+,,,, 综上可知:()()()1ln(()1)0F x f f x m f x m =++=++=,则()1mf x e-+=,()1mf x e-=-有两个根1x ,2x ,(不妨设)12x x <,当1x ≥时,2ln 1mx e -=-,当1x <时,1112m x e --=-, 令112mt e-=->,则2ln x t =,2t x e =,112x t -=,122x t =-,12(22)t x x e t ∴=-,12t >, 设()(22)tg t e t =-,12t >, 所以()2tg t te '=-, 1,()02t g t '⎛⎫∈+∞< ⎪⎝⎭,,函数()g t 单调递减, 1()2g t g ⎛⎫∴<=⎪⎝⎭()g x ∴的值域为(-∞, 12x x ∴取值范围为(-∞,故答案为:(-∞.14.【解析】因为22S a bc +2211222222bcsinAsinA b c b c bccosA bc cosA c b==⨯+-+++- 142sinA cosA ≤-⨯-(当且仅当b c =时取得等号)令,sinA y cosA x ==, 故22S a bc +142y x ≤-⨯-,因为221x y +=,且0y >,故可得点(),x y 表示的平面区域是半圆弧上的点,如下图所示:目标函数2yz x =-,表示圆弧上一点到点()2,0A 点的斜率,数形结合可知,当且仅当目标函数过点12H ⎛ ⎝⎭,即60A =︒时,取得最小值故可得[2y z x =∈-,又22S a bc +142y x ≤-⨯-,故可得22S a bc +14≤-⨯=. 当且仅当60,A b c =︒=,也即三角形为等边三角形时,取得最大值.. 15.【答案】(1)3;(2)(]6,9.【解析】(1)由sin 26cos sin b A A B =及二倍角公式得sin 3sin b A B =, 又sin sin a bA B=即sin sin b A a B =,所以3a =;(2)由正弦定理得sin sin a B b B A ==,sin sin a Cc C A==ABC ∆周长:233sin()3a b c B C B B π++=++=++-33sin 36sin 226B B B π⎫⎛⎫=++=++⎪ ⎪⎪⎝⎭⎭, 又因为2(0,)3B π∈,所以1sin (,1]2B ∈.因此ABC ∆周长的取值范围是(]6,9. 16.【答案】(Ⅰ)详见解析(Ⅱ)详见解析【解析】证明:(1)因为D ,E 分别是AB ,AC 的中点,所以//DE BC , ...........2分 又因为在三棱柱111ABC A B C -中,11//B C BC,所以11//B C DE. ...............4分 又11B C ⊄平面1A DE,DE ⊂平面1A DE,所以11B C ∥平面1A DE. ...............6分(2)在直三棱柱111ABC A B C -中,1CC ⊥底面ABC ,又DE ⊂底面ABC ,所以1CC DE⊥. .............8分又BC AC ⊥,//DE BC ,所以DE AC ⊥, ..........10分 又1,CC AC ⊂平面11ACC A ,且1CC AC C=,所以DE ⊥平面11ACC A . ...............12分又DE ⊂平面1A DE,所以平面1A DE ⊥平面11ACC A . ............14分17.【答案】(1(2)7百米. 【解析】(1)由题知1,120,BE ABC EA =∠==在ABE 中,由余弦定理得2222cos AE AB BE AB BE ABE =+-⋅∠,即2211AB AB =++,所以4AB =百米所以11sin 4122ABESAB BE ABE =⋅⋅∠=⨯⨯=.(2)记AEB α∠=,在ABE 中,sin sin AB AE ABEα=∠,即4sin α=,所以sin 7αα===, 当CH DE ⊥时,水管CH 最短,在Rt ECH 中,2π2π2πsin 2sin 2sin cos 2cos sin 333CH CE HEC ααα⎛⎫=∠=-=-⎪⎝⎭=7百米. 18.【答案】(1)22143x y +=(2)12或32【解析】 (1)因为椭圆离心率为12,当P 为C 的短轴顶点时,12PF F △所以22212122c a a b c c b ⎧=⎪⎪=+⎨⎪⎪⨯⨯=⎩,所以21a b c =⎧⎪=⎨⎪=⎩C 的方程为:22143x y +=.(2)设直线PQ 的方程为()1y k x =-,当0k ≠时,()1y k x =-代入22143x y +=,得:()22223484120k x k x k +-+-=.设()()1122,,,P x y Q x y ,线段PQ 的中点为()00,N x y ,212024234x x k x k +==+,()1200231234y y k y k x k +-==-=+ 即22243,3434k k N k k ⎛⎫- ⎪++⎝⎭因为TN PQ ⊥,则1TN PQ k k ⋅=-,所以222314381443k k k k k --+⋅=-+,化简得24830k k -+=,解得12k =或32k ,即直线PQ 的斜率为12或32.19.【答案】(1)23a =(2)见解析(3)存在8,340m k ==满足题意。
江苏省南通市局考 数学考前最后一*练一、填空题(本大题共 14小题,每小题5分,共计70分)1. 已知集合 A={1, 2, 3}, B={m, 3, 6}, A 「B={2, 3},则实数 m 的值为.2. 设复数z=a+bi (a, b€ R, i 是虚数单位),若z (2 - i) =i,贝U a+b 的值为3.如图是一个算法流程图,当输入的 x 的值为-2时,则输出的y 的值为4. 用2种不同的颜色给图中的 3个圆随机涂色,每个圆只涂 1种颜色,贝U 相邻的两个圆颜色均不相同的概480名学生中抽取容量为 20的样本,将480名学生随机地编号为 1〜480.按编号顺序平均分为20个组(1〜24号,25〜48号,…,457〜480号),若第1组用抽签的方法确定抽出的号码 为3,则第4组抽取的号码为D, P (x, v)是区域D 内任意一点,则3x+y 的最大值为7.正四棱锥的底面边长为 巧,它的侧棱与底面所成角为60°,则正四棱锥的体积为9.已知一元二次不等式 f(x) >0的解集为(-8, 1)u (2, +8),则不等式f(3x) V0的解集为则ab 的最大值为.11.设直线l 是曲线y=4x 3+3lnx 的切线,则直线l 的斜率的最小值为12 .在平行四边形 ABCD 中,已知AB=2, AC 瑚,AD=1.若点P, Q 满足云=晦,而 =虱,贝确F 殖的 值为.8.在平面直角坐标系 xOy 中,角0的终边经过点 P (— 2, t),且 sin 0 +cos 0 则实数t 的值为10.在平面直角坐标系xOy 中,已知圆(x- a) 2+ (y- b) 2=1 (a, b€ R)截直线x+2y- 1=0所得弦长为率为 ______5.用系统抽样的方法从6.设不等式组,表示的平面区域13.在平面直角坐标系xOy中,已知A (cosa, sin a), B (cos。
,sin 3)是直线y*^x+J之上的两点,贝U tan (a+ 6)的值为.14.已知函数f(x) =|x- a| —+a- 2有且仅有三个零点,且它们成等差数列,贝U实数a的取值集合为 .二、解答题(本大题共6小题,共计90分。
江苏省2020年高考数学压轴卷(含解析)注意事项考生在答题前请认真阅读本注意事项及答题要求1.本试卷共4页,包含填空题(第1题~第14题)、解析题(第15题~第20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上指定位置作答,在其它位置作答一律无效.4.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:球体的体积公式:V=334Rπ,其中为球体的半径.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.全集12{}345U=,,,,,集合134{}}35{A B=,,,=,,则UA B⋂()ð═.2.已知i是虚数单位,若12i a i a R+∈(﹣)()=,,则a=.3.我国古代数学算经十书之一的《九章算术》一哀分问题:今有北乡八千一百人,西乡九千人,南乡五千四百人,凡三乡,发役五百,意思是用分层抽样的方法从这三个乡中抽出500人服役,则北乡比南乡多抽人.4.如图是一个算法的流程图,则输出y的取值范围是.5.已知函数22353log(1)3x xf xx x-⎧-<⎨-+≥⎩()=,若f(m)=﹣6,则f(m﹣61)=.6.已知f (x )=sin (x ﹣1),若p ∈{1,3,5,7},则f (p )≤0的概率为 . 7.已知函数f (x )=2sin (ωx +φ)(ω>0,|φ|<2π)的部分图象如图所示,则f (76π)的值为 .8.已知A ,B 分别是双曲线2212x y C m :-=的左、右顶点,P (3,4)为C 上一点,则△PAB 的外接圆的标准方程为 .9.已知f (x )是R 上的偶函数,且当x ≥0时,f (x )=|x 2﹣3x |,则不等式f (x ﹣2)≤2的解集为 .10.若函数f (x )=a 1nx ,(a ∈R )与函数g (x )=x ,在公共点处有共同的切线,则实数a 的值为 .11.设A ,B 在圆x 2+y 2=4上运动,且23AB =,点P 在直线3x +4y ﹣15=0上运动.则|PA PB |+u u u r u u u r的最小值是 .12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =23π,∠ABC 的平分线交AC 于点D ,BD =1,则a +c 的最小值为 .13.如图,点D 为△ABC 的边BC 上一点,2BD DC =u u u r u u u r,E n (n ∈N )为AC 上一列点,且满足:11414n n n n n E A E D E a B a +=+u u u u r u u u u ru u u u r (﹣)﹣5,其中实数列{a n }满足4a n ﹣1≠0,且a 1=2,则111a -+211a -+311a -+…+11n a -= .14.已知函数2910(1)e ,023xx x f x x x ⎧++<⎪⎨⎪-≥⎩()=+6,x 0,其中e 是自然对数的底数.若集合{x ∈Z|x(f (x )﹣m )≥0}中有且仅有4个元素,则整数m 的个数为 .二、解答题(本大题共6小题,计90分.解析应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内)15.(本小题满分14分) 如图,在直四棱柱ABCD ﹣A 1B 1C 1D 1中,已知点M 为棱BC 上异于B ,C 的一点.(1)若M 为BC 中点,求证:A 1C ∥平面AB 1M ; (2)若平面AB 1M ⊥平面BB 1C 1C ,求证:AM ⊥BC .16.(本小题满分14分)已知12(,),(0,cos(),.2273πππαπβαβαβ∈∈-=+=), (1)求22sin αβ(﹣)的值; (2)求cos α的值.17.(本小题满分14分) 学校拟在一块三角形边角地上建外籍教室和留学生公寓楼,如图,已知△ABC 中,∠C =2π,∠CBA =θ,BC =a .在它的内接正方形DEFG 中建房,其余部分绿化,假设△ABC 的面积为S ,正方形DEFG 的面积为T . (1)用a ,θ表示S 和T ; (2)设f (θ)=TS,试求f (θ)的最大值P ;18.(本小题满分16分) 已知椭圆22221x y C a b:+=0a b (>>)的离心率为22,短轴长为22(Ⅰ)求C 的方程;(Ⅱ)如图,经过椭圆左项点A 且斜率为k (k ≠0)直线l 与C 交于A ,B 两点,交y 轴于点E ,点P 为线段AB 的中点,若点E 关于x 轴的对称点为H ,过点E 作与OP (O 为坐标原点)垂直的直线交直线AH 于点M ,且△APM 面积为23,求k 的值.19.(本小题满分16分) 已知函数()212ln 2f x x x ax a R =+-∈,. (1)当3a =时,求函数()f x 的极值;(2)设函数()f x 在0x x =处的切线方程为()y g x =,若函数()()y f x g x =-是()0+∞,上的单调增函数,求0x 的值;(3)是否存在一条直线与函数()y f x =的图象相切于两个不同的点?并说明理由. 20.(本小题满分16分) 已知集合A =a 1,a 2,a 3,…,a n ,其中a i ∈R (1≤i ≤n ,n >2),l (A )表示和a i +a j (1≤i <j ≤n )中所有不同值的个数.(Ⅰ)设集合P =2,4,6,8,Q =2,4,8,16,分别求l (P )和l (Q ); (Ⅱ)若集合A =2,4,8, (2),求证:(1)()2n n l A -=; (Ⅲ)l A ()是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由? 数学Ⅱ(附加题)21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.请在答题卡...指定区域内.....作答.解析应写出文字说明、证明过程或演算步骤.A.选修4—1:几何证明选讲如图,已知AB为半圆O的直径,点C为半圆上一点,过点C作半圆的切线CD,过点B作BD CD⊥于点D. 求证:2BC BA BD=⋅.B.选修4—2:矩阵与变换已知矩阵=a bMc d⎡⎤⎢⎥⎣⎦,10=12N⎡⎤⎢⎥⎢⎥⎣⎦,且()11402MN-⎡⎤⎢⎥=⎢⎥⎣⎦,求矩阵M.C.选修4—4:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为2{2x ty t==--(t为参数).在极坐标系中(与直角坐标系xOy取相同的长度单位,且以原点O为极点,极轴与x轴的非负半轴重合),圆C的方程为42cos4πρθ⎛⎫=+⎪⎝⎭,求直线l被圆C截得的弦长.D.选修4—5:不等式选讲已知正实数x y z、、,满足3x y z xyz++=,求xy yz xz++的最小值.注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共2页,均为非选择题(第21~23题)。
2021年江苏省新高考数学试卷(新课标Ⅰ)1.设集合,,则()A. B.C. D.2.已知,则()A. B.C. D.3.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.C.4D.4.下列区间中,函数单调递增的区间是()A. B.C. D.5.已知,是椭圆的两个焦点,点M 在C 上,则的最大值为()A.13B.12C.9D.66.若,则()A. B.C.D.7.若过点可以作曲线的两条切线,则()A. B. C. D.8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立9.有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同10.已知O 为坐标原点,点,,,,则()A. B.C.D.11.已知点P 在圆上,点,,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当最小时,D.当最大时,12.在正三棱柱中,,点P 满足,其中,,则()A.当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点P,使得D.当时,有且仅有一个点P,使得平面13.已知函数是偶函数,则__________.14.已知O为坐标原点,抛物线C:的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且若,则C的准线方程为______.15.函数的最小值为__________.16.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,,三种规格的图形,它们的面积之和,以此类推.则对折4次共可以得到不同规格图形的种数为__________;如果对折n次,那么__________17.已知数列满足,记,写出,,并求数列的通项公式;求的前20项和.18.某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为,能正确回答B类问题的概率为,且能正确回答问题的概率与回答次序无关.若小明先回答A类问题,记X为小明的累计得分,求X的分布列;为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.19.记的内角A,B,C的对边分别为a,b,已知,点D在边AC上,证明:;若,求20.如图,在三棱锥中,平面平面BCD,,O为BD的中点.证明:;若是边长为1的等边三角形,点E在棱AD上,,且二面角的大小为,求三棱锥的体积.21.在平面直角坐标系xOy中,已知点,,点M满足记M的轨迹为求C的方程;设点T在直线上,过T的两条直线分别交C于A,B两点和P,Q两点,且,求直线AB的斜率与直线PQ的斜率之和.22.已知函数讨论的单调性;设a,b为两个不相等的正数,且,证明:答案和解析1.【答案】B 【解析】【分析】本题考查集合的交集运算,属于简单题.直接利用交集运算可得答案.【解答】解:,,故选:2.【答案】C 【解析】【分析】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.把代入,再由复数代数形式的乘除运算化简得答案.【解答】解:,故选:3.【答案】B 【解析】解:由题意,设母线长为l,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有,解得,所以该圆锥的母线长为故选:设母线长为l,利用圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,列出方程,求解即可.本题考查了旋转体的理解和应用,解题的关键是掌握圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,考查了逻辑推理能力与运算能力,属于基础题.4.【答案】A 【解析】【分析】本题考查正弦型函数单调性,是简单题.本题需要借助正弦函数单调增区间的相关知识点求解.【解答】解:令,则,当时,,,故选:5.【答案】C【解析】【分析】利用椭圆的定义,结合基本不等式,转化求解即可.本题考查椭圆的简单性质的应用,基本不等式的应用.【解答】解:,是椭圆C:的两个焦点,点M在C上,,所以,当且仅当时,取等号,所以的最大值为故选:6.【答案】C【解析】【分析】本题主要考查同角三角函数基本关系,三角函数式的求值等知识,属于基础题.由题意化简所给的三角函数式,然后利用齐次式的特征将其“弦化切”即可求得三角函数式的值.【解答】解:由题意可得:故选7.【答案】D【解析】解:函数是增函数,恒成立,函数的图象如图,,即取得坐标在x轴上方,如果在x轴下方,连线的斜率小于0,不成立.点在x轴或下方时,只有一条切线.如果在曲线上,只有一条切线;在曲线上侧,没有切线;由图象可知在图象的下方,并且在x轴上方时,有两条切线,可知故选:画出函数的图象,判断与函数的图象的位置关系,即可得到选项.本题考查曲线与方程的应用,函数的单调性以及切线的关系,考查数形结合思想,是中档题.8.【答案】B 【解析】【分析】本题考查相互独立事件的应用,要求能够列举出所有事件和发生事件的个数,属于中档题.分别列出甲、乙、丙、丁可能的情况,然后根据独立事件的定义判断即可.【解答】解:由题意可知,两次取出的球的数字之和是8的所有可能为:,,,,,两次取出的球的数字之和是7的所有可能为,,,,,,甲,乙,丙,丁,A:甲丙甲丙,B:甲丁甲丁,C:乙丙乙丙,D:丙丁丙丁,故选:9.【答案】CD 【解析】【分析】本题考查平均数、中位数、标准差、极差,是基础题.利用平均数、中位数、标准差、极差的定义直接判断即可.【解答】解:对于A,两组数据的平均数的差为c,故A错误;对于B,两组样本数据的样本中位数的差是c,故B错误;对于C,设原样本数据的样本方差和标准差分别为,,新数据的样本方差和标准差分别为,,因为…,,,,即,两组样本数据的样本标准差相同,故C正确;对于D,…,,c为非零常数,原数据组的样本极差为,新数据组的样本极差为,两组样本数据的样本极差相同,故D正确.故选:10.【答案】AC【解析】【分析】本题考查平面向量数量积的性质及运算,考查同角三角函数基本关系式及两角和的三角函数,是中档题.由已知点的坐标分别求得对应向量的坐标,然后逐一验证四个选项得答案.【解答】解:,,,,,,,,,,则,,则,故A正确;,,不能恒成立,故B错误;,,,故C正确;,,不能恒成立,故D错误.故选:11.【答案】ACD【解析】【分析】求出过AB的直线方程,再求出圆心到直线AB的距离,得到圆上的点P到直线AB的距离范围,判断A与B;画出图形,由图可知,当过B的直线与圆相切时,满足最小或最大,求出圆心与B点间的距离,再由勾股定理求得判断C与本题考查直线与圆的位置关系,考查转化思想与数形结合思想,是中档题.【解答】解:,,过A、B的直线方程为,即,圆的圆心坐标为,圆心到直线的距离,点P到直线AB的距离的范围为,,,,点P到直线AB的距离小于10,但不一定大于2,故A正确,B错误;如图,当过B的直线与圆相切时,满足最小或最大点位于时最小,位于时最大,此时,,故CD正确.故选:12.【答案】BD【解析】【分析】本题考查了动点轨迹,线面平行与线面垂直的判定,锥体的体积问题等,综合性强,考查了逻辑推理能力与空间想象能力,属于拔高题.判断当时,点P在线段上,分别计算点P为两个特殊点时的周长,即可判断选项A;当时,点P在线段上,利用线面平行的性质以及锥体的体积公式,即可判断选项B;当时,取线段BC,的中点分别为M,,连结,则点P在线段上,分别取点P在,M处,得到均满足,即可判断选项C;当时,取的中点,的中点D,则点P在线的上,证明当点P在点处时,平面,利用过定点A与定直线垂直的平面有且只有一个,即可判断选项【解答】解:对于A,当时,,即,所以,故点P在线段上,此时的周长为,当点P为的中点时,的周长为,当点P在点处时,的周长为,故周长不为定值,故选项A错误;对于B,当时,,即,所以,故点P在线段上,因为平面,所以直线上的点到平面的距离相等,又的面积为定值,所以三棱锥的体积为定值,故选项B正确;对于C,当时,取线段BC,的中点分别为M,,连结,因为,即,所以,则点P在线段上,当点P在处时,,,又,所以平面,又平面,所以,即,同理,当点P在M处,,故选项C错误;对于D,当时,取的中点,的中点D,因为,即,所以,则点P在线的上,当点P在点处时,取AC的中点E,连结,BE,因为平面,又平面,所以,在正方形中,,又,BE,平面,故平面,又平面,所以,在正方体形中,,又,,平面,所以平面,因为过定点A与定直线垂直的平面有且只有一个,故有且仅有一个点P,使得平面,故选项D正确.故答案选:13.【答案】1【解析】【分析】本题考查函数的奇偶性,考查计算能力,属于基础题.根据题意,可得也为R上的奇函数,即可得解.【解答】解:函数是偶函数,为R上的奇函数,故也为R上的奇函数,所以时,,所以,经检验,满足题意,故答案为:14.【答案】【解析】解:由题意,不妨设P在第一象限,则,,所以,所以PQ的方程为:,时,,,所以,解得,所以抛物线的准线方程为:故答案为:求出点P的坐标,推出PQ方程,然后求解Q的坐标,利用,求解p,然后求解准线方程.本题考查抛物线的简单性质的应用及求抛物线的标准方程,考查转化思想以及计算能力,是中档题.15.【答案】1【解析】【分析】本题考查利用导数求最值的应用,考查运算求解能力,是中档题.求出函数定义域,对x分段去绝对值,当时,直接利用单调性求最值;当时,利用导数求最值,进一步得到的最小值.【解答】解:函数的定义域为,当时,,此时函数在上为减函数,所以;当时,,则,当时,,单调递减,当时,,单调递增,当时取得最小值,为,,函数的最小值为故答案为:16.【答案】5【解析】【分析】本题考查数列的求和,考查数学知识在生活中的具体运用,考查运算求解能力及应用意识,属于中档题.依题意,对折4次共可以得到5种不同规格图形;对折k次共有种规格,且每个面积为,则,,然后再转化求解即可.【解答】解:易知有,,共5种规格;由题可知,对折k次共有种规格,且每个面积为,故,则,记,则,,,故答案为:5;17.【答案】解:因为,,所以,,,所以,,,所以数列是以为首项,以3为公差的等差数列,所以由可得,,则,,当时,也适合上式,所以,,所以数列的奇数项和偶数项分别为等差数列,则的前20项和为……【解析】本题主要考查数列的递推式,数列的求和,考查运算求解能力,属于中档题.由数列的通项公式可求得,,从而可得求得,,由可得数列是等差数列,从而可求得数列的通项公式;由数列的通项公式可得数列的奇数项和偶数项分别为等差数列,求解即可.18.【答案】解:由已知可得,X 的所有可能取值为0,20,100,则,,所以X 的分布列为:X 020100P 由可知小明先回答A 类问题累计得分的期望为,若小明先回答B 类问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100,,,,则Y的期望为,因为,所以为使累计得分的期望最大,小明应选择先回答B类问题.【解析】本题主要考查离散型随机变量分布列及数学期望,考查运算求解能力,属于中档题.由已知可得,X的所有可能取值为0,20,100,分别求出对应的概率即可求解分布列;由可得,若小明先回答B类问题,记Y为小明的累计得分,Y的所有可能取值为0,80,100,分别求出对应的概率,从而可得,比较与的大小,即可得出结论.19.【答案】解:证明:由正弦定理知,,,,,,即,;由知,,,,在中,由余弦定理知,,在中,由余弦定理知,,,,即,得,,,或,在中,由余弦定理知,,当时,舍;当时,;综上所述,【解析】本题主要考查正弦定理和余弦定理,难度不大.利用正弦定理求解;要能找到隐含条件:和互补,从而列出等式关系求解.20.【答案】解:证明:因为,O为BD的中点,所以,又平面平面BCD,平面平面,平面ABD,所以平面BCD,又平面BCD,所以;方法一:取OD的中点F,因为为正三角形,所以,过O作与BC交于点M,则,所以OM,OD,OA两两垂直,以点O为坐标原点,分别以OM,OD,OA所在直线为x轴,y轴,z轴建立空间直角坐标系如图所示,则,,,设,则,因为平面BCD,故平面BCD的一个法向量为,设平面BCE的法向量为,又,所以由,得,令,则,,故,因为二面角的大小为,所以,解得,所以,又,所以,故方法二:过E作,交BD于点F,过F作于点G,连结EG,由题意可知,,又平面BCD所以平面BCD,又平面BCD,所以,又,,FG、平面EFG,所以平面EFG,又平面EFG,所以,则为二面角的平面角,即,又,所以,则,故,所以,因为,则,所以,则,所以,则,所以【解析】本题考查了面面垂直和线面垂直的性质,在求解有关空间角问题的时候,一般要建立合适的空间直角坐标系,将空间角问题转化为空间向量问题,属于中档题.利用等腰三角形中线就是高,得到,然后利用面面垂直的性质,得到平面BCD,再利用线面垂直的性质,即可证明;方法一:建立合适的空间直角坐标系,设,利用待定系数法求出平面的法向量,由向量的夹角公式求出t的值,然后利用锥体的体积公式求解即可.方法二:过E作,交BD于点F,过F作于点G,连结EG,求出,,然后利用锥体的体积公式求解即可.21.【答案】解:由双曲线的定义可知,M的轨迹C是双曲线的右支,设C的方程为,根据题意,解得,的方程为;设,设直线AB的方程为,,,由,得,整理得,,,,设,同理可得,由,得,,,,,【解析】的轨迹C是双曲线的右支,根据题意建立关于a,b,c的方程组,解出即可求得C的方程;设出直线AB的参数方程,与双曲线方程联立,由参数的几何意义可求得,同理求得,再根据,即可得出答案.本题考查双曲线的定义及其标准方程,考查直线与双曲线的位置关系,考查直线参数方程的运用,考查运算求解能力,属于中档题.22.【答案】解:由函数的解析式可得,,,单调递增,,,单调递减,则在单调递增,在单调递减.证明:由,得,即,由在单调递增,在单调递减,所以,且,令,,则,为的两根,其中不妨令,,则,先证,即证,即证,令,则在单调递减,所以,故函数在单调递增,,,得证.同理,要证,即证,根据中单调性,即证,令,,则,令,,,单调递增,,,单调递减,又,,且,故,,,恒成立,得证,则【解析】本题主要考查利用导数研究函数的单调性,利用导数研究极值点偏移问题,等价转化的数学思想,同构的数学思想等知识,属于难题.首先求得导函数的解析式,然后结合导函数的符号即可确定函数的单调性,利用同构关系将原问题转化为极值点偏移的问题,构造对称差函数分别证明左右两侧的不等式即可.。
2020年江苏省高考压轴卷一、 填空题:本大题共14小题,每小题5分,共70分. 1.已知集合{|02}A x x =<<,{|1}B x x =>,则A B =______2.已知复数(1)(2),z i i =+-则|z |= .3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为______.4.根据如图所示的伪代码,可知输出的结果S 为____.5.在平面直角坐标亲xOy 中,若双曲线22221x y a b-=(0a >,0b >)的离心率为32,则该双曲线的渐近线方程为______.6.某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为__________.7.已知点P 在抛物线28y x =上运动,F 为抛物线的焦点,点A 的坐标为(5,2),则PA PF +的最小值是______.8.已知,αβ都是锐角,45sin ,cos()513ααβ=+=,则sin β=_____ 9.在体积为9的斜三棱柱ABC—A 1B 1C 1中,S 是C 1C 上的一点,S—ABC 的体积为2,则三棱锥S—A 1B 1C 1的体积为___.10.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =____________.11.三棱锥P ABC -中,已知PA ⊥平面ABC ,ABC 是边长为2的正三角形,E 为PC 的中点,若直线AE 与平面PBC,则PA 的长为_____. 12.如图,在四边形ABCD 中,1AB CD ==,点,M N 分别是边,AD BC 的中点,延长BA 和CD 交NM 的延长线于不同..的两点,P Q ,则·()PQ AB DC -的值为_________.13.已知函数()ln ,11,12x x f x xx ≥⎧⎪=⎨-<⎪⎩,若()()()1F x f f x m =++有两个零点12,x x ,则12x x 的取值范围______. 14.在ABC 中,记角A ,B ,C 所对的边分别是a ,b ,c ,面积为S ,则22Sa bc+的最大值为______.二、解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2A π≠,sin26cos sin b A A B =.(1)求a 的值; (2)若3A π=,求ABC ∆周长的取值范围.16.如图,在直三棱柱111ABC A B C -中,BC AC ⊥,D ,E 分别是AB ,AC 的中点.(1)求证:11B C ∥平面1A DE;(2)求证:平面1A DE 平面11ACC A .17.如图所示,为美化环境,拟在四边形ABCD 空地上修建两条道路EA 和ED ,将四边形分成三个区域,种植不同品种的花草,其中点E 在边BC 的三等分点处(靠近B 点),3BC =百米,BC CD ⊥,120ABC ∠=,EA =60AED ∠=.(1)求ABE △区域的面积;(2)为便于花草种植,现拟过C 点铺设一条水管CH 至道路ED 上,求水管CH 最短时的长.18.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,点P是椭圆C 上的一个动点,且12PF F ∆. (1)求椭圆C 的方程;(2)设斜率不为零的直线2PF 与椭圆C 的另一个交点为Q ,且PQ 的垂直平分线交y 轴于点1(0,)8T ,求直线PQ 的斜率.19.已知数列{}n a 的前n 项和记为n A ,且()12n n n a a A +=,数列{}n b 是公比为q 的等比数列,它的前n 项和记为n B .若110a b =≠,且存在不小于3的正整数k ,m ,使得k m a b =.(1)若11a =,35a =,求2a 的值; (2)求证:数列{}n a 是等差数列; (3)若2q,是否存在整数m ,k ,使得86k m A B =,若存在,求出m ,k 的值;若不存在,请说明理由.20.已知()22ln 12x f x x x a-=--+,0a >.(1)当2a =时,求函数()f x 图象在1x =处的切线方程;(2)若对任意[)1,x ∈+∞,不等式()0f x ≥恒成立,求a 的取值范围;(3)若()f x 存在极大值和极小值,且极大值小于极小值,求a 的取值范围.——★ 参 考 答 案 ★——1.『答案』{|12}x x <<『解析』因为集合{|02}A x x =<<,{|1}B x x =>,所以{|12}AB x x =<<.故『答案』为:{|12}x x <<2.『解析』12z i i =+-==3.『答案』8『解析』设样本容量为N ,则306,14,70N N ⨯== 高二所抽人数为4014870⨯=. 故『答案』为:8 4.『答案』205『解析』模拟程序语言,运行过程,可得1I =, 满足条件100I <,执行循环体3,9I S ==; 满足条件100I <,执行循环体5,13I S ==;满足条件100I <,执行循环体99,201I S ==;满足条件100I <,执行循环体101,21013205I S ==⨯+=, 此时,不满足条件100I <,退出循环,输出S 的值为205, 故『答案』为205.5.『答案』y x = 『解析』由已知可知离心率32c e a ==,2222294c a b a a +==,即2254b a =. ∵双曲线22221x y a b-=的焦点在x 轴上∴该双曲线的渐近线方程为b y x a =±,即y x =.故『答案』为:y x =. 6.『答案』14『解析』由题意,三名学生各自随机选择两个食堂中的一个用餐的情况共有2228⨯⨯=(种),其中他们在同一个食堂用餐的情况有2种,根据古典概型概率的计算公式得,所求概率为2184=. 7.『答案』7『解析』PA PF +55272A L Pd -≥=+=+= 8.『答案』1665『解析』∵,αβ都是锐角,∴(0,)αβπ+∈, 又45sin ,cos()513ααβ=+=, ∴3cos 5α=,12sin()13αβ+=, ∴sin sin[()]sin()cos cos()sin βαβααβααβα=+-=+-+123541613513565=⨯-⨯=. 故『答案』为1665. 9.『答案』1『解析』设三棱柱111ABC A B C -的底面积为'S ,高为h , 则9'9'S h S h==,, 再设S 到底面ABC 的距离为'h ,则1''23S h =,得19'23h h⋅⋅=,所以'23h h =, 则S 到上底面111A B C 的距离为13h , 所以三棱锥111S A B C -的体积为111'91339S h ⋅=⋅=. 故『答案』为1. 10.『答案』132『解析』由a 912=a 12+6,得2a 9﹣a 12=12, 即2a 1+16d ﹣a 1﹣11d =12,∴a 1+5d =12,a 6=12. 则S 11=11a 6=11×12=132. 故『答案』为:13211.『答案』2『解析』设F 是BC 的中点,连接sin cos 210k k ρθρθ-+-=,PA ⊥平面ABC ,PA BC ∴⊥,ABC ∆为正三角形,BC AF ∴⊥,BC ∴⊥平面PAF ,在平面PAF 内作AH PF ⊥, 则BC AH ⊥,AH ∴⊥平面PBC ,连接EH ,则AEH ∠是AE 与平面PBC 所成的角, 设PA m =,在直角三角形PAF 中,AH PF PA AF ⋅=⋅,求得PA AF AH PF ⋅==,12AE PC == AE ∵平面PBC,sin AH AEH AE ∴∠===,解得2m =或m =,即PA 的长为2『答案』为2. 12.『答案』0『解析』如图,连AC ,取AC 的中点E ,连ME ,NE ,则,ME NE 分别为,ADC CAB ∆∆的中位线,所以11,22EN AB ME DC ==, 所以1()2MN ME EN DC AB =+=+.由PQ 与MN 共线, 所以()PQ MN R λλ=∈,故()()()()2PQ AB DC MN AB DC AB DC AB DC λλ⋅-=⋅-=+⋅-22()02AB DC λ=-=.『答案』013.『答案』(-∞『解析』当1x ≥时,()ln 0f x x =≥, ()11f x ∴+≥, [()1]ln(()1)f f x f x ∴+=+,当131()1()1[()1]ln(()1)222x x f x f x f f x f x <=->+>+=+,,,, 综上可知:()()()1ln(()1)0F x f f x m f x m =++=++=,则()1mf x e-+=,()1mf x e-=-有两个根1x ,2x ,(不妨设)12x x <,当1x ≥时,2ln 1mx e -=-,当1x <时,1112m x e --=-, 令112mt e-=->,则2ln x t =,2t x e =,112x t -=,122x t =-,12(22)t x x e t ∴=-,12t >, 设()(22)tg t e t =-,12t >, 所以()2t g t te '=-, 1,()02t g t '⎛⎫∈+∞< ⎪⎝⎭,,函数()g t 单调递减,1()2g t g ⎛⎫∴<=⎪⎝⎭()g x ∴的值域为(-∞, 12x x ∴取值范围为(-∞,故『答案』为:(-∞.14.『答案』『解析』因为22Sa bc +2211222222bcsinAsinA b c b c bccosA bc cosAc b==⨯+-+++- 142sinA cosA ≤-⨯-(当且仅当b c =时取得等号)令,sinA y cosA x ==, 故22S a bc +142y x ≤-⨯-,因为221x y +=,且0y >, 故可得点(),x y 表示的平面区域是半圆弧上的点,如下图所示:目标函数2yz x =-,表示圆弧上一点到点()2,0A 点的斜率,数形结合可知,当且仅当目标函数过点12H ⎛ ⎝⎭,即60A =︒时,取得最小值故可得[2y z x =∈-,又22S a bc +142y x ≤-⨯-,故可得22S a bc +14≤-⨯=. 当且仅当60,A b c =︒=,也即三角形为等边三角形时,取得最大值.故『答案』为:12. 15.『答案』(1)3;(2)(]6,9. 『解析』(1)由sin26cos sin b A A B =及二倍角公式得sin 3sin b A B =, 又sin sin a bA B=即sin sin b A a B =,所以3a =;(2)由正弦定理得sin sin a B b B A ==,sin sin a Cc C A==ABC ∆周长:233sin()3a b c B C B B π++=++=++-33sin 36sin 26B B B π⎫⎛⎫=++=++⎪ ⎪⎪⎝⎭⎭, 又因为2(0,)3B π∈,所以1sin (,1]2B ∈. 因此ABC ∆周长的取值范围是(]6,9.16.『答案』(Ⅰ)详见『解析』(Ⅱ)详见『解析』『解析』证明:(1)因为D ,E 分别是AB ,AC 的中点,所以//DE BC , ...........2分 又因为在三棱柱111ABC A B C -中,11//B C BC,所以11//B C DE. ...............4分 又11B C ⊄平面1A DE,DE ⊂平面1A DE,所以11B C ∥平面1A DE. ...............6分(2)在直三棱柱111ABC A B C -中,1CC ⊥底面ABC ,又DE ⊂底面ABC ,所以1CC DE⊥. .............8分又BC AC ⊥,//DE BC ,所以DE AC ⊥, ..........10分又1,CC AC ⊂平面11ACC A ,且1CC AC C=,所以DE ⊥平面11ACC A . ...............12分又DE ⊂平面1A DE,所以平面1A DE ⊥平面11ACC A . ............14分17.『答案』(1(2)7百米. 『解析』(1)由题知1,120,BE ABC EA =∠==在ABE 中,由余弦定理得2222cos AE AB BE AB BE ABE =+-⋅∠,即2211AB AB =++,所以4AB =百米所以11sin 41222ABESAB BE ABE =⋅⋅∠=⨯⨯⨯=.(2)记AEB α∠=,在ABE 中,sin sin AB AE ABEα=∠,即4sin α=,所以sin αα===, 当CHDE ⊥时,水管CH 最短,在Rt ECH中,2π2π2πsin2sin2sin cos2cos sin333CH CE HECααα⎛⎫=∠=-=-⎪⎝⎭= .18.『答案』(1)22143x y+=(2)12或32『解析』(1)因为椭圆离心率为12,当P为C的短轴顶点时,12PF F△.所以22212122caa b cc b⎧=⎪⎪=+⎨⎪⎪⨯⨯=⎩,所以21abc=⎧⎪=⎨⎪=⎩C的方程为:22143x y+=.(2)设直线PQ的方程为()1y k x=-,当0k≠时,()1y k x=-代入22143x y+=,得:()22223484120k x k x k+-+-=.设()()1122,,,P x y Q x y,线段PQ的中点为()00,N x y,212024234x x kxk+==+,()1200231234y y ky k xk+-==-=+即22243,3434k kNk k⎛⎫-⎪++⎝⎭因为TN PQ⊥,则1TN PQk k⋅=-,所以222314381443kk kkk--+⋅=-+,化简得24830k k-+=,解得12k=或32k,即直线PQ的斜率为12或32.19.『答案』(1)23a=(2)见『解析』(3)存在8,340m k==满足题意。
2020年普通⾼等学校招⽣全国统⼀考试(江苏卷)数学Ⅰ柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =I _____.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____.7.已知y =f (x )是奇函数,当x ≥0时,()23f x x=,则f (-8)的值是____.8.已知2sin ()4p a + =23,则sin 2a 的值是____.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =πsin(243x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-ÎN ,则d +q 的值是_______.12.已知22451(,)x y y x y R +=Î,则22x y +的最小值是_______.13.在△ABC 中,43=90AB AC BAC ==°,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-u u u r u u u r u u u r (m 为常数),则CD 的长度是________.14.在平面直角坐标系xOy 中,已知0)2P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△P AB 面积的最大值是__________.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ===°.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC Ð=-,求tan DAC Ð的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO ¢为铅垂线(O ¢在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO ¢的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO ¢的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO ¢的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO ¢的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E ¢为多少米时,桥墩CD 与EF 的总造价最低18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ×uu u r uu u r的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19.已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+ÎR 在区间D 上恒有()()()f x h x g x ³³.(1)若()()222 2()f x x x g x x x D =+=-+=¥-¥+,,,,求h (x )的表达式;(2)若21ln ,()()()(0)x x g k x h kx k D f x x x =-+==-=+¥,,,,求k 的取值范围;(3)若()422242() 2()(48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[] , D m n =Íéë,求证:n m -£.20.已知数列{}*()În a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a l ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由,数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b éù=êú-ëûM 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M -.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A r 在直线:cos 2l r q =上,点2π(,6B r 在圆:4sinC r q =上(其中0r ³,02q p £<).(1)求1r ,2r 的值(2)求出直线l 与圆C 的公共点的极坐标.C .[选修4-5:不等式选讲]23.设x ÎR ,解不等式2|1|||4x x ++£.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).答案及解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =I _____.【答案】{}0,2【解析】【分析】根据集合的交集即可计算.【详解】∵{}1,0,1,2A =-,{}0,2,3B =∴{}0,2A B =I 故答案为:{}0,2.【点睛】本题考查了交集及其运算,是基础题型.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.【答案】3【解析】【分析】根据复数的运算法则,化简即可求得实部的值.【详解】∵复数()()12z i i =+-∴2223z i i i i=-+-=+∴复数的实部为3.故答案为:3.【点睛】本题考查复数的基本概念,是基础题.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.【答案】2【解析】【分析】根据平均数的公式进行求解即可.【详解】∵数据4,2,3,5,6a a -的平均数为4∴4235620a a ++-++=,即2a =.故答案为:2.【点睛】本题主要考查平均数的计算和应用,比较基础.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.【答案】19【解析】【分析】分别求出基本事件总数,点数和为5的种数,再根据概率公式解答即可.【详解】根据题意可得基本事件数总为6636´=个.点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个.∴出现向上的点数和为5的概率为41369P ==.故答案为:19.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.【答案】3-【解析】【分析】根据指数函数的性质,判断出1y x =+,由此求得x 的值.【详解】由于20x >,所以12y x =+=-,解得3x =-.故答案为:3-【点睛】本小题主要考查根据程序框图输出结果求输入值,考查指数函数的性质,属于基础题.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____.【答案】32【解析】【分析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.【详解】双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为2y x =,即22b a a =Þ=,所以3c ===,所以双曲线的离心率为32c a =.故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题.7.已知y =f (x )是奇函数,当x ≥0时,()23f x x=,则f (-8)的值是____.【答案】4-【解析】【分析】先求(8)f ,再根据奇函数求(8)f -【详解】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=-故答案为:4-【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.8.已知2sin ()4p a + =23,则sin 2a 的值是____.【答案】13【解析】【分析】直接按照两角和正弦公式展开,再平方即得结果.【详解】221sin ()sin )(1sin 2)4222p a a a a +=+=+Q 121(1sin 2)sin 2233a a \+=\=故答案为:13【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】2p -【解析】【分析】先求正六棱柱体积,再求圆柱体积,相减得结果.【详解】正六棱柱体积为2624´´´圆柱体积为21()222p p ×=所求几何体体积为2p-故答案为:2p-【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.10.将函数y =πsin(243x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.【答案】524x p =-【解析】【分析】先根据图象变换得解析式,再求对称轴方程,最后确定结果.【详解】3sin[2()]3sin(26412y x x p p p =-+=-72()()122242k x k k Z x k Z p p p p p -=+Î\=+Î当1k =-时524x p =-故答案为:524x p =-【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-ÎN ,则d +q 的值是_______.【答案】4【解析】【分析】结合等差数列和等比数列前n 项和公式的特点,分别求得{}{},n n a b 的公差和公比,由此求得d q +.【详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据题意1q ¹.等差数列{}n a 的前n 项和公式为()2111222n n n d d P na d n a n -æö=+=+-ç÷èø,等比数列{}n b 的前n 项和公式为()1111111n n n b q b b Q q q q q-==-+---,依题意n n n S P Q =+,即22111212211n n b b d d n n n a n q q q æö-+-=+--+ç÷--èø,通过对比系数可知111212211d d a q b qì=ïïï-=-ïíï=ïï=-ï-îÞ112021d a q b =ìï=ïí=ïï=î,故4d q +=.故答案为:4【点睛】本小题主要考查等差数列和等比数列的前n 项和公式,属于中档题.12.已知22451(,)x y y x y R +=Î,则22x y +的最小值是_______.【答案】45【解析】【分析】根据题设条件可得42215y x y -=,可得4222222114+555y y x y y y y -+=+=,利用基本不等式即可求解.【详解】∵22451x y y +=∴0y ¹且42215y x y -=∴2245x y +==,当且仅当221455y y =,即2231,102x y ==时取等号.∴22xy +的最小值为45.故答案为:45.【点睛】本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用³或£时等号能否同时成立).13.在△ABC 中,43=90AB AC BAC ==°,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-u u u r u u u r u u u r (m 为常数),则CD 的长度是________.【答案】185【解析】【分析】根据题设条件可设()0PA PD l l =>u u u r u u u r ,结合32PA mPB m PC æö=+-ç÷èøu u u ru u u r u u u r 与,,B D C 三点共线,可求得l ,再根据勾股定理求出BC ,然后根据余弦定理即可求解.【详解】∵,,A D P 三点共线,∴可设()0PA PD l l =>u u u r u u u r ,∵32PA mPB m PC æö=+-ç÷èøu u u r u u u r u u u r ,∴32PD mPB m PC l æö=+-ç÷èøu u u r u u u r u u u r ,即32m m PD PB PC l læö-ç÷èø=+u u u r u u u r u u u r ,若0m ¹且32m ¹,则,,B D C 三点共线,∴321m m l læö-ç÷èø+=,即32l =,∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC Ð=°,∴5BC =,设CD x =,CDA q Ð=,则5BD x =-,BDA p q Ð=-.∴根据余弦定理可得222cos 26AD CD AC xAD CD q +-==×,()()()222257cos 265x AD BD AB AD BD x p q --+--==×-,∵()cos cos 0q p q +-=,∴()()2570665x x x --+=-,解得185x =,∴CD 的长度为185.当0m =时,32PA PC =u u u ru u ur ,,C D 重合,此时CD 的长度为0,当32m =时,32PA PB =u u u r u u u r ,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185.【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出()0PA PD l l =>u u u r u u u r.14.在平面直角坐标系xOy 中,已知0)2P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△P AB 面积的最大值是__________.【答案】【解析】【分析】根据条件得PC AB ^,再用圆心到直线距离表示三角形PAB 面积,最后利用导数求最大值.【详解】PA PB PC AB=\^Q设圆心C 到直线AB 距离为d ,则||1AB PC ==所以11)2PAB S d £×+=V 令222(36)(1)(06)2(1)(236)04y d d d y d d d d ¢=-+£<\=+--+=\=(负值舍去)当04d £<时,0y ¢>;当46d £<时,0y ¢£,因此当4d =时,y 取最大值,即PAB S V 取最大值为故答案为:【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.【答案】(1)证明详见解析;(2)证明详见解析.【解析】【分析】(1)通过证明1//EF AB ,来证得//EF 平面11AB C .(2)通过证明AB ^平面1AB C ,来证得平面1AB C ^平面1ABB .【详解】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB .由于EF Ì/平面11AB C ,1AB Ì平面11AB C ,所以//EF 平面11AB C .(2)由于1B C ^平面ABC ,AB Ì平面ABC ,所以1B C AB ^.由于1,AB AC AC B C C ^Ç=,所以AB ^平面1AB C ,由于AB Ì平面1ABB ,所以平面1AB C ^平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ===°.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC Ð=-,求tan DAC Ð的值.【答案】(1)sin 5C =;(2)2tan 11DAC Ð=.【解析】【分析】(1)利用余弦定理求得b ,利用正弦定理求得sin C .(2)根据cos ADC Ð的值,求得sin ADC Ð的值,由(1)求得cos C 的值,从而求得sin ,cos DAC DAC ÐÐ的值,进而求得tan DAC Ð的值.【详解】(1)由余弦定理得2222cos 922352b ac ac B =+-=+-´=,所以b =.由正弦定理得sin sin sin sin 5c b c B C C B b =Þ==.(2)由于4cos 5ADC Ð=-,,2ADC p p æöÐÎç÷èø,所以3sin 5ADC Ð==.由于,2ADC p p æöÐÎç÷èø,所以0,2C p æöÎç÷èø,所以cos 5C ==所以()sin sin DAC DAC p Ð=-Ð()sin ADC C =Ð+Ðsin cos cos sin ADC C ADC C =Ð×+Ð×34555525æö=´+-´=ç÷èø.由于0,2DAC p æöÐÎç÷èø,所以cos 25DAC Ð==.所以sin 2tan cos 11DAC DAC DAC ÐÐ==Ð.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO ¢为铅垂线(O ¢在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO ¢的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO ¢的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO ¢的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO ¢的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E ¢为多少米时,桥墩CD 与EF 的总造价最低?【答案】(1)120米(2)20O E ¢=米【解析】【分析】(1)根据A,B 高度一致列方程求得结果;(2)根据题意列总造价的函数关系式,利用导数求最值,即得结果.【详解】(1)由题意得2311||40640||8040800O A O A ¢¢=-´+´\=||||||8040120AB O A O B ¢¢\=+=+=米(2)设总造价为()f x 万元,21||8016040O O ¢=´=,设||O E x ¢=,32131()(1606)[160(80)],(040)800240f x k x x k x x =+-+--<<3221336()(160),()()0208008080080f x k x x f x k x x x ¢\=+-\=-=\=(0舍去)当020x <<时,()0f x ¢<;当2040x <<时,()0f x ¢>,因此当20x =时,()f x 取最小值,答:当20O E ¢=米时,桥墩CD 与EF 的总造价最低.【点睛】本题考查实际成本问题、利用导数求最值,考查基本分析求解能力,属中档题.18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ×uu u r uu u r的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.【答案】(1)6;(2)-4;(3)()2,0M 或212,77æö--ç÷èø.【解析】【分析】(1)根据椭圆定义可得124AF AF +=,从而可求出12AF F △的周长;(2)设()0,0P x ,根据点A 在椭圆E 上,且在第一象限,212AF F F ^,求出31,2A æöç÷èø,根据准线方程得Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3)设出设()11,M x y ,点M 到直线AB 的距离为d ,由点O 到直线AB 的距离与213S S =,可推出95d =,根据点到直线的距离公式,以及()11,M x y 满足椭圆方程,解方程组即可求得坐标.【详解】(1)∵椭圆E 的方程为22143x y +=∴()11,0F -,()21,0F 由椭圆定义可得:124AF AF +=.∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ¹.∵点A 在椭圆E 上,且在第一象限,212AF F F ^∴31,2A æöç÷èø∵准线方程为4x =∴()4,QQ y ∴()()()()200000,04,4244Q OP QP x x y x x x ×=×--=-=--³-u u u r u u u r ,当且仅当02x =时取等号.∴OP QP ×uu u r uu u r的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A æöç÷èø,()11,0F -∴直线1AF 的方程为()314y x =+∵点O 到直线AB 的距离为35,213S S =∴2113133252S S AB AB d ==´´´=×∴95d =∴113439x y -+=①∵2211143x y +=②∴联立①②解得1120x y =ìí=î,1127127x y ì=-ïïíï=-ïî.∴()2,0M 或212,77æö--ç÷èø.【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键.19.已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+ÎR 在区间D 上恒有()()()f x h x g x ³³.(1)若()()222 2()f x x x g x x x D =+=-+=¥-¥+,,,,求h (x )的表达式;(2)若21ln ,()()()(0)x x g k x h kx k D f x x x =-+==-=+¥,,,,求k 的取值范围;(3)若()422242() 2()(48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[] , D m n =Íéë,求证:n m -£.【答案】(1)()2h x x =;(2)[]0,3k Î;(3)证明详见解析【解析】【分析】(1)求得()f x 与()g x 的公共点,并求得过该点的公切线方程,由此求得()h x 的表达式.(2)先由()()0h x g x -³,求得k 的一个取值范围,再由()()0f x h x -³,求得k 的另一个取值范围,从而求得k 的取值范围.(3)先由()()f x h x ³,求得t 的取值范围,由方程()()0g x h x -=的两个根,求得n m -的表达式,利用导数证得不等式成立.【详解】(1)由题设有2222x x kx b x x -+£+£+对任意的x ÎR 恒成立.令0x =,则00b ££,所以0b =.因此22kx x x £+即()220x k x +-³对任意的x ÎR 恒成立,所以()220k D =-£,因此2k =.故()2h x x =.(2)令()()()()()1ln 0F x h x g x k x x x =-=-->,()01F =.又()1x F x k x-¢=×.若k 0<,则()F x 在()0,1上递增,在()1,+?上递减,则()()10F x F £=,即()()0h x g x -£,不符合题意.当0k =时,()()()()()0,F x h x g x h x g x =-==,符合题意.当0k >时,()F x 在()0,1上递减,在()1,+?上递增,则()()10F x F ³=,即()()0h x g x -³,符合题意.综上所述,0k ³.由()()()21f x h x x x kx k -=-+--()()2110x k x k =-+++³当102k x +=<,即1k <-时,()211y x k x k =-+++在()0,+?为增函数,因为()()0010f h k -=+<,故存在()00,x Î+¥,使()()0f x h x -<,不符合题意.当102k x +==,即1k =-时,()()20f x h x x -=³,符合题意.当102k x +=>,即1k >-时,则需()()21410k k D =+-+£,解得13k -<£.综上所述,k 的取值范围是[]0,3k Î.(3)因为()423422243248x x t t x t t x -³--+³-对任意[,][x m n ÎÌ恒成立,()423422432x x t t x t t -³--+对任意[,][x m n ÎÌ恒成立,等价于()222()2320x t xtx t -++-³对任意[,][x m n ÎÌ恒成立.故222320x tx t ++-³对任意[,][x m n ÎÌ恒成立令22()232M x x tx t =++-,当201t <<,2880,11t t D =-+>-<-<,此时1n m t -£+<+<,当212t ££,2880t D =-+£,但()234248432x t t x t t -³--+对任意的[,][x m n ÎÌ恒成立.等价于()()()2322443420x t t x t t --++-£对任意的[,][x m n ÎÌ恒成立.()()()2322443420x t t x t t --++-=的两根为12,x x ,则4231212328,4t t x x t t x x --+=-×=,所以12=n m x x --==.令[]2,1,2t l l =Î,则n m -=.构造函数()[]()325381,2P l l l l l =-++Î,()()()23103331P l l l l l ¢=-+=--,所以[]1,2l Î时,()0P l ¢<,()P l 递减,()()max 17P P l ==.所以()max n m -=n m -£.【点睛】本小题主要考查利用的导数求切线方程,考查利用导数研究不等式恒成立问题,考查利用导数证明不等式,考查分类讨论的数学思想方法,属于难题.20.已知数列{}*()În a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a l ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由,【答案】(1)1(2)21,134,2n n n a n -=ì=í׳î(3)01l <<【解析】【分析】(1)根据定义得+11n n n S S a l +-=,再根据和项与通项关系化简得11n n a a l ++=,最后根据数列不为零数列得结果;(2)根据定义得111222+1+1()3n n n n S S S S -=-,根据平方差公式化简得+1=4n n S S ,求得n S ,即得n a ;(3)根据定义得111333+11n n n SS a l +-=,利用立方差公式化简得两个方程,再根据方程解的个数确定参数满足的条件,解得结果【详解】(1)+111111101n n n n n n S S a a a a a l l l ++++-=\==\º\=/Q (2)11221100n n n n n a S S SS ++>\>\->Q111222+1+1()3n nn n S S S S -=-Q 1111112222222+1+1+11()()()3n n n n n n S S S S S S \-=-+1111111222222+1+1+1+11()=2=443n n nn n n n n n n S S S S S S S S S -\-=+\\\=111S a ==Q ,14n n S -=1224434,2n n n n a n ---\=-=׳21,134,2n n n a n -=ì\=í׳î(3)假设存在三个不同的数列{}n a 为"3"l -数列.111113333333+11+1+1()()n n n n n n n S S a S S S S l l +-=\-=-1133+1n n S S \=或11221123333333+1+1+1()()n n n n n n S S S S S S l -=+++1n n S S \=或22113333333+1+1(1)(1)(2)0n n n n SS S S l l l -+-++=∵对于给定的l ,存在三个不同的数列{}n a 为"3"l -数列,且0n a ³1,10,2n n a n =ì\=í³î或()22113333333+1+1(1)(1)(2)01n n n n S S S S l l l l -+-++=¹有两个不等的正根.()22113333333+1+1(1)(1)(2)01n n n n S S S S l l l l -+-++=¹可转化为()2133333+1+12133(1)(2)(1)01n n nnS S S S l l l l -++-+=¹,不妨设()1310n n S x x S +æö=>ç÷èø,则()3233(1)(2)(1)01x x l l l l -+++-=¹有两个不等正根,设()()3233(1)(2)(1)01f x x x l l l l =-+++-=¹.①当1l <时,32323(2)4(1)004l l l D =+-->Þ<<,即01l <<,此时()3010f l =-<,33(2)02(1)x l l +=->-对,满足题意.②当1l >时,32323(2)4(1)004l l l D =+-->Þ<<,即1l <<()3010f l =->,33(2)02(1)x l l +=-<-对,此情况有两个不等负根,不满足题意舍去.综上,01l <<【点睛】本题考查数列新定义、由和项求通项、一元二次方程实根分步,考查综合分析求解能力,属难题.数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b éù=êú-ëûM 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M -.【答案】(1)22a b =ìí=î;(2)121551255M -éù-êú=êúêúêúëû.【解析】【分析】(1)根据变换写出具体的矩阵关系式,然后进行矩阵的计算可得出实数,a b 的值;(2)设出逆矩阵,由定义得到方程,即可求解.【详解】(1)∵平面上点()2,1A -在矩阵 11a M b éù=êú-ëû对应的变换作用下得到点()3,4B -∴ 1 2 31 14a b éùéùéù=êúêúêú---ëûëûëû∴21324a b -=ìí--=-î,解得22a b =ìí=î(2)设1m n Mc d -éù=êúëû,则12 2 1 0=2 20 1m c n d MM m c n d -++éùéù=êúêú-+-+ëûëû∴21202021m c n d m c n d +=ìï+=ïí-+=ïï-+=î,解得25151525m n c d ì=ïïï=-ïíï=ïïï=î∴121551255M -éù-êú=êúêúêúëû【点睛】本题考查矩阵变换的应用,考查逆矩阵的求法,解题时要认真审题,属于基础题.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A r 在直线:cos 2l r q =上,点2π(,6B r 在圆:4sinC r q =上(其中0r ³,02q p £<).(1)求1r ,2r 的值(2)求出直线l 与圆C 的公共点的极坐标.【答案】(1)1242r r ==,(2))4p【解析】【分析】(1)将A,B 点坐标代入即得结果;(2)联立直线与圆极坐标方程,解得结果.【详解】(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,11cos2,43pr r =\=Q ,因为点B 为直线6p q =上,故其直角坐标方程为3y x =,又4sin r q =对应的圆的直角坐标方程为:2240x y y +-=,由22340y x x y y ì=ïíï+-=î解得00x y ==ìíî或1x y ì=ïí=ïî对应的点为())0,0,,故对应的极径为20r =或22r =.(2)cos 2,4sin ,4sin cos 2,sin 21r q r q q q q ==\=\=Q ,5[0,2),,44p p q p q Î\=Q ,当4pq =时r =当54p q =时0r =-<,舍;即所求交点坐标为当4p 【点睛】本题考查极坐标方程及其交点,考查基本分析求解能力,属基础题.C .[选修4-5:不等式选讲]23.设x ÎR ,解不等式2|1|||4x x ++£.【答案】22,3éù-êúëû【解析】【分析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x <-ìí---£îQ 或10224x x x -££ìí+-£î或0224x x x >ìí++£î21x \-£<-或10x -≤≤或203x <£所以解集为22,3éù-êúëû【点睛】本题考查分类讨论解含绝对值不等式,考查基本分析求解能力,属基础题.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指....定区域...内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.【答案】(1)15(2)13【解析】【分析】(1)建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;(2)先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果.【详解】(1)连,CO BC CD BO OD CO BD==\^Q 以,,OB OC OA 为,,x y z 轴建立空间直角坐标系,则(0,0,2),(1,0,0),(0,2,0),(1,0,0)(0,1,1)A B C D E -\(1,0,2),(1,1,1)cos ,15AB DE AB DE \=-=\<>==-uu u r uu u r uu u r uuu r 从而直线AB 与DE所成角的余弦值为15(2)设平面DEC 一个法向量为1(,,),n x y z =u r11200(1,2,0),00x y n DC DC x y z n DE ì+=×=ìï=\íí++=×=ïîîu v u u u vu uu v u v uu u vQ 令112,1(2,1,1)y x z n =\=-=\=-u r设平面DEF 一个法向量为2111(,,),n x y z =u u r 11221117100171(,,0),4244200x y n DF DF DB BF DB BC n DE x y z ìì+=×=ïï=+=+=\íí×=ïîï++=îu u v u u u v u uu v u u u v u u u v u u u v uu u v u uv u u u v Q 令111272,5(2,7,5)y x z n =-\==\=-u ur12cos ,n n \<>==u r u u r因此sin 13q ==【点睛】本题考查利用向量求线线角与二面角,考查基本分析求解能力,属中档题.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).【答案】(1)112212716,,332727p q p q ====;;(2)()111222+33n n n n p q p q --+=+【解析】【分析】(1)直接根据操作,根据古典概型概率公式可得结果;(2)根据操作,依次求n n p q ,,即得递推关系,构造等比数列求得2n n p q +,最后根据数学期望公式求结果.【详解】(1)11131232,333333p q ´´====´´,211131211227++3333333927p p q ´´=´´=´´=´´,211231122222516+0+3333333927q p q ´´+´=´´+=´´=´´(2)1111131212++333339n n n n n p p q p q ----´´=´´=´´,111112*********+(1)+33333393n n n n n n q p q p q q -----´´+´´=´´+--´=-´´´,因此112122+333n n n n p q p q --+=+,从而11111212(2+),21(2+1)333n n n n n n n n p q p q p q p q ----+=+\+-=-,即1111121(2+1),2133n n n n n n p q p q p q -+-=-\+=+.又n X 的分布列为nX 012P1n np q --n q np 故1()213n n n nE X p q =+=+.【点睛】本题考查古典概型概率、概率中递推关系、构造法求数列通项、数学期望公式,考查综合分析求解能力,属难题.。
2020年江苏省高考数学压轴试卷(6月份)一、填空题(本大题共14小题,共70.0分)1. 已知集合A = {0,1,2},B = {x | −1 < x < 1},则A ∩B = ____.2. 已知复数z =(3−4i)⋅i ,则|z|= ______ .3. 某校选修乒乓球课程的学生中,高一年级有40名,高二年级有50名,现用分层抽样的方法在这90名学生中抽取一个样本,已知在高一年级的学生中抽取了8名,则在高二年级的学生中应抽取的人数为______ .4. 执行如图所示的伪代码,则输出的结果为 ________ .5. 双曲线x 2a 2−y 2b 2=1(a >0,b >0)的离心率为√3,则其渐近线方程为__________ 6. 某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为 .7. 已知点P 在抛物线x 2=4y 上运动,F 为抛物线的焦点,点A 的坐标为(2,3),求|PA|+|PF|的最小值______.8. α,β都是锐角,且sinα=513,cos (α+β)=−45,则sinβ=________.9. 如图,在棱长为2的正方体ABCD −A 1B 1C 1D 1中,E 为对角线B 1D 上的一点,M ,N 为对角线AC 上的两个动点,且线段MN 的长度为1.(1)当N 为对角线AC 的中点且DE =√2时,则三棱锥E −DMN 的体积是______ ; (2)当三棱锥E −DMN 的体积为13时,则DE = ______ .10. 在等差数列{a n }中,a 4=18−a 5,则数列{a n }的前8项的和S 8= ______ .11. 如下图,在三棱锥P—ABC 中,已知PA ⊥平面ABC ,△ABC 是边长为2的正三角形,E 为PC 的中点,若直线AE 与平面PBC 所成角的正弦值为√427,则PA 的长为_________.12. 如图,在四边形ABCD 中,AB =CD =1,点M,N 分别是边AD,BC 的中点,延长BA 和CD 交NM 的延长线于不同..的两点P,Q ,则PQ ⃗⃗⃗⃗⃗ ⋅(AB ⃗⃗⃗⃗⃗ −DC ⃗⃗⃗⃗⃗ )的值为_______.13. 若函数f(x)=(x 2−32x)e x −m 有三个零点,则实数m 的取值范围是_________________.14. 在△ABC 中,记角A ,B ,C 所对的边分别是a ,b ,c ,面积为S ,则S a 2+2bc 的最大值为______二、解答题(本大题共11小题,共142.0分)15. 在△ABC 中,a ,b ,c 分别为A ,B ,C 的对边,且sinA =2sinB ,(1)若C =3π4,△ABC 的面积为9√24,求a 的值; (2)求sin(C−A)sinB−8sin 2C 2的值.16.如图,在直三棱柱ABC−A1B1C1中,AB=AC,点D是BC的中点.(1)求证:A1B//平面ADC1;(2)如果点E是B1C1的中点,求证:平面A1BE⊥平面BCC1B1.17.如图所示,为美化环境,拟在四边形ABCD空地上修建两条道路EA和ED,将四边形分成三个区域,种植不同品种的花草,其中点E在边BC的三等分处(靠近B点),BC=3百米,百米,.(1)求△ABE区域的面积;(2)为便于花草种植,现拟过C点铺设一条水管CH至道路ED上,求当水管CH最短时的长.18.已知椭圆C:x2a2+y2b2=1(a>b>0)经过点(2,√2),且离心率为√22.(Ⅰ)求椭圆C的方程;(Ⅱ)设经过椭圆C左焦点的直线交椭圆于M、N两点,线段MN的垂直平分线交y轴于点P(0,m),求m的取值范围.19.已知f(x)=−√4+1x2,数列{a n}的前n项和为S n,点P n(a n,−1an+1)在曲线y=f(x)上(n∈N∗),且a1=1,a n>0.(1)求数列{a n}的通项公式;(2)数列{b n}的前n项和为T n,且满足T n+1a n2=T na n+12+16n2−8n−3,b1=1,求数列{b n}的通项公式;(3)求证:S n>12√4n+1−1,n∈N∗.20.函数f(x)=a(x2−1)−lnx(a∈R).(1)若y=f(x)在x=2处取得极小值,求实数a的值;(2)若f(x)≥0在[1,+∞)上恒成立,求实数a的取值范围.21.已知a,b,c,d∈R,矩阵A=[a−20b ]的逆矩阵A−1=[1cd1].若曲线C在矩阵A对应的变换作用下得到曲线y=2x+1,求曲线C的方程.22.在直角坐标系xOy中,已知曲线C的参数方程为{x=√33cosθy=sinθ(θ为参数).(1)以原点O为极点,x轴正半轴为极轴建立极坐标系,求曲线C的极坐标方程;(2)设是曲线C上两动点,求|AB|的取值范围.23.已知x,y,z均为实数.(1)求证:1+2x4⩾2x3+x2;(2)若x+2y+3z=6,求x2+y2+z2的最小值.24.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(1)若厂家库房中(视为数量足够多)的每件产品合格的概率为0.7,从中任意取出3件进行检验,求至少有2件是合格品的概率;(2)若厂家发给商家20件产品,其中有4不合格,按合同规定商家从这20件产品中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.25.数列{a n}满足S n=2n−a n(n∈N+).(1)计算a1,a2,a3,a4。
江苏省徐州市、连云港市、宿迁市高考数学三模试卷一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题卡的指定位置上.1.已知集合A={x|x=2k+1,k∈Z},B={x|0<x<5},则A∩B= .2.已知复数z满足(3+i)z=10i(其中i为虚数单位),则复数z的共轭复数是.3.如图是一次摄影大赛上7位评委给某参赛作品打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是.4.甲、乙、丙三人一起玩“黑白配”游戏:甲、乙、丙三人每次都随机出“手心(白)”、“手背(黑)”中的某一个手势,当其中一个人出示的手势与另外两人都不一样时,这个人胜出;其他情况,不分胜负.则一次游戏中甲胜出的概率是.5.执行如图所示的算法流程图,则输出k的值为.6.已知点F为抛物线y2=4x的焦点,该抛物线上位于第一象限的点A到其准线的距离为5,则直线AF的斜率为.7.已知公差为d的等差数列{a n}的前n项和为S n,若=3,则= .8.已知圆锥的母线长为10cm,侧面积为60πcm2,则此圆锥的体积为cm3.9.若实数x,y满足约束条件,则|3x﹣4y﹣10|的最大值为.10.已知函数f(x)=sinx(x∈[0,π])和函数g(x)=tanx的图象交于A,B,C三点,则△ABC 的面积为.11.若点P,Q分别是曲线y=与直线4x+y=0上的动点,则线段PQ长的最小值为.12.已知,,是同一平面内的三个向量,其中,是相互垂直的单位向量,且()•(﹣)=1,||的最大值为.13.已知对满足x+y+4=2xy的任意正实数x,y,都有x2+2xy+y2﹣ax﹣ay+1≥0,则实数a的取值范围为.14.已知经过点P(1,)的两个圆C1,C2都与直线l1:y=x,l2:y=2x相切,则这两圆的圆心距C1C2等于.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内.15.如图,在梯形ABCD中,已知AD∥BC,AD=1,BD=2,∠CAD=,tan∠ADC=﹣2,求:(1)CD的长;(2)△BCD的面积.16.如图,在直三棱柱ABC﹣A1B1C1中,已知AB=AC,M,N,P分别为BC,CC1,BB1的中点.求证:(1)平面AMP⊥平面BB1C1C;(2)A1N∥平面AMP.17.在平面直角坐标系xOy中,已知点P(1,)在椭圆C:=1(a>b>0)上,P到椭圆C的两个焦点的距离之和为4.(1)求椭圆C的方程;(2)若点M,N是椭圆C上的两点,且四边形POMN是平行四边形,求点M,N的坐标.18.经市场调查,某商品每吨的价格为x(1<x<14)百元时,该商品的月供给量为y1万吨,y1=ax+a2﹣a(a>0);月需求量为y2万吨,y2=﹣x2﹣x+1.当该商品的需求量大于供给量时,销售量等于供给量;当该商品的需求量不大于供给量时,销售量等于需求量.该商品的月销售额等于月销售量与价格的乘积.(1)若a=,问商品的价格为多少时,该商品的月销售额最大?(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6百元,求实数a的取值范围.19.已知函数f(x)=,g(x)=ax﹣2lnx﹣a (a∈R,e为自然对数的底数).(1)求f(x)的极值;(2)在区间(0,e]上,对于任意的x0,总存在两个不同的x1,x2,使得g(x1)=g(x2)=f(x0),求a的取值范围.20.在数列{a n}中,已知a1=1,a2=2,a n+2=(k∈N*).(1)求数列{a n}的通项公式;(2)求满足2a n+1=a n+a n+2的正整数n的值;(3)设数列{a n}的前n项和为S n,问是否存在正整数m,n,使得S2n=mS2n﹣1?若存在,求出所有的正整数对(m,n);若不存在,请说明理由.三.[选做题]本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,弦BD,CA的延长线相交于点E,过E作BA的延长线的垂线,垂足为F.求证:AB2=BE•BD﹣AE•AC.B.[选修4-2:矩阵与变换](本小题满分0分)22.已知矩阵A=,向量=,计算A5.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,直线l的极坐标方程为,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为(α为参数),求直线l与曲线C 的交点P的直角坐标.D.[选修4-5:不等式选讲](本小题满分0分)24.已知a、b∈R,a>b>e(其中e是自然对数的底数),求证:b a>a b.(提示:可考虑用分析法找思路)四.[必做题]第22、23题,每小题0分,计20分.请把答案写在答题卡的指定区域内.25.已知甲箱中装有3个红球、3个黑球,乙箱中装有2个红球、2个黑球,这些球除颜色外完全相同.某商场举行有奖促销活动,设奖规则如下:每次分别从以上两个箱中各随机摸出2个球,共4个球.若摸出4个球都是红球,则获得一等奖;摸出的球中有3个红球,则获得二等奖;摸出的球中有2个红球,则获得三等奖;其他情况不获奖.每次摸球结束后将球放回原箱中.(1)求在1次摸奖中,获得二等奖的概率;(2)若连续摸奖2次,求获奖次数X的分布列及数学期望E(X).26.在集合A={1,2,3,4,…,2n}中,任取m(m≤n,m,n∈N*)个元素构成集合A m.若A m 的所有元素之和为偶数,则称A m为A的偶子集,其个数记为f(m);若A m的所有元素之和为奇数,则称A m为A的奇子集,其个数记为g(m).令F(m)=f(m)﹣g(m).(1)当n=2时,求F(1),F(2),F(3)的值;(2)求F(m).参考答案与试题解析一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题卡的指定位置上.1.已知集合A={x|x=2k+1,k∈Z},B={x|0<x<5},则A∩B= {1,3} .【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={x|x=2k+1,k∈Z},B={x|0<x<5},∴A∩B={1,3},故答案为:{1,3}.2.已知复数z满足(3+i)z=10i(其中i为虚数单位),则复数z的共轭复数是1﹣3i .【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:∵(3+i)z=10i,∴(3﹣i)(3+i)z=10i(3﹣i),∴10z=10(3i+1),化为:z=1+3i,则复数z的共轭复数是1﹣3i.故答案为:1﹣3i.3.如图是一次摄影大赛上7位评委给某参赛作品打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是 1 .【考点】茎叶图.【分析】根据讨论x>4时,求出平均分不是91分,显然x≤4,表示出平均分,得到关于x的方程,解出即可.【解答】解:若x>4,去掉一个最高分(90+x)和一个最低分86后,平均分为(89+91+92+92+94)=91.6分,不合题意,故x≤4,最高分是94,去掉一个最高分94和一个最低分86后,故平均分是(89+92+90+x+91+92)=91,解得x=1,故答案为:1.4.甲、乙、丙三人一起玩“黑白配”游戏:甲、乙、丙三人每次都随机出“手心(白)”、“手背(黑)”中的某一个手势,当其中一个人出示的手势与另外两人都不一样时,这个人胜出;其他情况,不分胜负.则一次游戏中甲胜出的概率是.【考点】列举法计算基本事件数及事件发生的概率.【分析】根据题意,分析可得甲、乙、丙出的方法种数都有2种,由分步计数原理可得三人进行游戏的全部情况数目,进而可得甲胜出的情况数目,由等可能事件的概率,计算可得答案.【解答】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为=,故答案为:.5.执行如图所示的算法流程图,则输出k的值为 3 .【考点】程序框图.【分析】根据框图的流程模拟运行程序,直到满足条件n=1,跳出循环,确定输出k的值.【解答】解:n=13是奇数,n==6>1,不符,此时k=1,n=6是偶数,n=3>1,不符,此时k=2,n=3是奇数,n=1=1,符合,此时k=3,故答案为:3.6.已知点F为抛物线y2=4x的焦点,该抛物线上位于第一象限的点A到其准线的距离为5,则直线AF的斜率为.【考点】抛物线的简单性质.【分析】求出抛物线的焦点坐标,设出A,利用抛物线上位于第一象限的点A到其准线的距离为5,求出A的横坐标,然后求解斜率.【解答】解:由题可知焦点F(1,0),准线为x=﹣1设点A(x A,y A),∵抛物线上位于第一象限的点A到其准线的距离为5,∴x A+=5,∴x A=4,∴y A=4,∴点A(4,4),∴直线AF的斜率为=,故答案为:.7.已知公差为d的等差数列{a n}的前n项和为S n,若=3,则= .【考点】等差数列的前n项和.【分析】设出等差数列的首项,由=3得到首项和公差的关系,代入等差数列的通项公式可得.【解答】解:设等差数列{a n}的首项为a1,则,由=3,得,即d=4a1,∴=.故答案为:.8.已知圆锥的母线长为10cm,侧面积为60πcm2,则此圆锥的体积为96πcm3.【考点】旋转体(圆柱、圆锥、圆台).【分析】根据侧面积计算圆锥的底面半径,根据勾股定理得出圆锥的高,代入圆锥的体积公式计算体积.【解答】解:设圆锥的底面半径为r,则S侧=π×r×10=60π,解得r=6.∴圆缀的高h==8,∴圆锥的体积V===96π.故答案为:96π.9.若实数x,y满足约束条件,则|3x﹣4y﹣10|的最大值为.【考点】简单线性规划.【分析】由题意作平面区域,而根据点到直线的距离公式可知转化为求阴影内的点到直线l的距离最大,从而解得.【解答】解:由题意作平面区域如下,,直线l的方程为3x﹣4y﹣10=0,点A到直线l的距离最大,由解得,A(,),故点A到直线l的距离d==,故|3x﹣4y﹣10|的最大值为×5=;故答案为:.10.已知函数f(x)=sinx(x∈[0,π])和函数g(x)=tanx的图象交于A,B,C三点,则△ABC 的面积为π.【考点】正切函数的图象;正弦函数的图象.【分析】根据题意,令sinx=tanx,结合x∈[0,π]求出x的值,得出三个点A、B、C的坐标,即可计算△ABC的面积.【解答】解:根据题意,令sinx=tanx,即sinx(1﹣)=0,解得sinx=0或1﹣=0,即sinx=0或cosx=;又x∈[0,π],所以x=0或x=π或x=;所以点A(0,0),B(π,0),C(,);所以△ABC的面积为S=|AB|h=×π×=π.故答案为:π.11.若点P,Q分别是曲线y=与直线4x+y=0上的动点,则线段PQ长的最小值为.【考点】两点间距离公式的应用.【分析】求出原函数的导函数,得到与直线4x+y=0平行的曲线的切线方程,由平行线间的距离公式求得线段PQ长的最小值.【解答】解:由y==1+,得y′=,由,得x2=1,∴x=±1.当x=1时,y=5,则与4x+y=0且与曲线y=相切的直线方程为y﹣5=﹣4(x﹣1),即4x+y﹣9=0.此时两平行线间的距离为;当x=﹣1时,y=﹣3,则与4x+y=0且与曲线y=相切的直线方程为y+3=﹣4(x+1),即4x+y+7=0.此时两平行线间的距离为.∴曲线y=与直线4x+y=0上两动点PQ距离的最小值为.故答案为:.12.已知,,是同一平面内的三个向量,其中,是相互垂直的单位向量,且()•(﹣)=1,||的最大值为1+.【考点】平面向量数量积的运算.【分析】不妨设=(1,0),=(0,1),设=(x,y),根据向量的坐标运算和数量积运算得到(x﹣)2+(y﹣)2=2,结合图形即可求出最大值.【解答】解:∵,是相互垂直的单位向量,不妨设=(1,0),=(0,1),设=(x,y),∴=(1﹣x,﹣y),﹣=(﹣x,﹣y),∵()•(﹣)=1,∴﹣(1﹣x)x﹣y(﹣y)=1,∴x2﹣x+y2﹣y=1,∴(x﹣)2+(y﹣)2=2,∴向量的轨迹为以(,)为圆心,以为半径的圆,∴圆心到原点的距离为1,∴||的最大值为1+故答案为:1+13.已知对满足x+y+4=2xy的任意正实数x,y,都有x2+2xy+y2﹣ax﹣ay+1≥0,则实数a的取值范围为(﹣∞,] .【考点】基本不等式.【分析】依题意,由正实数x,y满足x+y+4=2xy,可求得x+y≥4,由x2+2xy+y2﹣ax﹣ay+1≥0恒成立可求得a≤x+y+恒成立,利用双钩函数的性质即可求得实数a的取值范围.【解答】解:因为正实数x,y满足x+y+4=2xy,而4xy≤(x+y)2,代入原式得(x+y)2﹣2(x+y)﹣8≥0,解得(x+y)≥4或(x+y)≤﹣2(舍去)由x2+2xy+y2﹣ax﹣ay+1≥0可得a(x+y)≤(x+y)2+1,即a≤x+y+令t=x+y∈[4,+∞),则问题转化为a≤t+,因为函数y=t+在[4,+∞)递增,所以y min=4+=,所以a≤故答案为:(﹣∞,].14.已知经过点P(1,)的两个圆C1,C2都与直线l1:y=x,l2:y=2x相切,则这两圆的圆心距C1C2等于.【考点】直线与圆的位置关系.【分析】设圆心坐标为(x,y),由于圆与直线l1:y=x,l2:y=2x都相切,根据点到直线的距离公式得圆心只能在直线y=x上,设C1(a,a),C2(b,b),推导出a,b是方程(1﹣x)2+()2=的两根,由此能求出.这两圆的圆心距CC2.1【解答】解:设圆心坐标为(x,y),由于圆与直线l1:y=x,l2:y=2x都相切,根据点到直线的距离公式得:,解得y=x,∴圆心只能在直线y=x上,设C1(a,a),C2(b,b),则圆C1的方程为(x﹣a)2+(y﹣a)2=,圆C2的方程为(x﹣b)2+(y﹣b)2=,将(1,)代入,得:,∴a,b是方程(1﹣x)2+()2=,即=0的两根,∴,ab=,∴|C1C2|==•=•=.故答案为:.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内.15.如图,在梯形ABCD中,已知AD∥BC,AD=1,BD=2,∠CAD=,tan∠ADC=﹣2,求:(1)CD的长;(2)△BCD的面积.【考点】解三角形的实际应用.【分析】(1)根据tan∠ADC=﹣2计算sin∠ADC,得出sin∠ACD,在△ACD中使用正弦定理求出CD;(2)根据∠ADC+∠BCD=180°求出sin∠BCD,cos∠BCD,在△BCD中使用余弦定理解出BC,则=.S△BCD【解答】解:(1)∵tan∠ADC=﹣2,∴sin∠ADC=,cos∠ADC=﹣.∴sin∠ACD=sin(∠CAD+∠ADC)=sin∠CADcos∠ADC+cos∠CADsin∠ADC==.在△ACD中,由正弦定理得,即,解得CD=.(2)∵AD∥BC,∴∠ADC+∠BCD=180°,∴sin∠BCD=sin∠ADC=,cos∠BCD=﹣cos∠ADC=.在△BCD中,由余弦定理得BD2=CD2+BC2﹣2BC•CDcos∠BCD,即40=5+BC2﹣2BC,解得BC=7或BC=﹣5(舍).=BC•CDsin∠BCD==7.∴S△BCD16.如图,在直三棱柱ABC﹣A1B1C1中,已知AB=AC,M,N,P分别为BC,CC1,BB1的中点.求证:(1)平面AMP⊥平面BB1C1C;(2)A1N∥平面AMP.【考点】直线与平面平行的判定;平面与平面垂直的判定.【分析】(1)由已知条件推导出AM⊥BC,AM⊥BB1,从而AM⊥平面BB1C1C,由此能证明平面AMP⊥平面BB1C1C.(2)取B1C1中点E,连结A1E、NE、B1C,推导出平面A1NE∥平面APM,由此能证明A1N∥平面AMP.【解答】证明:(1)∵在直三棱柱ABC﹣A1B1C1中,AB=AC,M是BB1的中点,∴AM⊥BC,AM⊥BB1,∵BC∩BB1=B,∴AM⊥平面BB1C1C,∵AM⊂平面AMP,∴平面AMP⊥平面BB1C1C.(2)取B1C1中点E,连结A1E、NE、B1C,∵M,N,P分别为BC,CC1,BB1的中点,∴NE∥BC1∥PM,A1E∥AM,∵PM∩AM=M,A1E∩NE=E,PM、AM⊂平面APM,A1E、NE⊂平面A1EN,∴平面A1NE∥平面APM,∵A1N⊂平面A1NE,∴A1N∥平面AMP.17.在平面直角坐标系xOy中,已知点P(1,)在椭圆C:=1(a>b>0)上,P到椭圆C的两个焦点的距离之和为4.(1)求椭圆C的方程;(2)若点M,N是椭圆C上的两点,且四边形POMN是平行四边形,求点M,N的坐标.【考点】椭圆的简单性质.【分析】(1)由点P(1,)在椭圆上,P到椭圆C的两个焦点的距离之和为4,列出方程组求出a,b,由此能求出椭圆C的方程.(2)由题意设直线AB:y=,A(x1,y1),B(x2,y2),联立,消去y,得:3x2+3mx+m2﹣3=0,由此利用韦达定理、弦长公式、平行四边形性质,结合已知条件能求出M、N的坐标.【解答】解:(1)∵点P(1,)在椭圆C:=1(a>b>0)上,P到椭圆C的两个焦点的距离之和为4,∴,解得a=2,b=,∴椭圆C的方程为.(2)由题意设直线MN:y=,M(x1,y1),N(x2,y2),联立,消去y,得:3x2+3mx+m2﹣3=0,△>0,,∵四边形POMN是平行四边形,∴|MN|==,解得m=±3,当m=3时,解方程:3x2+9x+6=0,得M(﹣1,),N(﹣2,0);当m=﹣3时,解方程:3x2﹣9x+6=0,得M(1,),N(2,6).18.经市场调查,某商品每吨的价格为x(1<x<14)百元时,该商品的月供给量为y1万吨,y1=ax+ a2﹣a(a>0);月需求量为y2万吨,y2=﹣x2﹣x+1.当该商品的需求量大于供给量时,销售量等于供给量;当该商品的需求量不大于供给量时,销售量等于需求量.该商品的月销售额等于月销售量与价格的乘积.(1)若a=,问商品的价格为多少时,该商品的月销售额最大?(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6百元,求实数a的取值范围.【考点】函数模型的选择与应用.【分析】(1)利用商品的月销售额等于月销售量与价格的乘积,分类讨论,即可求解商品的价格为多少时,该商品的月销售额最大?(2)设f(x)=y1﹣y2=ax+a2﹣a﹣(﹣x2﹣x+1)=x2+(+a)x+a2﹣a﹣1,因为a>0,所以f(x)在区间(1,14)上是增函数,若该商品的均衡价格不低于6百元,即函数f(x)在区间[6,14)上有零点,即可得出结论.【解答】解:(1)若a=,y1=x﹣,y2>y1,即﹣x2﹣x+1>x﹣,∵1<x<14,∴1<x<6,月销售量为y1=x﹣,商品的月销售额等于(x﹣)x,在(1,6)上单调递增,(x﹣)x<;y2≤y1,即﹣x2﹣x+1≤x﹣,∵1<x<14,∴6≤x<14,月销售量为y2=﹣x2﹣x+1,商品的月销售额等于y=(﹣x2﹣x+1)x,y′=﹣(x﹣8)(3x+28),∴函数在(6,8)上单调递增,(8,14)上单调递减,x=8时,取得最大值>,∴商品的价格为8元时,该商品的月销售额最大;(2)设f(x)=y1﹣y2=ax+a2﹣a﹣(﹣x2﹣x+1)=x2+(+a)x+a2﹣a﹣1因为a>0,所以f(x)在区间(1,14)上是增函数,若该商品的均衡价格不低于6百元,即函数f(x)在区间[6,14)上有零点,所以f(6)≤0,f(14)>0,所以0<a≤.19.已知函数f(x)=,g(x)=ax﹣2lnx﹣a (a∈R,e为自然对数的底数).(1)求f(x)的极值;(2)在区间(0,e]上,对于任意的x0,总存在两个不同的x1,x2,使得g(x1)=g(x2)=f(x0),求a的取值范围.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求出f(x)的导数,得到函数的单调区间,从而求出函数的极值即可;(2)求出当x∈(0,e]时,函数f(x)的值域,通过讨论a的范围结合g(x)的单调性,求出a的具体范围即可.【解答】解:(1)因为f(x)=,所以f′(x)=,…令f′(x)=0,得x=1.…当x∈(﹣∞,1)时,f′(x)>0,f(x)是增函数;当x∈(1,+∞)时,f′(x)<0,f(x)是减函数.所以f(x)在x=1时取得极大值f(1)=1,无极小值.…(2)由(1)知,当x∈(0,1)时,f(x)单调递增;当x∈(1,e]时,f(x)单调递减.又因为f(0)=0,f(1)=1,f(e)=e•e1﹣e>0,所以当x∈(0,e]时,函数f(x)的值域为(0,1].…当a=0时,g(x)=﹣2lnx在(0,e]上单调,不合题意;…当a≠0时,g′(x)=,x∈(0,e],故必须满足0<<e,所以a>.…此时,当x 变化时,g′(x),g(x)的变化情况如下:x (0,)(,e]g′(x)﹣0 +g(x)单调减最小值单调增所以x→0,g(x)→+∞,g()=2﹣a﹣2ln,g(e)=a(e﹣1)﹣2,所以对任意给定的x0∈(0,e],在区间(0,e]上总存在两个不同的x1,x2使得g(x1)=g(x2)=f(x0),当且仅当a满足下列条件,即,…令m(a)=2﹣a﹣2ln,a∈(,+∞),m′(a)=﹣,由m′(a)=0,得a=2.当a∈(2,+∞)时,m′(a)<0,函数m(a)单调递减;当a∈(,2)时,m′(a)>0,函数m(a)单调递增.所以,对任意a∈(,+∞)有m(a)≤m(2)=0,即2﹣a﹣2ln≤0对任意a∈(,+∞)恒成立.由a(e﹣1)﹣2≥1,解得a≥,综上所述,当a∈[,+∞)时,对于任意给定的x0(0,e],在区间(0,e]上总存在两个不同的x1,x2,使得g(x1)=g(x2)=f(x0).…20.在数列{a n}中,已知a1=1,a2=2,a n+2=(k∈N*).(1)求数列{a n}的通项公式;(2)求满足2a n+1=a n+a n+2的正整数n的值;(3)设数列{a n}的前n项和为S n,问是否存在正整数m,n,使得S2n=mS2n﹣1?若存在,求出所有的正整数对(m,n);若不存在,请说明理由.【考点】数列的求和;数列递推式.【分析】(1)由题意可得数列{a n}的奇数项是以1为首项,公差为2的等差数列;偶数项是以2为首项,公比为3的等比数列.分别利用等差数列与等比数列的通项公式即可得出.(2)①当n为奇数时,由2a n+1=a n+a n+2可得:=n+n+2,化为:=n+1,令f(x)=2×﹣x﹣1(x≥1),利用导数研究函数的单调性即可得出.②当n为偶数时,由2a n+1=a n+a n+2可得:2(n+1)=2+2×,化为:n+1=+,即可判断出不成立.(3)S2n=(a1+a3+…+a2n﹣1)+(a2+a4+…+a2n)=3n+n2﹣1,n∈N*.S2n﹣1=S2n﹣a2n=3n﹣1+n2﹣1.假设存在正整数m,n,使得S2n=mS2n﹣1,化为3n﹣1(3﹣m)=(m﹣1)(n2﹣1),可得1,2,3.分类讨论即可得出.【解答】解:(1)由a1=1,a2=2,a n+2=(k∈N*).可得数列{a n}的奇数项是以1为首项,公差为2的等差数列;偶数项是以2为首项,公比为3的等比数列.∴对任意正整数k,a2k﹣1=1+2(k﹣1)=2k﹣1;a2k=2×3k﹣1.∴数列{a n}的通项公式a n=,k∈N*.(2)①当n为奇数时,由2a n+1=a n+a n+2可得:=n+n+2,化为:=n+1,令f(x)=2×﹣x﹣1(x≥1),由f′(x)=××ln﹣1≥﹣1=ln3﹣1>0,可知f(x)在[1,+∞)上是增函数,∴f(x)≥f(1)=0,∴当且仅当n=1时,满足=n+1,即2a2=a1+a3.=a n+a n+2可得:2(n+1)=2+2×,②当n为偶数时,由2an+1化为:n+1=+,上式左边为奇数,右边为偶数,因此不成立.综上,满足2a n+1=a n+a n+2的正整数n的值只有1.(3)S2n=(a1+a3+…+a2n﹣1)+(a2+a4+…+a2n)=+=3n+n2﹣1,n∈N*.S2n﹣1=S2n﹣a2n=3n﹣1+n2﹣1.假设存在正整数m,n,使得S2n=mS2n﹣1,则3n+n2﹣1=m(3n﹣1+n2﹣1),∴3n﹣1(3﹣m)=(m﹣1)(n2﹣1),(*)从而3﹣m≥0,∴m≤3,又m∈N*,∴m=1,2,3.①当m=1时,(*)式左边大于0,右边等于0,不成立.②当m=3时,(*)式左边等于0,∴2(n2﹣1)=0,解得n=1,∴S2=3S1.③当m=2时,(*)式可化为3n﹣1=(n+1)(n﹣1),则存在k1,k2∈N*,k1<k2,使得n﹣1=,n+1=,且k1+k2=n﹣1,从而==2,∴﹣=2,=1,∴k1=0,k2﹣k1=1,于是n=2,S4=2S3.综上可知,符合条件的正整数对(m,n)只有两对:(2,2),(3,1).三.[选做题]本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,弦BD,CA的延长线相交于点E,过E作BA的延长线的垂线,垂足为F.求证:AB2=BE•BD﹣AE•AC.【考点】与圆有关的比例线段.【分析】连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆知,BD•BE=BA•BF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BE•BD ﹣AE•AC.【解答】证明:连接AD,因为AB为圆的直径,所以∠ADB=90°,又EF⊥AB,∠AFE=90°,则A,D,E,F四点共圆,∴BD•BE=BA•BF,又△ABC∽△AEF,∴,即AB•AF=AE•AC∴BE•BD﹣AE•AC=BA•BF﹣AB•AF=AB•(BF﹣AF)=AB2.B.[选修4-2:矩阵与变换](本小题满分0分)22.已知矩阵A=,向量=,计算A5.【考点】特征向量的意义.【分析】令f(λ)==λ2﹣5λ+6=0,解得λ=2或3.分别对应的一个特征向量为;.设=m++n.解得m,n,即可得出.【解答】解:∵f(λ)==λ2﹣5λ+6,由f(λ)=0,解得λ=2或3.当λ=2时,对应的一个特征向量为α1=;当λ=3时,对应的一个特征向量为α2=.设=m++n.解得.∴A5=2×25+1×35=.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,直线l的极坐标方程为,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为(α为参数),求直线l与曲线C 的交点P的直角坐标.【考点】简单曲线的极坐标方程.【分析】先利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换将极坐标方程化成直角坐标方程.再利用消去参数的方法化参数方程为直角坐标方程,通过直角坐标方程求出交点即可.【解答】解:因为直线l的极坐标方程为所以直线l的普通方程为,又因为曲线C的参数方程为(α为参数)所以曲线C的直角坐标方程为,联立解方程组得或,根据x的范围应舍去,故P点的直角坐标为(0,0).D.[选修4-5:不等式选讲](本小题满分0分)24.已知a、b∈R,a>b>e(其中e是自然对数的底数),求证:b a>a b.(提示:可考虑用分析法找思路)【考点】分析法和综合法.【分析】直接利用分析法的证明步骤,结合函数的单调性证明即可.【解答】证明:∵b a>0,a b>0,∴要证:b a>a b只要证:alnb>blna只要证.(∵a>b>e)取函数,∵∴当x>e时,,∴函数在上是单调递减.∴当a>b>e时,有,即.得证.四.[必做题]第22、23题,每小题0分,计20分.请把答案写在答题卡的指定区域内.25.已知甲箱中装有3个红球、3个黑球,乙箱中装有2个红球、2个黑球,这些球除颜色外完全相同.某商场举行有奖促销活动,设奖规则如下:每次分别从以上两个箱中各随机摸出2个球,共4个球.若摸出4个球都是红球,则获得一等奖;摸出的球中有3个红球,则获得二等奖;摸出的球中有2个红球,则获得三等奖;其他情况不获奖.每次摸球结束后将球放回原箱中.(1)求在1次摸奖中,获得二等奖的概率;(2)若连续摸奖2次,求获奖次数X的分布列及数学期望E(X).【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)设“在1次摸奖中,获得二等奖”为事件A,利用互斥事件概率计算公式能求出在1次摸奖中,获得二等奖的概率.(2)设“在1次摸奖中,获奖”为事件B,先求出P(B),由题意可知X的所有可能取值为0,1,2.分别求出相应的概率,由此能求出X的分布列和E(X).【解答】解:(1)设“在1次摸奖中,获得二等奖”为事件A,则P(A)==.…(2)设“在1次摸奖中,获奖”为事件B,则获得一等奖的概率为=,获得三等奖的概率为P3==,所以P(B)==.…由题意可知X的所有可能取值为0,1,2.P(X=0)=(1﹣)2=,P(X=1)==,P(X=2)=()2=.所以X的分布列是X 0 1 2P所以E(X)=0×+2×=.…26.在集合A={1,2,3,4,…,2n}中,任取m(m≤n,m,n∈N*)个元素构成集合A m.若A m 的所有元素之和为偶数,则称A m为A的偶子集,其个数记为f(m);若A m的所有元素之和为奇数,则称A m为A的奇子集,其个数记为g(m).令F(m)=f(m)﹣g(m).(1)当n=2时,求F(1),F(2),F(3)的值;(2)求F(m).【考点】子集与真子集;元素与集合关系的判断.【分析】(1)根据已知条件利用列举法能F(1),F(2),F(3);(2)分m为奇数和m为偶数两种情况,再根据二项式定理和排列组合的知识即可求出答案.【解答】解:(1)当n=2时,集合为{1,2,3,4},当m=1时,偶子集有{2},{4},奇子集有{1},{3},f(1)=2,g(1)=2,F(1)=0;当m=2时,偶子集有{2,4},{1,3},奇子集有{1,2},{1,4},{2,4},{3,4},f(2)=2,g(2)=4,F(2)=﹣2;当m=3时,偶子集有{1,2,3},{1,3,4},奇子集有{1,2,4},{2,3,4},f(3)=2,g(3)=2,F(3)=0;(2)当m为奇数时,偶子集的个数f(m)=C n0C n m+C n2C n m﹣2+C n4C n m﹣4+…+C n m﹣1C n1,奇子集的个数g(m)=C n1C n m﹣1+C n3C n m﹣3+…+C n m C n0,所以f(m)=g(m),F(m)=f(m)﹣g(m)=0.当m为偶数时,偶子集的个数f(m)=C n0C n m+C n2C n m﹣2+C n4C n m﹣4+…+C n m C n0,奇子集的个数g(m)=C n1C n m﹣1+C n3C n m﹣3+…+C n m﹣1C n1,所以F(m)=f(m)﹣g(m)=C n0C n m﹣C n1C n m﹣1+C n2C n m﹣2﹣C n3C n m﹣3+…﹣C n m﹣1C n1+C n m C n0,一方面,(1+x)m(1﹣x)m=(C m0+C m1x+C m2x2+…+C m m x m)[C m0﹣C m1x+C m2x2+…+(﹣1)m C m m x m]所以,(1+x)m(1﹣x)m中x m的系数为C m0C m m﹣C m1C m m﹣1+C m2C m m﹣2﹣C m3C m m﹣3+…﹣C m m﹣1C m1+C m m C m0,另一方面,(1+x)m(1﹣x)m=(1﹣x2)m,(1﹣x2)m中x m的系数为(﹣1),故f(m)=(﹣1),综上,F(m)=。
江苏省高考数学压轴卷注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题纸...上对应题目的答案空格内.考试结束后,交回答题纸. 参考公式:锥体的体积公式:V =13Sh ,其中S 为锥体的底面积,h 为锥体的高.一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在题中横线上) 1.若集合{|}A x y x R ==∈,{|||1,}B x x x R =≤∈,则A B =I . 2.若复数512im +-(i 为虚数单位)为纯虚数,则实数m = . 3.若原点(0,0)和点(1,1)在直线0x y a +-=的异侧,则a 的取值范围是 .4.某射击选手连续射击5枪命中的环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为 .5.右图是一个算法流程图,则输出的x 的值为 .6.从2个红球,2个黄球,1个白球中随机取出两个球,则两球颜色不同的概率是 .7.若53sin =α且α是第二象限角,则tan()4πα-= .8.正四棱锥P ABCD -的底面边长为,侧面积为2,则它的体积为 .9.已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线的方程为02=-y x ,则该双曲线的离心率为 .10.不等式组3,0,20x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩所表示的区域的面积为 .11. 已知ABC ∆外接圆的半径为2,圆心为O ,且2AB AC AO +=u u u r u u u r u u u r ,||||AB AO =u u u r u u u r ,则CA CB ⋅u u u r u u u r的值等于 .12. 如图所示,三个边长为2的等边三角形有一条边在同一直线上,边33C B 上有10个不同的点1P ,2P ,…,(第5题)10P ,记i i AP AB M ⋅=2(i =1,2,…,10),则=+++1021M M M Λ .13. 在等差数列{}n a 中,首项13a =,公差2d =,若某学生对其中连续10项进行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为 .14.设关于x 的实系数不等式2(3)()0ax x b +-≤对任意[0,)x ∈+∞恒成立,则2a b = . 二、解答题15. (本小题满分14分) (本大题满分14分)如图,在△ABC 中,点D 在边AB 上,CD BC ⊥,53AC =,5CD =,2BD AD =. (1)求AD 的长; (2)求△ABC 的面积.16. (本小题满分14分)如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,E 为侧棱PA 的中点. (1)求证:PC // 平面BDE ;(2)若PC ⊥PA ,PD =AD ,求证:平面BDE ⊥平面PAB .17. (本大题满分14分)如图,A ,B 是海岸线OM ,ON 上的两个码头,海中小岛有码头Q 到海岸线OM ,ON 的距离分别为2km ,第12题P A BCDE(第16题)ABCD第15题710km 5.测得tan 3MON ∠=-,6km OA =.以点O 为坐标原点,射线OM 为x 轴的正半轴,建立如图所示的直角坐标系.一艘游轮以182km /小时的平均速度在水上旅游线AB 航行(将航线AB 看作直线,码头Q 在第一象限,航线AB 经过Q ).(1)问游轮自码头A 沿AB u u u r方向开往码头B 共需多少分钟?(2)海中有一处景点P (设点P 在xOy 平面内,PQ OM ⊥,且6km PQ =),游轮无法靠近.求游轮在水上旅游线AB 航行时离景点P 最近的点C 的坐标.18. (本大题满分16分)已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为()1,0F ,且点3(1,)2P 在椭圆C 上.(1)求椭圆C 的标准方程;(2)过椭圆22122:153x y C a b +=-上异于其顶点的任意一点Q 作圆224:3O x y +=的两条切线,切点分别为M ,N (M ,N 不在坐标轴上),若直线MN 在x 轴,y 轴上的截距分别为m ,n ,证明:22113m n+为定值;(3)若1P ,2P 是椭圆222223:1x y C a b+=上不同的两点,12PP ⊥x 轴,圆E 过1P,2P ,且椭圆2C 上任意一点都不在圆E 内,则称圆E 为该椭圆的一个内切圆.试问:椭圆2C 是否存在过左焦点1F 的内切圆?若存在,求出圆心E 的坐标;若不存在,请说明理由. 19.已知函数2()e (0)x f x x a a =-…. (1)当1a =时,求()f x 的单调减区间;(2)若存在m>0,方程()f x m =恰好有一个正根和一个负根,求实数m 的最大值. 20.(本大题满分16分)已知数列{}n a 的通项公式为12()()n a n k n k =--,其中*n ∈N ,1k ,2k ∈Z . (1)试写出一组1k ,2k 的值,使得数列{}n a 中的各项均为正数;(第17题)OMNAB PQ••••xy•C(2)若11k =,*2k ∈N ,数列{}n b 满足nn a b n=,且对任意的*m ∈N (3m ≠),均有3m b b <,写出所有满足条件的2k 的值;(3)若120k k <<,数列{}n c 满足||n n n c a a =+,其前n 项和为n S ,且使0i j c c =≠(i ,*j ∈N ,i j <)的i和j 有且仅有4组,1S ,2S ,…,n S 中有至少3个连续项的值相等,其它项的值均不相等,求1k ,2k 的最小值.数学附加题注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题..纸.上对应题目的答案空格内.考试结束后,交回答题纸. 21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区......域内..作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲(本小题满分10分)如图,在Rt △ABC 中,AB =BC .以AB 为直径的⊙O 交AC 于点D ,过D 作DE BC ,垂足为E ,连接AE交⊙O 于点F .求证:BE CE =EF EA .B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵1214A ⎡⎤=⎢⎥-⎣⎦,求矩阵A 的特征值和特征向量.C .选修4—4:坐标系与参数方程(本小题满分10分)在极坐标系中,曲线C 的极坐标方程为2cos 2sin r q q =+,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为1,3x t y t=+⎧⎪⎨=⎪⎩ (t 为参数),求直线l 被曲线C 所截得的弦长.B C FDOD .选修4—5:不等式选讲(本小题满分10分) 设,x y 均为正数,且x y >,求证:2212232x y x xy y +≥+-+.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E(ξ). 23. (本小题满分10分)若存在n 个不同的正整数12,,,n a a a L ,对任意1i j n <剟,都有i j i ja a a a +∈-Z ,则称这n 个不同的正整数12,,,n a a a L 为“n 个好数”. (1)请分别对2n =,3n =构造一组“好数”;(2)证明:对任意正整数(2)n n …,均存在“n 个好数”.答案与提示一、填空题1.{}1 2.1- 3. ()0,2 4. 0.032 5. 166. 457.7-8.49.5 10.16 1.12 12.180 13.200 14.9 解析:11. 如图,取BC 中点D ,联结AD ,则2AB AC AD +=u u u r u u u r u u u r,又因为2AB AC AO +=u u u r u u u r u u u r,所以O 为BC 的中点,因为AB AO =u u u r u u u r,所以ABO △是等边三角形,π6C ∠=, 因为△ABC 外接圆的半径为2,所以4CB =u u u r,23CA =u u u r , 所以3423122CA CB ⋅=⨯⨯=u u u r u u u r ,故答案为12. 12. 延长2AB ,33C B ,则o2330B AC ∠=,又o3360AC B ∠=,所以233AB B C ⊥u u u u r u u u u r ,即2330AB B C =u u u u r u u u u rg ,则2233i 233()23618i i M AB AP AB AC C P AB AC ==+==⨯⨯=u u u u r u u u r u u u u r u u u u r u u u u r u u u u r u u u u r g g g ,则12101810M M M ++⋅⋅⋅=⨯180=,故答案为180.13. 等差数列{}n a 中的连续10项为*+129,,,,,()x x x x a a a a x ++∈N …, 遗漏的项为*+,x n a n ∈N 且9,n 1≤≤则9()10(18)10(2)22x x x x x n x a a a a a a n +++⨯++⨯-=-+9(322)2185x n =+--=,化简得4494352x n =+≤≤,所以5x =,511a =,则连续10项的和为(1111+18)10=2002+⨯,故答案为200.14. 令2()3,()f x ax g x x b =+=-, 在同一坐标系下作出两函数的图像:①如图(1),当2()g x x b =-的在x 轴上方时,0b ≤,()0f x ≥, 但()30f x ax =+≤对[0,)x ∈+∞却不恒成立; ②如图(2),0b >,令()0g x =得x b =,令()30f x ax =+=得3x a=-, 要使得不等式2(3)()0ax x b +-≤在[0,)x ∈+∞上恒成立, 只需3b a=-,29b a =,29a b =.综上,29a b =,故答案为9.二、解答题15. 解:(1)在△ABC 中,因为2BD AD =,设AD x =()0x >,则2BD x =.在△BCD 中,因为CD BC ⊥,5CD =,2BD x =, 所以cos CD CDB BD ∠=52x=. 在△ACD 中,因为AD x =,5CD =,53AC =,由余弦定理得2222225(53)cos 2AD CD AC x ADC AD CD +-+-∠==⨯⨯.因为CDB ADC ∠+∠=π,所以cos cos ADC CDB ∠=-∠,即2225(53)5252x x x+-=-⨯⨯. 解得5x =.所以AD 的长为5.(2)由(Ⅰ)求得315AB x ==,2425BC x =-53=. 所以3cos 2BC CBD BD ∠==,从而1sin 2CBD ∠=. 所以1sin 2ABC S AB BC CBA ∆=⨯⨯⨯∠11753155322=⨯⨯⨯=. 16. 证明:(1)连结AC ,交BD 于O ,连结OE . 因为ABCD 是平行四边形,所以OA =OC . 因为 E 为侧棱PA 的中点,所以OE ∥PC .因为PC/Ì平面BDE ,OE 平面BDE ,所以PC // 平面BDE . (2)因为E 为PA 中点,PD =AD ,所以PA ⊥DE . 因为PC ⊥PA ,OE ∥PC ,所以PA ⊥OE .因为OE 平面BDE ,DE 平面BDE ,OE ∩DE =E , 所以PA ⊥平面BDE .因为PA 平面PAB ,所以平面BDE ⊥平面PAB . 17. 解:(1)由已知得(6,0)A ,直线ON 的方程为3y x =-, 设00(,2)(0)Q x x >03271010x +=及图00x >得04x =,(4,2)Q ∴, ∴直线AQ 的方程为(6)y x =--,即60x y +-=,由3,60y x x y =-⎧⎨+-=⎩得3,9,x y =-⎧⎨=⎩即(3,9)B -,22(36)92AB ∴=--+AB 的长为92km . 游轮在水上旅游线自码头A 沿AB u u u r方向开往码头B 共航行30分钟时间.(2)解法一:点P 到直线AB 的垂直距离最近,则垂足为C .PABCDE O由(1)知直线AB 的方程为60x y +-=, (4,8)P Q ,则直线PC 的方程为40x y -+=,所以解直线AB 和直线PC 的方程组,得点C 的坐标为(1,5). 解法2:设游轮在线段AB 上的点C处,则AC =,102t ≤≤, (618,18)C t t ∴-.(4,8)P Q ,222(218)(188)PC t t ∴=-+-218(3620)68t t =-+,102t ≤≤, 当51182t =<时,离景点P 最近,代入(618,18)C t t -得离景点P 最近的点的坐标为(1,5). 18.解:(1)由题意得,1c =,所以221,a b =+ 又点3(1,)2P 在椭圆C 上,所以22191,4a b+=解得224,3,a b == 所以椭圆C 的标准方程为221.43x y +=(2)由(1)知,2213:1,44x y C +=设点112233(,),(,),(,),Q x y M x y N x y 则直线QM 的方程为224,3x x y y +=① 直线QN 的方程为334,3x x y y += ② 把点Q 的坐标代入①②得2121313143,43x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩所以直线MN 的方程为114,3x x y y += 令0,y =得14,3m x =令0,x =得14,3n y = 所以1144,,33x y m n==又点Q 在椭圆1C 上, 所以2244()3()4,33m n +=即22113,34m n +=为定值. (3)由椭圆的对称性,不妨设12(,),(,),P m n P m n -由题意知,点E 在x 轴上, 设点(,0),E t 则圆E 的方程为2222()().x t y m t n -+=-+由椭圆的内切圆的定义知,椭圆上的点到点E 的距离的最小值是1,PE 设点(,)M x y 是椭圆2C 上任意一点,则222223()21,4ME x t y x tx t =-+=-++当x m =时,2ME 最小,所以24.332t tm -=-= ① 假设椭圆2C 存在过左焦点F 的内切圆,则222(3)().t m t n --=-+ ②又点1P 在椭圆2C 上,所以221.4m n =- ③ 由①②③得32t =-或3,t =- 当3t =-时,4432,3t m -==<-不合题意,舍去,且经验证,32t =-符合题意. 综上,椭圆2C 存在过左焦点F 的内切圆,圆心E 的坐标是3(,0).2-19. 解:(1)当1a =时,221,e (1),()1,e (1),x x x xf x x x ⎧>-⎪=⎨-⎪⎩„ 当1x >时,2()e (21)x f x x x '=+-, 由()0f x '„,解得121+2x ---剟, 所以()f x 的单调减区间为[12,1]--, 当1x „时,2()e (21)x f x x x '=-+-, 由()0f x '„,解得12x -„1+2x -… 所以()f x 的单调减区间为[1+2,1]-,综上:()f x 的单调减区间为[1+2,1]-,[12,1]---.(2) 当0a =时,2()e x f x x =⋅,则2()e 2e e (2)x x x f x x x x x '=⋅+⋅=+,令()0f x '=,得0x =或2x =-, x (,2)-∞-2-(2,0)-0 (0,)+∞()f x ' + 0 - 0 + ()f x↗极大值↘极小值↗所以()f x 有极大值24(2)ef -=,极小值(0)0f =, 当0a >时,22,e (),()e (),,x x x a x af x a x x a ⎧>-⎪=⎨-⎪⎩„ 同(1)的讨论可得,()f x 在(,11)a -∞+上增,在(11,)a a -+-上减,在(,11)a a -+-上增,在(11,)a a +-上减,在(,)a +∞上增, 且函数()y f x =有两个极大值点, 1112e (11)(11)2e(11)a a a f a a -+-+-++-+-=++=,1112e(11)(11)2e(11)a a a f a a ++-+-+-=+-=,且当1x a =+时,11212e(11)(1)e(1)e(11)a a a a f a a a a ++++-+=++>+->,所以若方程()f x m =恰好有正根,则(11)m f a >+-(否则至少有二个正根).又方程()f x m =恰好有一个负根,则(11)m f a =-+-. 令()e (1),1x g x x x -=+…,则()e 0x g x x -'=-<, 所以()e (1)x g x x -=+在1x …时单调减,即2()(1)eg x g =„, 等号当且仅当1x =时取到.所以22(11)()ef a -+-„,等号当且仅当0a =时取到.且此时11(11)2e(11)0a f a a +-+-=+-=,即(11)f a -+->(11)f a +-,所以要使方程()f x m =恰好有一个正根和一个负根,m 的最大值为24e . 20. 解:(1)11k =-、22k =-(答案不唯一). (2)由题设,22(1)n n a kb n k n n==+-+. 当21k =,2时,2()k f n n n =+均单调递增,不合题意,因此,23k ≥. 当23k ≥时,对于2()k f n n n=+, 当2n k ()f n 单调递减;当2n k 时,()f n 单调递增. 由题设,有123b b b >>,34b b <<L . 于是由23b b >及43b b >,可解得2612k <<. 因此,2k 的值为7,8,9,10,11.(4)因为2121212()()()n a n k n k n k k n k k =--=-++,且120k k <<,所以12122,,||0,.n n n n a n k or n k c a a k n k <>⎧=+=⎨⎩≤≤因为0i j c c =≠(i ,*j ∈N ,i j <),所以i 、12(,)j k k ∉. 于是由212122[()]n c n k k n k k =-++,可得1222k k i j++=,进一步得120i k k j <<<<, 此时,i 的四个值为1,2,3,4,因此,1k 的最小值为5. 又1S ,2S ,…,n S 中有至少3个连续项的值相等,其它项的值均不相等,不妨设+1+2==m m m S S S =L ,于是有+1+2==0m m c c =L , 因为当12k n k ≤≤时,0n c =,所以12512k m m k =+<+<L ≤≤, 因此,26k ≥,即2k 的最小值为6.21.【选做题】A .选修4—1:几何证明选讲证明:连接BD .因为AB 为直径,所以BD ⊥AC . 因为AB =BC ,所以AD =DC .因为DE BC ,AB BC ,所以DE ∥AB , 所以CE =EB .因为AB 是直径,AB BC ,所以BC 是圆O 的切线, 所以BE 2=EF EA ,即BE CE =EF EA . B .选修4—2:矩阵与变换 解:矩阵A 的特征多项式为()2125614f λλλλλ--==--+, 由()0f λ=,解得12λ=,23λ=.当12λ=时,特征方程组为20,20,x y x y -=⎧⎨-=⎩故属于特征值12λ=的一个特征向量121α⎡⎤=⎢⎥⎣⎦.当23λ=时,特征方程组为220,0,x y x y -=⎧⎨-=⎩故属于特征值23λ=的一个特征向量211α⎡⎤=⎢⎥⎣⎦.C .选修4—4:坐标系与参数方程解:曲线C 的直角坐标方程为22220x y x y +--=,BCF DO圆心为(1,1),半径为2,直线的直角坐标方程为330x y --=, 所以圆心到直线的距离为313122d --==, 所以弦长12274=-=. D .选修4—5:不等式选讲 因为x >0,y >0,x -y >0,22211222()2()x y x y x xy y x y +-=-+-+-, =21()()()x y x y x y -+-+-23213()3()x y x y -=-≥, 所以2212232x y x xy y ++-+≥.22.(本小题满分10分)解:(1)比赛结束后甲的进球数比乙的进球数多1个有以下几种情况: 甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球. 所以比赛结束后甲的进球数比乙的进球数多1个的概率 P =C 1323(13)2(12)3+C 23(23)2(13)C 13(12)3+C 33(23)3C 23(12)3=1136. (2)ξ的取值为0,1,2,3,所以 ξ的概率分布列为ξ 0 1 2 3 P7241124524124所以数学期望E(ξ)=0×24+1×24+2×24+3×24=1.分23. (本小题满分10分)解:(1)当2n =时,取数11a =,22a =,因为21312+=-∈-Z , 当3n =时,取数12a =,23a =,34a =,则12125a a a a +=-∈-Z , 23237a a a a +=-∈-Z ,13133a a a a +=-∈-Z ,即12a =,23a =,34a =可构成三个好数. (2)证:①由(1)知当2,3n =时均存在,②假设命题当(2,)n k k k Z =≥∈时,存在k 个不同的正整数12,,,k a a a L ,其中12k a a a <<<L ,使得对任意1i j k <剟,都有i j i ja a a a +∈-Z 成立,则当1n k =+时,构造1k +个数12,,,,k A A a A a A a +++L ,,(*) 其中123k A a =⨯⨯⨯⨯L ,若在(*)中取到的是A 和()i A a i k +„,则21i i iA A a AA A a a ++=--∈--Z ,所以成立,若取到的是()i A a i k +„和()j A a j k +„,且i j <, 则2+i j i j i ji j i j A a A a a a AA a A a a a a a ++++=+----,由归纳假设得i j i ja a a a +∈-Z , 又j i k a a a -<,所以j i a a -是A 的一个因子,即2i jAa a ∈-Z , 所以2+i j i j i ji j i jA a A a a a AA a A a a a a a ++++=∈+----Z , 所以当1n k =+时也成立.所以对任意正整数(2)n n …,均存在“n 个好数”.。