2006年全国及各地联赛试题(共6套)-10
- 格式:doc
- 大小:8.22 MB
- 文档页数:14
GFE ABCD P2006年全国初中数学联赛试卷1、在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪. 刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )(A) 36 (B) 37 (C) 55 (D) 902、已知m =1+2,n =1-2,且(7m 2-14m +a ) (3n 2-6n -7)=8,则a 的值等于( )(A) -5 (B) 5 (C) -9 (D) 93、Rt △ABC 的三个顶点A ,B ,C 均在抛物线y =x 2上,并且斜边AB 平行于x 轴. 若斜边上的高为h ,则( )(A) h <1 (B) h =1 (C) 1<h <2 (D) h >24、一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形,则至少要剪的刀数是( )(A) 2004 (B) 2005 (C) 2006 (D) 20075、如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q ,若QP =QO ,则QCQA的值为( )(A) 23-1 (B) 23 (C) 3+2 (D) 3+2二、填空题6、已知a ,b ,c 为整数,且a +b =2006,c -a =2005. 若a <b ,则a +b +c 的最大值为___________.7、如图,面积为a b -c 的正方形DEFG 内接于面积为1的正三角形ABC ,其中a ,b ,c 是整数,且b 不能被任何质数的平方整除,则 a -c b的值等于________.8、正五边形广场ABCDE 的周长为2000米. 甲、乙两分分别从A ,C 两点同时出发,沿A →B →C →D →E →A →…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,那么出发后经过________分钟,甲、乙两人第一次开始行走在同一条边上.9、已知0<a <1,且满足[a +1 30]+[a +230]……+[a + 29 30]=18 ([x ]表示不超过x 的最大整数),则[10a ]的值等于__________.10、小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码. 小明发现,他家两次升位后的电话号码的八位数恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是_________.三、解答题 11、已知x =b a,a 、b 为互质的正整数,且a ≤8,2-1<x <3-1.(1)试写出一个满足条件x ; (2)求所有满足条件的x .12、设a ,b ,c 为互不相等的实数,且满足关系式:⎪⎩⎪⎨⎧--=++=+54141622222a a bc a a c b 求a 的取值范围.13、如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A,B. 过点A做PB的平行线,交⊙O于点C. 连结PC,交⊙O于点E;连结AE,延长AE交PB于点K. 求证:PE •AC=CE •KB14、有2006个都不等于119的正整数a1,a2,…,a2006排列成一行数,其中任意连续若干项之和都不等于119,求a1+a2+…+a2006的最小值.参考答案(1)解:因为4和9的最小公倍数为36,19+36=55,所以第二次同时经过这两种设施的千米数是在55千米处. 故选C .(2)解:由已知可得m 2-2m =1,n 2-2n =1.又(7m 2-14m +a )(3n 2-6n -7)=8, 所以 (7+a )(3-7)=8,解得a =-9 故选C .(3)解:设点A 的坐标为(a ,a 2),点C 的坐标为(c ,c 2)(|c|<|a|),则点B 的坐标为 (-a ,a 2),由勾股定理,得AC 2=(c -a ) 2+(c 2-a 2) 2,BC 2=(c +a ) 2+(c 2-a 2) 2, AC 2+BC 2=AB 2, 所以 (a 2-c 2) 2=a 2-c 2 .由于a 2>c 2,所以a 2-c 2=1,故斜边AB 上高h =a 2-c 2=1 故选B .(4)解:根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分的内角和增加360°.于是,剪过k 次后,可得(k +1)个多边形,这些多边形的内角和为(k +1)³360°. 因为这(k +1)个多边形中有34个六十二边形,它们的内角和为34³(62-2)³180°=34³60³180°,其余多边形有(k +1)-34=k -33(个),而这些多边形的内角和不少于(k -33)³180°.所以(k +1)³360°≥34³60³180°+(k -33)³180°,解得k ≥2005.当我们按如下方式剪2005刀时,可以得到符合条件的结论.先从正方形上剪下1个三角形,得到1个三角形和1个五边形;再在五边形上剪下1个三角形,得到2个三角形和1个六边形……如此下去,剪了58刀后,得到58个三角形和1个六十二边形.再取33个三角形,在每个三角形上剪一刀,又可得到33个三角形和33个四边形,对这33个四边形,按上述正方形的剪法,再各剪58刀,便34个六十二边形和33³58个三角形.于是共剪了 58+33+33³58=2005(刀). 故选B .(5)解:如图,设⊙O 的半径为r ,QO =m ,则QP =m ,QC =r +m ,QA =r -m . 在⊙O 中,根据相交弦定理,得QA ²QC =QP ²QD 即 (r -m )(r +m )=m ²QD ,所以 QD =r 2-m 2m .连结DO ,由勾股定理,得QD 2=DO 2+QO 2, 即 ( r 2-m 2 m )2=r 2+m 2 ,解得m =33r所以,QC QA =r +mr -m =3+13-1=3+2 故选D .(第7题图)ABCD GFE (6)解:由a +b =2006,c -a =2005,得a +b +c =a +4011.因为a +b =2006,a <b ,a 为整数,所以a 的最大值为1002.于是,a +b +c 的最大值为5013.(7)解:设正方形DEFG 的边长为x ,正三角形ABC 的边长为m ,则m 2=43, 由△ADG ∽△ABC ,可得x m=32 m -x3 2m ,解得x =(23-3)m于是 :x 2=(23-3)m 2=283-48, 由题意,a =28,b =3, c =48,,所以 a -c b=-20 3.(8)解:设甲走完x 条边时,甲、乙两人第一次开始行走在同一条边上,此时甲走了400x 米,乙走了46³400x 50=368x 米.于是368(x -1)+800-400(x -1)>400,所以,12.5≤x <13.5. 故x =13,此时 t = 400³1350=104.(9)解:因为0<a + 1 30 <a +230<……<a +29 30<2,所以[a +130],[a +230],…,[a + 29 30]等于0或1.由题设知,其中有18个等于1,所以 [a +1 30]+[a +230]……+[a +11 30]=0,[a +12 30]+[a +13 30]……+[a +29 30]=1,所以 0<a + 11 30<1 ,1≤a +12 30<2.故18≤30a <19,于是6≤10a < 19 3,所以 [10a ]=6.(10)解:设原来电话号码的六位数为abcdef ,则经过两次升位后电话号码的八位数为 2a 8bcdef .根据题意,有81³abcdef =2a 8bcdef .记x =b ³104+c ³103+d ³102+e ³10+f ,于是81³a ³105+81x =208³105+a ³106+x 解得x =1250³(208-71a ) .因为0≤x <105,所以0≤1250³(208-71a )<105,故128 71<a ≤208 71.因为a 为整数,所以a =2.于是x =1250³(208-71³2)=82500.所以,小明家原来的电话号码为282500.(11)解:(1)x=12满足条件.(2)因为x=ba,a,b为互质的正整数,且a≤8,所以2-1<ba<3-1,即(2-1)a<b<(3-1)a.当a=1时,(2-1)³1<b<(3-1)³1,这样的正整数b不存在.当a=2时,(2-1)³2<b<(3-1)³2,故b=1,此时x=12.当a=3时,(2-1)³3<b<(3-1)³3,故b=2,此时x=23.当a=4时,(2-1)³4<b<(3-1)³4,与a互质的正整数b不存在.当a=5时,(2-1)³5<b<(3-1)³5,故b=3,此时x=35.当a=6时,(2-1)³6<b<(3-1)³6,与a互质的正整数b不存在.当a=7时,(2-1)³7<b<(3-1)³7,故b=3,4,5此时x=37,47,57.当a=8时,(2-1)³8<b<(3-1)³8,故b=5,此时x=5 8 .所以,满足条件的所有分数为12,23,35,37,47,57,58.(12)解:由①-2³②得(b-c) 2=24(a+1)>0,所以a>-1.当a>-1时,b2+c2=2a2+16a+14=2(a+1)(a+7)>0.又当a=b时,由①,②得c2=a2+16a+14,③ac=a2-4a-5④将④两边平方,结合③得a2 ( a2+16a+14)=(a2-4a-5) 2化简得24a3+8a2-40a-25=0,故(6a+5)(4a2-2a-5)=0,解得a=-56,或a=1±214.所以,a的取值范围为a>-1且a≠-56,a≠1±214.(13)证明:因为AC ∥PB ,所以∠KPE =∠ACE .又P A 是⊙O 所以∠KAP =∠ACE ,故∠KPE =∠KAP ,于是△KPE ∽△KAP , 所以KP KA =KE KP,即 KP 2=KE ²KA . 由切割线定理得 KB 2=KE ²KA 所以KP =KB .因为AC ∥PB ,△KPE ∽△ACE ,于是PE CE =KP AC 故 PE CE =KB AC, 即 PE ²AC =CE ²KB(14)解:设10个学生为S 1,S 2,…,S 10 ,n 个课外小组G 1,G 2,…,G n .首先,每个学生至少参加两个课外小组.否则,若有一个学生只参加一个课外小组,设这个学生为S 1,由于每两个学生至少在某一个小组内出现过,所以其它9个学生都与他在同一组出现,于是这一组就有10个人了,矛盾.若有一学生恰好参加两个课外小组,不妨设S 1恰好参加G 1,G 2,由题设,对于这两组,至少有两个学生,他们没有参加这两组,于是他们与S 1没有同过组,矛盾.所以,每一个学生至少参加三个课外小组.于是n 个课外小组G 1,G 2,…,G n 的人数之和不小于3³10=30.另一方面,每一课外小组的人数不超过5,所以n 个课外小组G 1,G 2,…,G n 的人数不超过5n , 故5n ≥30,所以n ≥6.下面构造一个例子说明n =6是可以的.G 1={S 1,S 2,S 3,S 4,S 5},G 2={S 1,S 2,S 6,S 7,S 8},G 3={S 1,S 3,S 6,S 9,S 10}, G 4={S 2,S 4,S 7,S 9,S 10},G 5={S 3,S 5,S 7,S 8,S 9},G 6={S 4,S 5,S 6,S 8,S 10}.容易验证,这样的6个课外小组满足题设条件.所以,n 的最小值为6.。
2006年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1.已知四边形ABCD 为任意凸四边形,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点用S 、p 分别表示四边形ABCD 的面积和周长;S1、p1,分别表示四边形EFGH 的面积和周长.设111,p p k S S k ==.则下面关于1k k 、的说法中,正确的是( )A .1k k 、均为常值.B .k 为常值,1k 不为常值. C.k 不为常值,1k 为常值. D.1k k 、均不为常值.2.已知m 为实数,且ααcos sin 、是关于x 的方程0132=+-mx x 的两根.则4sin α+α4cos 的值为( ) A.92. B.31 . C.97 . D.1.3.关于x 的方程a x x =-|1|2仅有两个不同的实根.则实数a 的取值范围是( )A.a >0.B.a≥4.C.2<a <4.D.0<a <4. 4.设.,02,0222a bc c ab a b >=+->则实数c b a 、、的大小关系是 ( )A.a c b >> .B.b a c >> .C.c b a >> .D.c a b >> .5.b a 、为有理数,且满足等式324163++⨯=+b a ,则b a +的值为 ( )A.2.B.4.C.6.D.8.6.将满足条件“至少出现一个数字0且是4的倍数的正整数”从小到大排成一列数:20,40,60,80,100,104,….则这列数中的第158个数为 ( )A .2000.B .2004.C .2008.D .2012.二、填空题:(本题满分28分,每小题7分)7.函数2008||20062+-=x x y 的图像与x 轴交点的横坐标之和等于 . 8.在等腰ABC Rt ∆中,AC =BC =1,M 是BC 的中点,CE ⊥AM 于点E ,交AB 于点F ,则S △MBF = .9.使16)8(422+-++x x 取最小值的实数x 的值为 .10.在平面直角坐标系中,正方形OABC 的顶点坐标分别为O(0,0)、A(100,0)、B(100,100)、C(0,100).若正方形0ABC 内部(边界及顶点除外)一格点P 满足PO C PAB PBC PO A S S S S ∆∆∆∆⋅=⋅.就称格点P 为“好点”.则正方形OABC 内部好点的个数为 .注:所谓格点,是指在平面直角坐标系中横、纵坐标均为整数的点.第二试(A )一、(本题满分20分)已知关于x 的一元二次方程0)994()32(222=++++++b a x b a x 无相异两实根.则满足条件的有序正整数组)(b a ,有多少组?二、(本题满分25分)如图,D 为等腰△ABC 底边BC 的中点,E 、F 分别为AC 及其延长线上的点.已知∠EDF =90°.ED =DF =1,AD =5.求线段BC 的长.三、(本题满分25分)如图,在平行四边形ABCD 中,∠A 的平分线分别与BC 、DC 的延长线交于点E 、F ,点O 、O1分别为△CEF 、△ABE 的外心.求证: (1)O 、E 、O1三点共线;(2).21ABC OBD ∠=∠ .第二试(B )一、(本题满分20分)题目与(A )卷第一题相同.二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)如图,在平行四边形ABCD 中,∠A 的平分线分别与BC 、DC 的延长线交于点E 、F ,点O 、O1分别为△CEF 、△ABE 的外心.(1)求证:O 、E 、01三点共线;(2)若,70o ABC =∠求OBD ∠的度数.第二试(C )一、(本题满分20分)题目与(A )卷第二题相同.二、(本题满分25分)题目与(B )卷第三题相同.三、(本题满分25分)设p 为正整数,且2≥p .在平面直角坐标系中,点),0(p A 和点)0,(p B 的连线段通过1-p 个格点,),1,1(1 -p C )1,1(,).,(1---p C i p i C p i .证明: (1)若p 为质数,则在原点O(0,0)与点),(i p i C i-的连线段)1,,2,1(.-=p i OC i 上除端点外无其他格点;(2)若在原点O(0,0)与点),(i p i C i -的连线段)1,,2,1(-=p i OC i 上除端点外无其他格点,则p 为质数. 2007年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1. 已知z y x ,,满足x z z y x +=-=532,则zy y x 25+-的值为( ) A .1. B .31. C .31-. D .21. 2.当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算代数式2211xx +-的值,将所得的结果相加,其和等于( ) A .-1. B .1. C .0. D .2007.3. 设c b a ,,是△ABC 的三边长,二次函数2)2(2b a cx x ba y ----=在1=x 时取最小值b 58-,则△ABC 是( ) A .等腰三角形. B .锐角三角形. C .钝角三角形. D )直角三角形.4. 已知锐角△ABC 的顶点A 到垂心H 的距离等于它的外接圆的半径,则∠A 的度数是( )A .30°.B .45°.C .60°.D .75°.5.设K 是△ABC 内任意一点,△KAB 、△KBC 、△KCA 的重心分别为D 、E 、F ,则ABC DEF S S △△:的值为( )A .91.B .92.C .94.D .32. 6.袋中装有5个红球、6个黑球、7个白球,从袋中摸出15个球,摸出的球中恰好有3个红球的概率是( )A .101.B .51.C .103.D .52. 二、填空题:(本题满分28分,每小题7分)1. 设121-=x ,a 是x 的小数部分,b 是x -的小数部分,则=++ab b a 333___ . 2. 对于一切不小于2的自然数n ,关于x 的一元二次方程22(2)20x n x n -+-=的两个根记作n n b a ,(2≥n ),则)2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a = . 3. 已知直角梯形ABCD 的四条边长分别为6,10,2====AD CD BC AB ,过B 、D 两点作圆,与BA 的延长线交于点E ,与CB 的延长线交于点F ,则BF BE -的值为 .4. 若64100+a 和64201+a 均为四位数,且均为完全平方数,则整数a 的值是 .第二试(A )一、(本题满分20分)设n m ,为正整数,且2≠m ,如果对一切实数t ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离不小于2t n +,求n m ,的值.二、(本题满分25分)如图,四边形ABCD 是梯形,点E 是上底边AD 上一点,CE 的延长线与BA 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,BM 与AD 交于点N .证明:∠AFN =∠DME .三、 (本题满分25分)已知a 是正整数,如果关于x 的方程056)38()17(23=--+++x a x a x 的根都是整数,求a 的值及方程的整数根.第二试(B )一、(本题满分20分)设n m ,为正整数,且2≠m ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为1d ,二次函数nt x n t x y 2)2(2+-+-=的图象与x 轴的两个交点间的距离为2d .如果21d d ≥对一切实数t 恒成立,求n m ,的值.二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)设a 是正整数,二次函数a x a x y -+++=38)17(2,反比例函数xy 56=,如果两个函数的图象的交点都是整点(横坐标和纵坐标都是整数的点),求a 的值. A B C D EF M N P第二试(C )一、(本题满分20分)题目与(B )卷第一题相同.二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)设a 是正整数,如果二次函数a x a x y 710)232(22-+++=和反比例函数x a y 311-=的图象有公共整点(横坐标和纵坐标都是整数的点),求a 的值和对应的公共整点. 2008年全国初中数学联合竞赛试题 第一试 一、选择题:(本题满分42分,每小题7分)1.设213a a +=,213b b +=,且a b ≠,则代数式2211a b+的值为( ) A. 5. B.7. C .9. D.11.2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为( )A.185.B.4.C.215.D.245. 3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是( )A.15.B.310.C.25.D.12. 4.在△ABC 中,12ABC ∠=︒,132ACB ∠=︒,BM 和CN 分别是这两个角的外角平分线,且点,M N 分别在直线AC 和直线AB 上,则( )A.BM CN >.B.BM CN =.C.BM CN <.D.BM 和CN 的大小关系不确定.5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为( )A.39()8.B.49()8.C.59()8.D.98. 6. 已知实数,x y 满足22(2008)(2008)2008x x y y ----=,则223233x y x y -+-2007-的值为( )A.2008-.B.2008.C.1-.D.1.二、填空题:(本题满分28分,每小题7分)1.设51a -=,则5432322a a a a a a a +---+=-.2.如图,正方形ABCD 的边长为1,,M N 为BD 所在直线上的两点,且5AM =,135MAN ∠=︒,则四边形AMCN 的面积为3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q +=4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 .第二试(A )一、(本题满分20分) 已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式(1)(1)()0a x x ax bx b x bx ------≥ 恒成立.当乘积ab取最小值时,求,a b 的值.二、(本题满分25分) 如图,圆O 与圆D 相交于,A B 两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.(1)证明:点O 在圆D 的圆周上.(2)设△ABC 的面积为S ,求圆D 的的半径r 的最小值.三、(本题满分25分)设a 为质数,b 为正整数,且29(2)509(4511)a b a b +=+,求a ,b 的值.第二试(B )一、(本题满分20分)已知221a b +=,对于满足条件1,0x y xy +=≥的一切实数对(,)x y ,不等式220ay xy bx -+≥恒成立.当乘积ab 取最小值时,求,a b 的值.二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)题目与(A )卷第三题相同. 第二试(C )一、(本题满分20分)题目与(B )卷第一题相同.二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)设a 为质数,,b c 为正整数,且满足29(22)509(41022511)2a b c a b c b c ⎧+-=+-⎨-=⎩ ,求()a b c +的值. 2009年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1.设1a =,则32312612a a a +--=( )A.24.B. 25.C. 10. D. 12.2.在△ABC 中,最大角∠A 是最小角∠C 的两倍,且AB =7,AC =8,则BC =( )A.103.用[]x 表示不大于x 的最大整数,则方程22[]30x x --=的解的个数为( )A.1.B. 2.C. 3.D. 4.4.设正方形ABCD 的中心为点O ,在以五个点A 、B 、C 、D 、O 为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为( ) A.314. B. 37. C. 12. D. 47. 5.如图,在矩形ABCD 中,AB =3,BC =2,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则sin ∠CBE =( )23. C. 13. 6.设n 是大于1909的正整数,使得19092009n n--为完全平方数的n 的个数是( ) A.3. B. 4. C. 5. D. 6.二、填空题(本题满分28分,每小题7分)1.已知t 是实数,若,a b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则22(1)(1)a b --的最小值是____________.2. 设D 是△ABC 的边AB 上的一点,作DE//BC 交AC 于点E ,作DF//AC 交BC 于点F ,已知△ADE 、△DBF 的面积分别为m 和n ,则四边形DECF 的面积为______.3.如果实数,a b 满足条件221a b +=,22|12|21a b a b a -+++=-,则a b +=_ ____. 4.已知,a b是正整数,且满足是整数,则这样的有序数对(,)a b 共有_____对. 第二试(A )一、(本题满分20分)已知二次函数2(0)y x bx c c =++<的图象与x 轴的交点分别为A 、DCB ,与y 轴的交点为C.设△ABC 的外接圆的圆心为点P.(1)证明:⊙P 与y 轴的另一个交点为定点.(2)如果AB 恰好为⊙P 的直径且2ABC S △=,求b 和c 的值.二、(本题满分25分)设CD 是直角三角形ABC 的斜边AD 上的高,1I 、2I 分别是△ADC 、△BDC 的内心,AC =3,BC =4,求1I 2I .三、(本题满分25分)已知,,a b c 为正数,满足如下两个条件:32a b c ++=14b c a c a b a b c bc ca ab +-+-+-++=.第二试(B )一、(本题满分20分)题目与(A )卷第一题相同.二、(本题满分25分) 已知△ABC 中,∠ACB =90°,AB 边上的高线CH 与△ABC 的两条内角平分线 AM 、BN 分别交于P 、Q 两点.PM 、QN 的中点分别为E 、F.求证:EF ∥AB.三、(本题满分25分)题目与(A )卷第三题相同. 第二试(C )一、(本题满分20分)题目与(A )卷第一题相同.二、(本题满分25分)题目与(B )卷第二题相同.三、(本题满分25分)已知,,a b c 为正数,满足如下两个条件:32a b c ++=14b c a c a b a b c bc ca ab +-+-+-++=.2010年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-=( )A .1.B .2.C .3.D .4.2.若实数,,a b c满足等式3||6b =,9||6b c =,则c 可能取的最大值为( )A .0.B .1.C .2.D .3.N A B3.若b a ,是两个正数,且,0111=+-+-ab b a 则( ) A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 4.若方程2310x x --=的两根也是方程420x ax bxc +++=的根,则2a b c +-的值为 ( )A .-13.B .-9.C .6.D . 0.5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( )A .15°.B .20°.C .25°.D .30°.6.对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,12320092010a a a a a +++++=( )A .28062.B .28065.C .28067.D .28068.二、填空题:(本题满分28分,每小题7分)1.已知实数,x y 满足方程组3319,1,x y x y ⎧+=⎨+=⎩则22x y += .2.二次函数c bx x y ++=2的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .已知AC AB 3=,︒=∠30CAO ,则c = .3.在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且PAPC =5,则PB =_____.4.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放______个球.第二试(A )一、(本题满分20分)设整数,,a b c (a b c ≥≥)为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数.二、(本题满分25分)已知等腰三角形△ABC 中,AB =AC ,∠C 的平分线与AB 边交于点P ,M 为△ABC 的内切圆⊙I 与BC 边的切点,作MD//AC ,交⊙I 于点D.证明:PD 是⊙I 的切线.三、(本题满分25分)已知二次函数2y x bx c =+-的图象经过两点P (1,)a ,Q (2,10)a . N(1)如果,,a b c 都是整数,且8c b a <<,求,,a b c 的值.(2)设二次函数2y x bx c =+-的图象与x 轴的交点为A 、B ,与y 轴的交点为C.如果关于x 的方程20x bx c +-=的两个根都是整数,求△ABC 的面积.第二试(B )一、(本题满分20分)设整数,,a b c 为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数(全等的三角形只计算1次).二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)题目与(A )卷第三题相同.第二试(C )一、(本题满分20分)题目与(B )卷第一题相同.二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)设p 是大于2的质数,k 为正整数.若函数4)1(2-+++=p k px x y 的图象与x 轴的两个交点的横坐标至少有一个为整数,求k 的值.2012年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1.已知,,,那么的大小关系是()A. B. C. D.2.方程的整数解的组数为()A.3. B.4. C.5. D.6.3.已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为()A. B. C. D.4.已知实数满足,则的最小值为()A.. B.0. C.1. D..5.若方程的两个不相等的实数根满足,则实数的所有可能的值之和为()A.0. B.. C.. D..6.由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足.这样的四位数共有()A.36个. B.40个. C.44个. D.48个.二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数满足,则.2.使得是完全平方数的整数的个数为.3.在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则=.4.已知实数满足,,,则=.第二试(A)一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.二、(本题满分25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D.证明:.三、(本题满分25分)已知抛物线的顶点为P,与轴的正半轴交于A、B()两点,与轴交于点C,PA是△ABC的外接圆的切线.设M,若AM//BC,求抛物线的解析式.第二试(B)一、(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.二、(本题满分25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D,△ADC的外接圆与BC的另一个交点为E.证明:∠BAE=∠ACB.三、(本题满分25分)题目与(A)卷第三题相同.第二试(C)一、(本题满分20分)题目与(B)卷第一题相同.二、(本题满分25分)题目与(B)卷第二题相同.三、(本题满分25分)已知抛物线的顶点为P ,与轴的正半轴交于A 、B()两点,与轴交于点C ,PA 是△ABC 的外接圆的切线.将抛物线向左平移个单位,得到的新抛物线与原抛物线交于点Q ,且∠QBO =∠OBC.求抛物线的解析式.2011年四川初中数学联赛初赛试题一、选择题:(本题满分42分,每小题7分) 1.如果a ,b ,c 是三个任意的数,那么2b a +,2c b +,2ac +这三个数一定( ) A.都是整数. B.都不是整数. C.至多有两个整数. D.至少有一个整数. 2.关于x 的方程m x x =+-1||22恰好有3个不同的实数根,则实数m 的值等于( ) A.1-. B.0. C.1. D.2.3.ABC ∆中,BAC ∠的平分线交BC 于D ,若BD AB BC +=,︒=∠30C ,则B ∠的度数等于( )A. 45.B. 60.C. 75.D. 90.4.在1,2,3,…,100这100个数之间添上(99个)“+”号或“-”号,使算式的代数和为4150,则“-”号至少可添的个数是( )A.4.B.5.C.6.D.7.5.点P 是矩形ABCD 内部的一点,满足6=PA ,8=PB ,10=PC ,则PD 等于( ) A.25. B.35. C.26. D.28.6.设正数a 、b 、c 、x 、y 、z 满足c by ax =+,a cx bz =+,b az cy =+,则以a 、b 、c 为边长的三角形一定是( )A.锐角三角形.B.直角三角形.C.钝角三角形.D.形状不等确定. 二、填空题:(本题满分28分,每小题7分) 1.已知131+=a ,131-=b ,则baa b +的值为 . 2.如图,矩形ABCD 中,8=AB ,6=AD ,将BDC ∆沿BD 对折为BDE ∆,再将点B 对折与点A 重合,则折痕MN 的长度为 .3.若方程0132=+-x x 的两根也是方程024=+-q px x 的根,则()11q p +的个位数字是 .4.在正方形ABCD 中,P 、Q 分别是BC 、CD 上的点,满足︒=∠20BAP ,︒=∠45PAQ ,则AQP ∠的度数为 .三、(本题满分20分)已知抛物线()02a c bx ax y ++=与直线()412k x k y --=.无论k 取任何实数,此抛物线与直线都只有一个公共点,求抛物线的解析式.DM CBNE A四、(本题满分25分)如图,ABC ∆与ADE ∆都是等腰直角三角形,其中 90=∠=∠DAE BAC ,点M 是线段BE 的中点,求证:DC AM ⊥.五、(本题满分25分)已知a 为实数,若关于x 的方程0143||214442=-+-+a x x x x 有实数解,求实数a 的取值范围.2011年四川初中数学联赛决赛试题一、选择题:(本题满分42分,每小题7分)1.一个凸多边形的每一个内角都等于150°,则这个凸多边形所有对角线的条数总共有( ) A .42条. B .54条. C .66条. D .78条.2.如图,矩形ABCD 的对角线相交于O ,AE 平分∠BAD 交BC 于E .若∠CAE=15°,则∠BOE =( ) A .30°. B .45°. C .60°. D .75°. 3.设方程()()0x a x b x ---=的两根是c ,d ,则方程()()0x c x d x --+=的根分别是( )A .a ,b.B .-a ,-b.C .c ,d.D .-c ,-d. 4.若不等式2133x x a -+-≤有解,则实数a 的最小值是( )A .1.B .2.C .4.D .6.5.若一个三角形的任意两条边都不相等,则称它为“不规则三角形”.用一个正方体上的任意三个顶点构成的所有三角形中,“不规则三角形”的个数是( ) A .18 B .24 C .30 D .36.6.不定方程2225x y -=的正整数解(x ,y )的组数是( ) A .0组. B .2组. C .4组. D .无穷多组. 二、填空题:(本大题满分28分,每小题7分)1.二次函数22y x ax =-+的图象关于直线x=1对称,则y 的最小值是__________. 2.已知1a ,则20122011201022a a a +-的值为_____________.3.已知△ABC 中,AB,BC =6,CAM 是BC 的中点,过点B 作AM 延长线的垂线,垂足为D ,则线段BD 的长度是_______________.4.一次棋赛,有n 个女选手和9n 个男选手参赛,每位选手都与其余10n -1个选手各对局一次.计分方式为:胜者得2分,负者得0分,平局各得1分.比赛结束后统计发现,所有男选手的得分总和是所有女选手得分总和的4倍.则n 的所有可能值是__________. 三、(本题满分20分)已知x 1,x 2是关于x 的一元二次方程22(31)210x a x a +-+-=的两个实数根,使得1212(3)(3)80x x x x --=-成立.求实数a 的所有可能值.DM CBEAO EDCBA四、(本题满分25分)抛物线2y ax bx c =++的图象与x 轴有两个交点M (x 1,0),N (x 2,0),且经过点A (0,1),其中0<x 1<x 2.过点A 的直线l 与x 轴交于点C ,与抛物线交于点B (异于点A ),满足△CAN 是等腰直角三角形, 且S △BMN =52S △AMN .求该抛物线的解析式. 五、(本题满分25分)如图,AD 、AH 分别是△ABC (其中AB>AC)的角平分线、高线,M 是AD 的中点.△MDH 的外接圆交CM 于E .求证:∠AEB =90°.2012年四川初中数学联赛初赛试题一、选择题:(本题满分42分,每小题7分) 1.已知关于x 的方程3x+a=0的根比关于x 的方程5x -a=0的根大2,那么a 的值为( )A .415-. B.415. C.41-. D.45. 2.设a a 312=+,b b 312=+且a ≠b ,则代数式2211ba +的值为( )A.5.B.7.C.9.D.11.3.如图,直线AB ,CD 相交于点O ,∠AOD=30°,半径为1cm 的⊙P 的圆心在射线OA 上,且与点O 得距离为8cm.如果⊙P 以1cm/秒的速度沿由A 到B 的方向移动,那么⊙P 与直线CD 相切所需的时间为( )秒A.6.B.8.C.10.D.6或10. 4.已知7=a,70=b,则9.4等于( )A.10b a +. B.10a b -. C.a b . D.10ab.5.已知0221≠+=+b ab a ,则b a 为( )A.-1.B.1.C.2.D.4.6.如图所示,在梯形ABCD 中,AB ∥CD,AC 交BD 于O,MON ∥AB,且MON 分别交AD 、BC 于M 、N ,则CDMNAB MN +等于( A.1. B. 2. C.3. D.4.二、 填空题:(本题满分28分,每小题7分) 1.有一列数,按1,2,3,4,3,2,1,2,3,4,3,2,1,2,…的规律排列,那么从左往右数,第2012个位置上的数是 .EHMDCBA2.若函数y=kx与函数y=2x的图象交于A、C两点,AB垂直x轴于B,则△ABC的面积为 .3.如图,在平面上将△ABC绕点B旋转到△A′BC′的位置时,AA′∥BC,∠ABC=70°,则∠CBC′= .4.如图,大圆O的直径AB=12cm,分别以OA,OB为直径作圆1O和圆2O,并在圆O与圆1O和圆2O的空隙间作两个等圆圆3O和圆4O,这些圆相互内切或外切,则四边形1423OO O O的面积为 cm2.三、(本题满分20分)如图,一次函数y=-2x+8的图象与两坐标轴分别交于P、Q两点,在线段PQ上有一点A,过A点分别作两坐标轴的垂线,垂足分别为B、C.(1)若矩形ABOC的面积为4,求A点坐标;(2)若点A在线段PQ上移动,求矩形ABOC面积的最大值.四、(本题满分25分)如图,在△ABC中,D为AC边上一点,且AD=DC+CB,过D作AC的垂线交△ABC的外接圆于M,过M作AB的垂线MN,交圆于N,求证:MN为△ABC外接圆的直径.五、(本题满分25分)已知方程组⎪⎩⎪⎨⎧=+=++=++azxyazxyzxyzyx2的所有各组解(x,y,z)都是由正实数组成的,其中a是参数.试求a的取值范围.一、2012年四川初中数学联赛决赛试题一、选择题:(每小题7分,共42分)1.若-3<x<-1,则化简2|1|x-+得( )A.1-x. B.-3+x. C.3-x. D.3+x.2.若抛物线y=x2-4x+m的顶点在x轴上,则m的值是( )A.0. B.1. C.2. D.4.3.菱形ABCD的边长为1,面积为79,则AC+BD的值是( )A.43. B.169. C.83. D.329.4.在凸四边形ABCD中,AB=2AD,BC=1,∠ABC=∠BCD=60°,∠ADC=90°,则AB的长度是( )A.. B..C.2. D.3.5.一个活动小组,如果有5个13岁的成员退出,或者有5个17岁的人员加入(两种情况不同时发生),其成员的平均年龄都增加1岁,则这个活动小组原有成员的人数是( ) A .10. B .12. C .14. D .16.6.一个正整数,如果它顺着数和倒着数都是一样的,则称这个数为“回文数”.比如:1、11、121都是回文数,而110则不是回文数,将所有“回文数”从小到大排成一列:1、2、…、9、11、22、…,则第2012个“回文数”是( )A .1011101.B .1013101.C .1021201.D .1030301. 二、填空题:(每小题7分,共28分)1.设1x 、2x 是方程x2-2x -m =0的两根,且122x x +=0,则m 的值是_____. 2.在△ABC 中,∠ACB =45°,D 是AB 边上异于A 、B 两点的任意一点,△ABC 、△ADC 和△BDC 的外接圆圆心分别为O 、1O 、2O ,则∠12O OO 的度数等于____.3.已知a ,b 为正实数,m 为正整数,且满足14,48,a b ab m +≤⎧⎨≥+⎩则m 的值是_____.4.在一次球类比赛中有8个队参赛,每两队要进行一场比赛,胜一场得2分,平一场得1分,负一场得0分.一个队要确保进入前四名(即积分至少要超过其他四个队),则他的积分最少是______.三、(本题满分20分)已知抛物线2y x =与直线(2)(21)y k x k =+--.(1)求证:无论k 为什么实数,该抛物线与直线恒有两个不同的交点;(2)设该抛物线与直线的两个不同的交点分别为A(1x ,1y ),B(2x ,2y ),若1x ,2x 均为整数,求实数k 的值.四、(本题满分25分)如图,已知⊙A 与⊙B 相交于C 、D 两点,延长AC 交⊙B 于E ,延长BC 交⊙A 于F .求证:C 是△DEF 的内心.五、(本题满分25分)将10,11,12,…,98,99这90个正整数写在黑板上,擦去其中的n 个数,可使黑板上剩下的所有数的乘积的个位数是1,求n 的最小值.二、 2013年四川初中数学联赛初赛试题一、选择题:(本题满分42分,每小题7分)1.已知10x ,则2x ,x ,1x的大小关系是( )A .21x xx B .21x x x C .21x x x D .21x x x2.如图,正方形ABCD ,点P 是对角线AC 上一点,连接BP , 过P 作PQ ⊥BP ,PQ 交CD 于Q ,若AP =CQ =2,则正方形ABCD 的面积为A .642B .16C .1282D .323.若实数a ,b 满足2220ba b ,则a 的取值范围是( ) A . a ≤-1 B :a ≥-1 C :a ≤1 D :a ≥14.如图,在四边形ABCD 中,∠B=135°,∠C=120°,,BC=33,CD=6,则AD 边的长为()A .B .C .D .5.方程1137x y 的正整数解(,)x y 的组数是( ) A .0B .1C .3D .5 6.已知实数,,x y z 满足1x y z y z z x x y ,则222x y z y z z x x y 的值是( ) A .1 B .0 C .1D .2二、填空题:(本题满分28分,每小题7分)1.x 是正整数,○x 表示x 的正约数个数,则③×④÷⑥等于 . 2.草原上的一片青草,到处长得一样密一样快,70头牛在24天内可以吃完这片青草,30头牛在60天内可以吃完这片青草,则20头牛吃完这片青草需要的天数是 . 3.如图,在平行四边形ABCD 中,M 、N 分别是BC 、DC 的中点,AM=4,AN=3,且角MAN=60°,则AB 的长是 .4、小明将1,2,3,…,n 这n 个数输入电脑求其平均值,当他认为输完时,电脑上只显示输入(1)n 个数,且平均值为30.75,假设这(1)n 个数输入无误,则漏输入的一个数是 . 三、(本题满分20分) 解方程2|21|20x x .四、(本题满分25分)如图,圆内接四边形ABCD 中,CB CD ,求证:CA 2-CB 2=AB ×AD ; 五、(本题满分25分) 已知二次函数2yaxbx c 和一次函数ybx ,其中a 、b 、c 满足a b c ,0a b c .(a 、b 、c ∈R ).(1)求证:两函数的图象有两个不同的交点A 、B ;(2)过(1)中的两点A 、B 分别作x 轴的垂线,垂足为A 1、B 1.求线段A1B 1的长的取值范围.2006年全国初中数学联合竞赛试题答案第一试一、选择题(本题满分42分,每小题7分)1.B 2.C 3.D 4.A 5. B 6.C二、填空题(本题满分28分,每小题7分)7.0 8.1129.8310.197第二试(A)一、(本题满分20分)解:由题可得二、(本题满分25分)三、(本题满分25分)解:第二试(B)一、(本题满分20分)题目与(A)卷第一题相同二、(本题满分20分)题目与(A)卷第二题相同三、(本题满分25分)解:第二试(C)一、(本题满分20分)题目与(A)卷第二题相同二、(本题满分20分)题目与(B)卷第三题相同三、(本题满分25分)解:2007年全国初中数学联合竞赛试题答案第一试一、选择题:(本题满分42分,每小题7分)1.B2.C3.D4.C5.A6.B(解析:1.由x z z y x +=-=532得x z x y 23,3==,所以31333525=+-=+-x x x x z y y x ,故选B. 注:本题也可用特殊值法来判断.2. 因为=+-++-222211)1(1)1(1n n n n 011112222=+-++-n n n n ,即当x 分别取值n 1,n n (为正整数)时,计算所得的代数式的值之和为0;而当1=x 时,0111122=+-.因此,当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算所得各代数式的值之和为0.故选C.3. 由题意可得⎪⎪⎩⎪⎪⎨⎧-=----=---,5822,1)2(2b b a c b a b a c 即⎪⎩⎪⎨⎧==+,53,2b c a c b 所以b c 53=,b a 54=,因此222b c a =+,所以△ABC 是直角三角形. 故选D.4. 锐角△ABC 的垂心在三角形内部,如图,设△ABC 的外心为O ,D 为BC 的中点,BO 的延长线交⊙O 于点E ,连CE 、AE ,则CE //AH ,AE //CH ,则OD CE AH OB 2===,所以∠OBD =30°,∠BOD =60°,所以∠A =∠BOD =60°.故选C.5. A.分别延长KD 、KE 、KF ,与△ABC 的三边AB 、BC 、CA 交于点M 、N 、P ,由于D 、E 、F 分别为△KAB 、△KBC 、△KCA 的重心,易知M 、N 、P 分别为AB 、BC 、CA 的中点,所以ABC MNP S S △△41=.易证△DEF ∽△MNP ,且相似比为3:2,所以MNP DEF S S △△2)32(=ABC S △4194⋅=ABC S △91=.所以:DEF S △19ABC S =△.故选A. 6.设摸出的15个球中有x 个红球、y 个黑球、z 个白球,则z y x ,,都是正整数,且7,6,5≤≤≤z y x ,15=++z y x .因为13≤+z y ,所以x 可取值2,3,4,5.当2=x 时,只有一种可能,即7,6==z y ;当3=x 时,12=+z y ,有2种可能,7,5==z y 或6,6==z y ;当4=x 时,11=+z y ,有3种可能,7,4==z y 或6,5==z y 或5,6==z y ;当5=x 时,10=+z y ,有4种可能,7,3==z y 或6,4==z y 或5,5==z y 或4,6==z y .因此,共有1+2+3+4=10种可能的摸球结果,其中摸出的球中恰好有3个红球的结果有2种,所以所求的概率为51102=.故选B.) 二、填空题:(本题满分28分,每小题7分) 1.1 2. 10034016- 3.4 4.7 (解析:1.∵12121+=-=x ,而3122<+<,∴122-=-=x a . 又∵12--=-x ,而2123-<--<-,∴22)3(-=---=x b .∴1=+b a ,∴=++ab b a 333=++-+ab b ab a b a 3))((221)(3222=+=++-b a ab b ab a . 2.由根与系数的关系得2+=+n b a n n ,22n n a b n ⋅=-,所以 =--)2)(2(n n b a (2-n n b a 4)++n n b a 222(2)42(1)n n n n =--++=-+, 则11111()(2)(2)2(1)21n n a b n n n n =-=----++, )2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a =11111111111003()()()()22334200720082220084016⎡⎤--+-++-=--=-⎢⎥⎣⎦. 3.延长CD 交⊙O 于点G ,设DG BE ,的中点分别为点N M ,,则易知DN AM =.因为10==CD BC ,由割线定理,易证DG BF =,所以42)(2)(2==-=-=-=-AB AM BM DN BM DG BE BF BE .4.设264100m a =+,264201n a =+,则100,32<≤n m ,两式相减得))((10122m n m n m n a -+=-=,因为101是质数,且101101<-<-m n ,所以101=+m n ,故1012-=-=n m n a .代入264201n a =+,整理得020*******=+-n n ,解得59=n ,或343=n (舍去).所以171012=-=n a .)第二试 (A )一、(本题满分20分)解:因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为3mt + (5分) 由题意,32mt t n +≥+,即22(3)(2)mt t n +≥+,即222(4)(64)90m t m n t n -+-+-≥(10分) 由题意知,042≠-m ,且上式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m (15分) 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2m n m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m (20分) 二、(本题满分25分) 证明:设MN 与EF 交于点P ,∵NE //BC , ∴△PNE ∽△PBC ,∴PCPE PB PN =, ∴PC PN PE PB ⋅=⋅.(5分)又∵ME //BF ,∴△PME ∽△PBF ,∴PF PE PB PM =, ∴PF PM PE PB ⋅=⋅.(10分)∴PF PM PC PN ⋅=⋅,故PFPC PN PM =(15分) 又∠FPN =∠MPE ,∴△PNF ∽△PMC ,∴∠PNF =∠PMC ,∴NF//MC(20分)∴∠ANF =∠EDM.又∵ME//BF ,∴∠FAN =∠MED. A B C D E FM N P∴∠ANF +∠FAN =∠EDM +∠MED ,∴∠AFN=∠DME.(25分)三、(本题满分25分)解:观察易知,方程有一个整数根11=x ,将方程的左边分解因式,得[]056)18()1(2=+++-x a x x (5分)因为a 是正整数,所以关于x 的方程056)18(2=+++x a x (1) 的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而原方程的根都是整数,所以方程(1)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.(10分)设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .(15分)显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a ⎩⎨⎧==.26,12k a (20分) 当39=a 时,方程(1)即056572=++x x ,它的两根分别为1-和56-.此时原方程的三个根为1,1-和56-.当12=a 时,方程(1)即056302=++x x ,它的两根分别为2-和28-.此时原方程的三个根为1,2-和28-.(25分) 第二试 (B )一、(本题满分20分)解:因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以31+=mt d ;一元二次方程02)2(2=+-+-nt x n t x 的两根分别为t 2和n -,所以n t d +=22.(5分)所以,21d d ≥22)2()3(23n t mt n t mt +≥+⇔+≥+⇔09)46()4(222≥-+-+-⇔n t n m t m (1)(10分)由题意知,042≠-m ,且(1)式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m (15分) 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2m n m 所以⎩⎨⎧==,2,3n m ⎩⎨⎧==.1,6n m (20分) 二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分) 解:联立方程组⎪⎩⎪⎨⎧=-+++=,56,38)17(2x y a x a x y 消去y 得a x a x -+++38)17(2x56=,即056)38()17(23=--+++x a x a x ,分解因式得[]056)18()1(2=+++-x a x x (1)(5分)显然11=x 是方程(1)的一个根,(1,56)是两个函数的图象的一个交点.因为a 是正整数,所以关于x 的方程056)18(2=+++x a x (2)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.(10分)而两个函数的图象的交点都是整点,所以方程(2)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .(15分)显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a (20分)当39=a 时,方程(2)即056572=++x x ,它的两根分别为1-和56-,此时两个函数。
2006年全国高中数学联合竞赛 试题参考答案及评分标准说 明:1. 评阅试卷时,请依据本评分标准. 选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时可参照本评分标准适当划分档次评分,5分为一个档次,不要再增加其他中间档次.三. 解答题(本题满分60分,每小题20分)13. 给定整数2n ≥,设 ),(000y x M 是抛物线12-=nx y 与直线x y =的一个交点. 试证明对于任意正整数m ,必存在整数2k ≥,使),(00mmy x 为抛物线12-=kx y 与直线x y =的一个交点.【证明】 因为12-=nx y 与x y =的交点为002n x y ±==.显然有001x n x +=。
…(5分)若),(00mmy x 为抛物线12-=kx y 与直线x y =的一个交点,则001mmk x x =+. …(10分) 记001mm mk x x =+,则 101101()m m m m m k k x k nk k x +--=+-=-, (2)m ≥ (13.1) 由于1k n =是整数,22220020011()22k x x n x x =+=+-=-也是整数,所以根据数学归纳法,通过(13.1)式可证明对于一切正整数m ,001mm m k x x =+是正整数. 现在对于任意正整数m ,取001m mk x x =+,使得12-=kx y 与x y =的交点为),(00m m y x . ………………… (20分)14. 将2006表示成5个正整数12345,,,,x x x x x 之和. 记15i j i j S x x ≤<≤=∑. 问:(1) 当12345,,,,x x x x x 取何值时,S 取到最大值;(2) 进一步地,对任意1,5i j ≤≤有2i j x x -≤,当12345,,,,x x x x x 取何值时,S 取到最小值. 说明理由.【解】 (1) 首先这样的S 的值是有界集,故必存在最大值与最小值。
2006年全国高中数学联合竞赛试题1. 已知△ABC ,若对任意R t ∈,BA tBC AC -≥,则△ABC 一定为( )A .锐角三角形 B. 钝角三角形 C. 直角三角形 D. 答案不确定2. 设2log (21)log 2 1x x x x +->-,则x 的取值范围为( )A .112x <<B .1, 12x x >≠且 C . 1x > D . 01x <<3. 已知集合{}50A x x a =-≤,{}06>-=b x x B ,N b a ∈,,且{}2,3,4A B N ⋂⋂=,则整数对()b a ,的个数为( ) A. 20 B. 25 C. 30 D. 424. 在直三棱柱111A B C ABC -中,2BAC π∠=,11AB AC AA ===. 已知G与E分别为11A B 和1CC 的中点,D与F分别为线段AC 和AB 上的动点(不包括端点). 若GD EF ⊥,则线段DF 的长度的取值范围为( )A. 1⎫⎪⎭B.1, 25⎡⎫⎪⎢⎣⎭C. 1,⎡⎣D. 5.设(32()log f x x x =+,则对任意实数,a b ,0a b +≥是()()0f a f b +≥的( )A. 充分必要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件6. 数码1232006,,,,a a a a 中有奇数个9的2007位十进制数12320062a a a a 的个数为( )A .200620061(108)2+B .200620061(108)2- C .20062006108+ D .20062006108-二.填空题(本题满分54分,每小题9分)7. 设x x x x x f 44cos cos sin sin )(+-=,则)(x f 的值域是 。
8. 若对一切θ∈R ,复数(cos )(2sin )i z a a θθ=++-的模不超过2,则实数a 的取值范围为______.9. 已知椭圆221164x y +=的左右焦点分别为1F 与2F ,点P 在直线l:80x ++=上. 当12F PF ∠取最大值时,比12PF PF 的值为_______. 10. 底面半径为1cm 的圆柱形容器里放有四个半径为21cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水_______.11.方程20062420042005(1)(1)2006x x x x x +++++= 的实数解的个数为12.袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为 .三. 解答题(本题满分60分,每小题20分) 13. 给定整数2n ≥,设 ),(000y x M 是抛物线12-=nx y 与直线x y =的一个交点.试证明对于任意正整数m ,必存在整数2k ≥,使),(00m m y x 为抛物线12-=kx y 与直线x y =的一个交点.14. 将2006表示成5个正整数12345,,,,x x x x x 之和. 记15i j i j S x x ≤<≤=∑. 问:当12345,,,,x x x x x 取何值时,S 取到最大值;进一步地,对任意1,5i j ≤≤有2i j x x -≤,当12345,,,,x x x x x 取何值时,S 取到最小值. 说明理由.15. 设 2()f x x a =+. 记1()()f x f x =,1()(())n n f x f f x -=2,3,n = ,,{}R (0)2n M a n f =∈≤对所有正整数 ,. 证明:⎥⎦⎤⎢⎣⎡-=41 ,2M .二○○五年全国高中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
2006年全国高中数学联赛试题第一试一、选择题(本题满分36分,每小题6分)1. 已知△ABC ,若对任意R t ∈≥-,则△ABC 一定为A .锐角三角形 B. 钝角三角形 C. 直角三角形 D. 答案不确定 【答】 ( )2. 设2log (21)log 2 1x x x x +->-,则x 的取值范围为 A .112x << B .1, 12x x >≠且 C . 1x > D . 01x << 【答】( )3. 已知集合{}5≤-=a x x A ,{}6>-=b x x B ,N b a ∈,,且{}2,3,4A B N ⋂⋂=,则整数对()b a ,的个数为 A. 20 B. 25 C. 30 D. 42 【答】( )4. 在直三棱柱111A B C ABC -中,2BAC π∠=,11AB AC AA ===. 已知G与E分别为11A B 和1CC 的中点,D与F分别为线段AC 和AB 上的动点(不包括端点). 若GD EF ⊥,则线段DF 的长度的取值范围为A. 1⎫⎪⎭ B.1, 25⎡⎫⎪⎢⎣⎭ C. 1,⎡⎣ D. 【答】 ( )5. 设(32()log f x x x =+,则对任意实数,a b ,0a b +≥是()()0f a f b +≥的A. 充分必要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件 【答】 ( ) 6. 数码1232006,,,,a a a a 中有奇数个9的2007位十进制数12320062a a a a 的个数为A .200620061(108)2+ B .200620061(108)2- C .20062006108+ D .20062006108-【答】( )二、填空题(本题满分54分,每小题9分)7. 设x x x x x f 44cos cos sin sin )(+-=,则)(x f 的值域是 。
2006年全国高中数学联合竞赛试题参考答案及评分标准一、选择题(本题满分36分,每小题6分)1. 答C .解:令∠ABC =α,过A 作AD ⊥BC 于D ,由||→BA -t →BC ≥||→AC ,推出||→BA 2-2t →BA · →BC +t 2||→BC 2≥||→AC 2,令t =→BA · →BC ||→BC2,代入上式,得||→BA 2-2||→BA 2cos 2α+||→BA 2cos 2α≥||→AC 2,即 ||→BA 2sin 2α≥||→AC 2,也即||→BA sin α≥||→AC .从而有||→AD ≥||→AC .由此可得∠ACB =π2.2. 答B .解:因为⎩⎨⎧x >0,x ≠12x 2+x -1>0,解得x >12且x ≠1.由log x (2x 2+x -1)>log x 2-1,⇒ log x (2x 3+x 2-x )>log x 2⇒ ⎩⎨⎧0<x <1,2x 3+x 2-x <2或⎩⎨⎧x >1,2x 3+x 2-x >2.解得0<x <1或x >1.所以x 的取值范围为x >12且x ≠1.3 答C .解:5x -a ≤0⇒x ≤a 5;6x -b >0⇒x >b6.要使A ∩B ∩N ={2,3,4},则⎩⎨⎧1≤b6<2,4≤a 5<5,即⎩⎨⎧6≤b <12,20≤a <25.所以数对(a ,b )共有C 61C 51=30个. 4.答A .解:建立直角坐标系,以A 为坐标原点,AB 为x 轴,AC 为y 轴,AA 1为z 轴,则F (t 1,0,0)(0<t 1<1),E (0,1,12),G (12,0,1),D (0,t 2,0)(0<t 2<1).所以→EF =(t 1,-1,-12),→GD =(-12,t 2,-1).因为GD ⊥EF ,所以t 1+2t 2=1,由此推出0<t 2<12.又→DF =(t 1,-t 2,0),||→DF =t 12+t 22=5t 22-4t 2+1=5(t 2-25)2+15,从而有15≤||→DF <1.5.答A .解:显然f (x )=x 3+log 2(x +x 2+1)为奇函数,且单调递增.于是若a +b ≥0,则a ≥-b ,有f (a )≥f (-b ),即f (a )≥-f (b ),从而有f (a )+f (b )≥0. 反之,若f (a )+f (b )≥0,则f (a )≥-f (b )=f (-b ),推出a ≥-b ,即a +b ≥0. 6. 答B .解:出现奇数个9的十进制数个数有A =C 20061 92005+C 20063 92003+…+C 200620059.又由于(9+1)2006=k =0Σ2006C 2006k 92006-k 以及(9-1)2006=k =0Σ2006C 2006k (-1)k 92006-k 从而得A =C 20061 92005+C 20063 92003+…+C 200620059=12(-82006). 二、填空题(本题满分54分,每小题9分)7. 填[0,98].解:f (x )=sin 4x -sin x cos x +cos 4x =1-12sin2x -12sin 22x .令t =sin2x ,则f (x )=g (t )=1-12t -12t 2=98-12(t +12)2.因此-1≤t ≤1min g (t )=g (1)=0,-1≤t ≤1max g (t )=g (-12)=98. 故,f (x )∈[0,98].8. 填[-55,55].解:依题意,得|z |≤2⇔(a +cos θ)2+(2a -sin θ)2≤4⇔2a (cos θ-2sin θ)≤3-5a 2. ⇔-25a sin(θ-φ)≤3-5a 2(φ=arcsin 55)对任意实数θ成立. ⇔25|a |≤3-5a 2⇒|a |≤55,故 a 的取值范围为[-55,55]. 9.填3-1..解:由平面几何知,要使∠F 1PF 2最大,则过F 1,F 2,P 三点的圆必定和直线l 相切于点P .直线l 交x 轴于A (-8-23,0),则∠APF 1=∠AF 2P ,即∆APF 1∽∆AF 2P ,即|PF 1||PF 2|=|AP ||AF 2|⑴ 又由圆幂定理,|AP |2=|AF 1|·|AF 2|⑵而F 1(-23,0),F 2(23,0),A (-8-23,0),从而有|AF 1|=8,|AF 2|=8+43. 代入⑴,⑵得,|PF 1||PF 2|=|AF 1||AF 2|=88+43=4-23=3-1.10. 填(13+22)π. 解:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,A ,B ,C ,D 分别为四个球心在底面的射影.则ABCD 是一个边长为22的正方形。
2006年全国高中数学联赛江苏赛区初赛试卷一、选择题(本题满分36分,每小题6分)本题共有6小题,每题均给出A 、B 、C 、D 四个结论,其中有且仅有一个是正确的.请将正确答案的代表字母填在题的括号内,每小题选对得6分;不选、选错或选出的字母超过一个(不论是否写在括号内),一律得0分. 1.已知数列{a n }的通项公式a n =2n 2-4n +5,则{a n }的最大项是 ( )A .a 1B .a 2C .a 3D .a 4 2.函数y =3 |log 3x |的图象是 ( )A .B .C .D .3.已知抛物线y 2=2px ,O 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF 是直角三角形,则这样的P 点共有 ( ) A .0个 B .2个 C .4个 D .6个4.设f (x )是定义在R 上单调递减的奇函数,若x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则( ) A .f (x 1)+f (x 2)+f (x 3)>0 B .f (x 1)+f (x 2)+f (x 3)<0 C .f (x 1)+f (x 2)+f (x 3)=0 D .f (x 1)+f (x 2)>f (x 3)5.过空间一定点P 的直线中,与长方体ABCD -A 1B 1C 1D 1的12条棱所在直线所成等角的直线共有 ( ) A .0条 B .1条 C .4条 D .无数多条6.在△ABC 中,tan A =12,cos B =31010.若的最长边为1,则最短边的长为 ( )A .455B .355C .255D .55二、填空题(本题满分54分,每小题9分)本小题共有6小题,要求直接将答案写在横线上.7.集合A ={x |x =3n ,n ∈N ,0<n <10},B ={y |y =5m ,m ∈N ,0≤n ≤6}则集合A ∪B的所有元素之和为__________________. 8.设cos2θ=23,则cos 4θ+sin 4θ的值是__________________. 9.(x -3x 2)3的展开式中,x 5的系数为__________________.10.已知⎩⎪⎨⎪⎧y ≥0,3x -y ≥0,x +3y -3≤0,则x 2+y 2的最大值是__________________.11.等比数列{a n }的首项为a 1=2020,公比q =-12,设f (n )表示这个数列的前n 项的积,则当n =_________________时,f (n )有最大值.12.长方体ABCD -A 1B 1C 1D 1中,已知AB 1=4,AD 1=3,则对角线AC 1的取值范围是______________________________.三、解答题(本题满分60分,第13题,第14题各12分,第15题16分,第16题20分)13.设集合A ={x |log 12(3-x )≥-2},B ={x |2ax -a ≥1},若A ∩B = ,求实数a 的取值范围.14.椭圆x 29+y 24=1的有焦点为F ,P 1,P 2,…,P 24为24个依逆时针顺序排列在椭圆上的点,其中P 1是椭圆的右顶点,并且∠P 1FP 2=∠P 2FP 3=∠P 3FP 4=…=∠P 24FP 1,若这24个点到右准线的距离的倒数和为S ,求S 的值.15.△ABC 中,AB <AC ,AD 、AE 分别是BC 边上的高和中线,且∠BAD =∠EA C .证明是直角.16.设p 是质数,且p 2+71的不同正因数的个数不超过10个,求p .A B C D E2006年全国高中数学联赛江苏赛区初赛试卷一、选择题(本题满分36分,每小题6分)本题共有6小题,每题均给出A 、B 、C 、D 四个结论,其中有且仅有一个是正确的.请将正确答案的代表字母填在题的括号内,每小题选对得6分;不选、选错或选出的字母超过一个(不论是否写在括号内),一律得0分. 1.已知数列{a n }的通项公式a n =2n 2-4n +5,则{a n }的最大项是 ( )A .a 1B .a 2C .a 3D .a 4 解:a n =1(n -2)2+1,当n =2时,a n 取最大值,故选B .2.函数y =3|log 3x |的图象是 ( ) A . B . C . D . 解:由于|log 3x |≥0,故y ≥1,只有A 满足此条件,故选A .3.已知抛物线y 2=2px ,O 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF 是直角三角形,则这样的P 点共有 ( ) A .0个 B .2个 C .4个 D .6个解:作垂直于x 轴的焦点弦交抛物线于点P 1、P 2,则△P 1OF 、△P 2OF 是直角三角形.对于抛物线上异于O 、P 1、P 2的点Q ,显然∠QFO ≠90˚,∠QOF ≠90˚,从而若△QOF 为直角三角形,则只能是∠FQO =90˚.设点Q 坐标为(y 22p,y )(y ≠0,±p ),则有y 22p (y 22p -p2)+y 2=0, 由y ≠0得,y 22p +3p2=0,此方程无实解,从而这样的点P 只能2个,选B .4.设f (x )是定义在R 上单调递减的奇函数,若x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则( ) A .f (x 1)+f (x 2)+f (x 3)>0 B .f (x 1)+f (x 2)+f (x 3)<0 C .f (x 1)+f (x 2)+f (x 3)=0 D .f (x 1)+f (x 2)>f (x 3) 解:则x 1>-x 2,知f (x 1)<f (-x 2)=-f (x 2) f (x 1)+f (x 2)<0; 同理,f (x 2)+f (x 3)<0,f (x 3)+f (x 1)<0; 所以,f (x 1)+f (x 2)+f (x 3)<0.选B .5.过空间一定点P 的直线中,与长方体ABCD -A 1B 1C 1D 1的12条棱所在直线所成等角的直线共有 ( ) A .0条 B .1条 C .4条 D .无数多条解:首先,过角的顶点与角的两边成等角的直线在角所在平面的射影是角(或其外角)的平分线.故若以长方体的过一个顶点的三个平面为坐标平面建立空间坐标系,则方程|x |=|y |x Oy x O yx O y=|z |共有8解,此8解共组成4条直线,故选C .6.在△ABC 中,tan A =12,cos B =31010.若的最长边为1,则最短边的长为 ( )A .455B .355C .255D .55解:作辅助图如右:取高CD =a ,则AD =2a ,BD =3a , 最短边AC =5a ;由5a =1,得a =15,故选D .二、填空题(本题满分54分,每小题9分)本小题共有6小题,要求直接将答案写在横线上. 7.集合A ={x |x =3n ,n ∈N ,0<n <10},B ={y |y =5m ,m ∈N ,0≤n ≤6}则集合A ∪B的所有元素之和为__________________.解:A ∩B ={15};故所求和=(3+6+…+27)+(0+5+…+30)-15=225. 8.设cos2θ=23,则cos 4θ+sin 4θ的值是__________________. 解:已知即cos 2θ-sin 2θ=23⇒cos 4θ+sin 4θ-2cos 2θsin 2θ=29; ① 又,cos 2θ+sin 2θ=1⇒ cos 4θ+sin 4θ+2cos 2θsin 2θ=1. ② (①+②)÷2: cos 4θ+sin 4θ=1118.9.(x -3x 2)3的展开式中,x 5的系数为__________________. 解:(x -3x 2)3=x 3-3x 2×3x 2+3x ×9x 4-27x 6.⇒x 5 的系数=27.10.已知⎩⎨⎧y ≥0,3x -y ≥0,x +3y -3≤0,则x 2+y 2的最大值是__________________.解:满足条件的点集组成的图形为图中阴影部分及其边界.其中点(3,0)与原点距离最大,故(x 2+y 2)max =9. 11.等比数列{a n }的首项为a 1=2020,公比q =-12,设f (n )表示这个数列的前n 项的积,则当n =_________________时,f (n )有最大值.解:由于f (4k )>0,f (4k +1)>0,(k ∈N *). f (4k )=a 4k1 q 2k (4k-1);f (4k +1)=a 4k +11 q 2k (4k+1).故f (4k +1)f (4k )=a 1q 4k .于是f (12)>f (13),且当k ≥3时,f (4k +1)<f (4k );又f (12)f (9)=a 31q 30,有f (9)<f (12);f (4k +4)f (4k )=a 41q 2(8k +3), 故f (8)<f (12),且k ≥3时,f (4k +4)<f (4k ), 从而f (12)最大.12.长方体ABCD -A 1B 1C 1D 1中,已知AB 1=4,AD 1=3,则对角线AC 1的取值范围是______________________________.解:设长方体的三度分别为x ,y ,z ,对角线AC =d .则可得x 2+z 2=16,y 2+z 2=9.d 2=x 2+y 2+z 2=25-z 2,ABDC 3a2aa但0<z <3,从而16<d 2<25⇒4<d <5⇒所求取值范围为(4,5).三、解答题(本题满分60分,第13题,第14题各12分,第15题16分,第16题20分)13.设集合A ={x |log 12(3-x )≥-2},B ={x |2ax -a ≥1},若A ∩B =∅,求实数a 的取值范围.解:由log 12(3-x )≥-2⇒0<3-x ≤4⇒-1≤x <3.由2ax -a≥1⇒(x -a )(x -3a )≤0. ① 当a >0时,解为a <x <3a ; ② 当a =0时,解为∅;③ 当a <0时,解为3a <x <a .若A ∩B ≠∅,则当a <0时,有a >-1⇒-1<a <0;当a >0时,有3a <3⇒0<a <1. 所以,a 的取值范围为(-1,0)∪(0,1).14.椭圆x 29+y 24=1的有焦点为F ,P 1,P 2,…,P 24为24个依逆时针顺序排列在椭圆上的点,其中P 1是椭圆的右顶点,并且∠P 1FP 2=∠P 2FP 3=∠P 3FP 4=…=∠P 24FP 1,若这24个点到右准线的距离的倒数和为S ,求S 的值.解法一:已知椭圆的a =3,b =2,c =5,e =53,p =b 2c =45.对于椭圆上任一点P ,|FP |=r ,P 到准线的距离|PH |=d ,FP 与Ox 正向夹角为θ,则有r cos θ+d =p ,rd =e .于是, d (1+e cos θ)=p ,⇒1d =1p (1+e cos θ).所以, S =i =1∑241d i =1p i =1∑24(1+e cos θ)=24p +e p i =1∑24cos θ=24p .故 S 2=242p2=180.解法二:设过焦点且斜率为k 的直线交椭圆于A 、B 两点.则有⎩⎨⎧y =k (x -c ), ①4x 2+9y 2=36. ②①代入②: 4x 2+9k 2(x -5)2-36=0.即, (4+9 k 2)x 2-185xk 2+45k 2-36=0.所以, x 1+x 2=185k 24+9k 2,x 1x 2=45k 2-364+9k 2.而点P 到准线距离d =a 2c -x =9-5x 5⇒1d =59-5x ,故直线①与椭圆的两个交点到准线距离的倒数和为59-5x 1+59-5x 2=5[18-5(x 1+x 2)]81-95(x 1+x 2)+5x 1x 2=5[18-5·185k 24+9k 2]81-95·185k 24+9k 2+545k 2-364+9k 2=185(4+9k 2)-905k 281(4+9k 2)-810k 2+225k 2-180 =725+725k 2144+144k2=52. 而过焦点且倾斜角θ=90˚时,两交点到准线的距离=a 2c -c =45,故θ=90˚及270˚的两个点到准线距离倒数和也=52. 所以,S =12×52=65;S 2=180. 解法三:令⎩⎨⎧x =5+t cos θ,y =t sin θ.代入椭圆方程得,t 2(4cos 2θ+9sin 2θ)+85t cos θ-16=0.同上.15.△ABC 中,AB <AC ,AD 、AE 分别是BC 边上的高和中线,且∠BAD =∠EA C .证明是直角.证明一:延长AE 到F ,使EF =AE ,延长AD 到K ,使DK =A D .连FK ,FB .因FB ∥AC ⇒∠AFB =∠EAC .又BD 垂直平分AK ,故∠AKB =∠BAD ,因∠BAD =∠EAC ,所以∠AKB =∠AF B .所以A 、F 、K 、B 四点共圆. FK ∥BC ⇒∠FKA =90˚.故AF 为该圆直径.E 为此圆圆心.故EA =EB =EC ,即点C 在此圆上.此圆为△ABC 的外接圆,BC 为圆的直径. 所以∠BAC 为直角. 证明二:取△ABC 的外接圆,延长AE 交圆于点F ,连FB ,则∠CBF =∠CAF =∠BAD , 但∠BAD +∠ABD =90˚,从而∠FBC +∠ABC =90˚,即∠ABF =90˚. 从而AF 为圆的直径.若E 不是圆心,则AF ⊥BC ,⇒AB =AC .与已知矛盾.故E 为外心.从而∠BAC =90˚.证明三:作△ABC 的外接圆,作EF ⊥BC ,交外接圆于点F ,连AF . 则EF 是BC 的垂直平分线,故F 为⌒BC 的中点,于是AF 是∠BAC的平分线.由∠BAD =∠EAC ,得∠DAF =∠EAF .又,EF ∥AD ,故∠DAF =∠EF A ⇒∠EAF =∠EF A .⇒EA =EF .故AF 的垂直平分线经过点E .由于△ABC 的外接圆圆心应是弦AF 、BC 的垂直平分线的交点,故E 为△ABC 的外心.从FED CB AA B C D E FK而△ABC 为直角三角形,得,∠BAC 为直角.证明四:取AC 中点F ,连DF 、EF , 由EF ∥AB ⇒∠AEF =∠EAB =∠BAD +∠DAE =∠EAC +∠DAE =∠DAC ,由AD 为高,故∠DAC =∠ADF ,所以,∠ADF =∠AEF ⇒A 、D 、E 、F 四点共圆.于是有∠EF A =90˚,从而∠BAC =90˚,故证.证明五:以D 为原点,BC 所在直线为x 轴建立坐标系.设点A 、B 、C 的坐标分别为A (0,a ),B (b ,0),C (0,c ).设AB 到AD 的角为α,则tan α=-ba .k AC =-a c ,k AE =-2ab +c,⇒tan ∠EAC =-a c +2ab +c 1+2a 2c (b +c )=a (c -b )2a 2+bc +c 2. 由tan ∠EAC =tan α⇒-ba =a (c -b )2a 2+bc +c 2.化简得a 2=-bc .即|AD |2=|DB |·|DC |.故△ABC 为直角三角形.证明六:设BC =a ,BD =p ,AD =h ,则tan B =hp ,tan ∠AEB =h 12a -p =2ha -2p .∠BAE =∠DAC ⇒tan ∠BAE =tan ∠DAC =a -ph.在△ABE 中,有h p +2ha -2p +a -p h =h p ·2h a -2p ·a -p h =2h (a -p )p (a -2p ).即h 2(a -2p )+2ph 2+p (a -p )(a -2p )=2h 2(a -2p ).⇒h 2=p (a -p ).从而|AD |2=|DB |·|DC |.故△ABC 为直角三角形.得证.证明七:设∠BAD =∠EAC =α,则AD =AB cos α=AC sin C , ① ∠BAE =∠DAC =90˚-C .而S △BAE =S △CAE ⇒AB ·AE sin(90˚-C )=AC ·AE sin α⇒AB cos C =AC sin α.②①×②:sin2α=sin2C ⇒α+C =90˚或α=C .若α+C =90˚,则D 、E 重合,与AC >AB 矛盾,⇒α=C .则有∠BAC =90˚,得证.16.设p 是质数,且p 2+71的不同正因数的个数不超过10个,求p .解 p =2时,p 2+71=75=3×52,d (75)=2×3=6<10,故p =2是本题的解;p =3时,p 2+71=80=24×5,d (80)=5×2=10≤10,故p =3是本题的解; 若质数p >3,则p 2≡1(mod 8)⇒p 2+71≡0(mod 8),故23|p 2+71; p 2≡1(mod 3)⇒ p 2+71≡0(mod 3),故3|p 2+71.所以,p 2+71=2α×3β×t .其中α、β∈N *,且α≥3.ahpABCEDFD E C B A当α=3,β=1,t若有大于3的质因子,则d(p2+71)≥4×2×2,故t=1.此时无质数p满足题意;当α=4,β=1,必有t=1,此时有d(p2+71)≥5×2=10.此时无质数p满足题意;当α≥4,β≥1,且等号不同时成立时,d(p2+71)>10.综上可知,解为p=2,3.。
2006年全国九年级义务教育初中中考数学联赛决赛试卷一、选择题(本题满分42分,每小题7分)1.已知四边形ABCD 为任意凸四边形,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,用S ,P 分别表示四边形ABCD 的面积和周长;1S ,1P 分别表示四边形EFGH 的面积和周长,设1S K S =,11PK P =,则下面关于K ,1K 的说法正确的是( ) A.K ,1K 均为常值B.K 为常值,1K 不为常值C.K 不为常值,1K 为常值D.K ,1K 均不为常值 【解析】 B .如图,易知14AEH ABD S S =△△,14CFG CBD S S =△△,故14AEH CFG S S S +=△△.同理,14BEF DHG S S S +=△△.故112S S =,即K 2=为常值.又易知1P AC BD =+,特别的,若取邻边长分别为1、2的矩形,则1K =;再取邻边长分别为1、3的矩形,则1K ==故1K 不是常值.GHFEDCBA2.已知m 为实数,且sin α,cos α是关于x 的方程2310x mx -+=的两根,则44sin cos αα+的值为( )A.29B.13C.79 D,1 【解析】 C .由根与系数的关系知1sin cos 3αα=,则有()()2244227sin cos sin cos 2sin cos 9αααααα+=+-⋅=.3.关于x 的方程21x a x =-仅有两个不同的实根,则实数a 的取值范围是( ) A.0a > B.4a ≥C.24a <<D.04a <<【解析】 D .当0a <时,无解;当0a =时,0x =,不合题意;当0a >时,方程化为21x a x =±-,整理得20x ax a -+=或20x ax a +-=.这两个方程的判别式分别为214a a =-△和224a a =+△.∵20>△,原方程仅有两个不同实根,所以2140a a =-<△,从而04a <<.4.设0b >,2220a ab c -+=,2bc a >,则实数a ,b ,c 的大小关系是( ) A.b c a >> B.c a b >> C.a b c >> D.b a c <<【解析】 A .由2bc a >及0b >,知0c >.由222ab a c =+及0b >,知0a >.由2220a ab c -+=,知()2220b c a b -=-≥,从而b c ≥.若b c =,由2220a ab c -+=知a b =,从而a b c ==与2bc a >矛盾,故b c >. 由22b bc a >>,知b a >;又由22222a c ab a +->,知c a >.5.设a ,b 为有理数,且满足等式a +则a b +的值为( ) A.2 B.4 C.6 D.8 【解析】 B .3==,所以3a +=+即()(310a b -+-. 由a 、b 为有理数,则3a =,1b =,即4a b +=.6.将满足条件“至少出现一个数字0,且是4的倍数的正整数”从小到大排成一列数:20,40,60,80,100,104,……,则这列数中的第158个数为( ). A.2000 B.2004 C.2008 D.2012 【解析】 C .在正整数中,是4的倍数的特征为末两位数字是4的倍数,其中包含数字0的7种情形:00,04,08,20,40,60,80和包括数字0的18种情形.显然,满足条件的两位数仅有4个;满足条件的三位数共有9763⨯=个;满足条件千千位数字为1的四位数共有71018188⨯+⨯=个.因为46388155++=,则从小到大的第155个满足条件的数为1980.下面满足条件的数依次为2000,2004,2008.故这列数中的第158个数为2008.二、填空题(本题满分28分,每小题7分)1.函数220062008y x x =-+的图象与x 轴交点的横坐标之和等于 . 【解析】 0.原方程可转化为求方程2200620080x x -+=的所有实根之和.若实数0x 为方程的根,则其相反数0x -也为该方程的根,所以,方程的所有实根之和为0,即与x 轴交点的横坐标之和为0.2.在等腰Rt ABC △中,1AC BC ==,M 是BC 的中点,CE AM ⊥于E 交AB 于F ,则MBF S =△ .【解析】 112.如图,作BG BC ⊥交CF 的延长线于点G ,易证Rt Rt ACM CBG △≌△.故BG CM =,12CBG ACM ABC S S S =-△△△.由易证BFM BFG △≌△,故BGF BMF CMF S S S ==△△△.从而1113612MBF CBG ABC S S S ===△△△.MGF ECBA3.x 取值为 .【解析】 83.在直角坐标系xOy 中,设()0,2A -,()8,4B ,(),0P x ,有PAPB则10PA PB AB +=≥.当且仅当A 、P 、B 三点共线时,上式等号成立.因此,当且仅当A 、P 、B 三点共线时,原式取最小值.此时,易知BCP AOP △∽△,有2CP BCPO AO==.从而,1833OP OC ==.故原式取最小值时,83x =.4.在平面直角坐标系中,正方形OABC 的顶点坐标分别为()00O ,、()1000A ,、()100100B ,、()0100D ,.若正方形OABC 内部(边界及顶点除外)一格点P 满足:POA PBC PAB POC S S S S ⋅=⋅△△△△,就称格点P 为“好点”,则正方形OABC 内部“好点”的个数为 .(注:所谓“格点”是指在平面直角坐标系中横、纵坐标均为整数的点.) 【解析】 如图,过点P 分别作PD 、PE 、PF 、PG 垂直于点OA 、AB 、BC 、OC 于点D 、E 、F 、G .易知100PF PD +=,100PE PG +=.由POA PBC PAB POC S S S S ⋅=⋅△△△△,知PD PF PE PG ⋅=⋅,即()()100100PD PD PG PG -=-.化简为()()1000PD PG PD PG -+-=,故PD PG =或100PD PG +=,即PD PG =或PG PF =. 于是P 为对角线OB 上的点或P 为对角线AC 上的点.因此,当且仅当P 为对角线OB 或对角线AC 内部的格点时,点P 为好点.易知OB 内部有99个好点,AC 内部也有99个好点,又知对角线OB 与AC 的交点也为好点,于是满足条件的好点个数为99991197+-=个.三、解答题(本题共三小题,第1题20分,第2、3题各25分)1.如图,D 为等腰ABC △底边BC 的中点,E 、F 分别为AC 及其延长线上的点.又已知90EDF ∠=o ,1ED DF ==,5AD =.求线段BC 的长.DEC FBA【解析】 如图,过点E 作EG AD ⊥于点G ,过点F 作FH AD ⊥于点H ,则EDG DFH ∠=∠.故Rt Rt EDG DFH △≌△.设EG x =,DG y =,则DH x =,FH y =,且221x y +=.又Rt Rt AEG AFH △∽△,则EG AGFH AH=.即55x y y x -=+. 化简为()225x y y x +=-. 由上述两式解得35x =,45y =. 又因为Rt Rt AEG ACD △∽△,则CD EGAD AG=. 故35554755EG CD AD AG =⋅=⨯=-.所以,1027BC CD ==.FEDC B A2.在平行四边形ABCD 中,A ∠的平分线分别与BC 及DC 的延长线交于E 、F ,点O 、1O 分别为CEF △、ABE △的外心.⑴ 求证:O 、E 、1O 三点共线; ⑵ 求证:若70ABC ∠=o ,求OBD ∠的度数.【解析】 ⑴如图,连结OE 、OF 、1O A 、1O E .因为四边形ABCD 为平行四边形,所以ABE ECF ∠=∠.又因为点O 、1O 分别为CEF △、ABE △的外心,所以OE OF =,11O A O E =,122EOF ECF ABE AO E ∠=∠=∠=∠. 于是有1OEF O EA △∽△.故1OEF AEO ∠=∠,所以O 、E 、1O 三点共线.⑵连接OD 、OC .因为四边形ABCD 为平行四边形,所以,CEF DAE BAF CFE ∠=∠=∠=∠. 故CE CF =.又因为点O 为CEF △的外心,所以OE OF OC ==. 则OCE OCF △≌△,有OEC OFC OCF ∠=∠=∠.故OEB OCD ∠=∠.又BAE EAD AEB ∠=∠=∠,则EB AB DC ==. 因此OCD OEB △≌△.所以,ODC OBE ∠=∠,OD OB =,ODC OBC ∠=∠,OBD ODB ∠=∠,OBD OBC CBD ∠=∠+∠ODC BDA =∠+∠ADC BDO =∠-∠ABC OBD =∠-∠.故12OBD ABC ∠=∠.DO 1O FEDCBA3.设p 为正整数,且2p ≥.在平面直角坐标系中,连结点()0A p ,和点()0B p ,的线段通过1p -个格点()111C p -,,…,()i C i p i -,,…,()111p C p --,. 证明:⑴ 若p 为索数,则在原点()00O ,与点()i C i p i -,的连线段()11i OC i p =-L ,,上除端点外无其它格点;⑵ 若在原点()00O ,与点()1i C i p -,的连线段()11i OC i p =-L ,,上除端点外无其它格点,则p 为索数.【解析】 ⑴用(),P a b 表示OAB △内的格点,a 、b 为正整数.假设结论不成立,则点P 位于某条线段1OC 内部(如图9).过点P 作PE OB ⊥于点E ,过点i C 作i C F OB ⊥于点F .由i OEP OFC △∽△,知b p ia i-=,其中11i p -≤≤. 易知1a i <≤,1b p i <-≤. 由b p ia i-=知()a b i ap +=,从而|i ap . 因为p 为质数,且11i p <-≤,则i 与p 互质.从而|i a ,故i a ≤,这与a i <矛盾. 所以,假设不成立,从而原结论成立. ⑵假设结论不成立,即p 为合数.故p xy =,其中x 、y ∈N ,且2,1x y p -≤≤.因为OAB △内部的格点的横、纵坐标之和可以是从2到1p -之间的任何整数,故必存在一格点(),P a b ,满足a b x +=,于是()a b y xy p +==,即ay by p +=.因此点(),ay by 必是()11,1C p -,()22,2C p -,…,()11,1p C p --中的一个点,设为(),i C i p i -.从而有ya i =,by p i =-,故b p ia i-=. 所以,点(),P a b 在线段i OC 内部,即在线段i OC 上除端点外还有其他格点,这与已知矛盾. 故原结论成立.。
2006年全国初中数学竞赛试题考试时间 2006年4月2日上午 9∶30-11∶30 满分120分 一、选择题(共5小题,每小题6分,满分30分。
以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里。
不填、多填或错填均得0分)1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( ) (A )36 (B )37 (C )55 (D )902.已知21+=m ,21-=n ,且)763)(147(22--+-n n a m m =8,则a 的值等于( )(A )-5 (B )5 (C )-9 (D )9 3.Rt △ABC 的三个顶点A ,B ,C 均在抛物线2x y =上,并且斜边AB 平行于x 轴.若斜边上的高为h ,则( )(A )h <1 (B )h =1 (C )1<h <2 (D )h >2 4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ) (A )2004 (B )2005 (C )2006 (D )2007 5.如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q .若QP=QO ,则QAQC的值为( ) (A )132- (B )32 (C )23+ (D )23+(第5题图)二、填空题 (共5小题,每小题6分,满分30分)6.已知a ,b ,c 为整数,且a +b=2006,c -a =2005.若a <b ,则a +b +c 的最大值为 .7.如图,面积为c b a -的正方形DEFG 内接于 面积为1的正三角形ABC ,其中a ,b ,c 为整数, 且b 不能被任何质数的平方整除,则bca -的值 等于 .8.正五边形广场ABCDE 的周长为2000米.甲、乙两人分别从A 、C 两点同时出发,沿A →B →C →D →E →A →…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过 分钟,甲、乙两人第一次行走在同一条边上.9.已知0<a <1,且满足183029302301=⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡+a a a ,则[]a 10的值等于.([]x 表示不超过x 的最大整数)10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 . 三、解答题(共4题,每小题15分,满分60分) 11.已知abx =,a ,b 为互质的正整数(即a ,b 是正整数,且它们的最大公约数为1),且a ≤8,1312-<<-x . (1) 试写出一个满足条件的x ; (2) 求所有满足条件的x .(第7题图)ABCD GFE12.设a ,b ,c 为互不相等的实数,且满足关系式14162222++=+a a c b ① 542--=a a bc ②求a 的取值范围.13.如图,点P 为⊙O 外一点,过点P 作⊙O 的两条切线,切点分别为A ,B .过点A 作PB 的平行线,交⊙O 于点C .连结PC ,交⊙O 于点E ;连结AE ,并延长AE 交PB 于点K .求证:PE ·AC=CE ·KB .ABC14.10个学生参加n个课外小组,每一个小组至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n的最小值.2006年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。
2006年全国高中数学联赛试题及详细解析一、选择题(本题满分36分,每小题6分)1. 已知△ABC ,若对任意R t ∈≥-,则△ABC 一定为A .锐角三角形 B. 钝角三角形 C. 直角三角形 D. 答案不确定 【答案】 ( ) 2. 设2log (21)log 2 1x x x x +->-,则x 的取值范围为 A .112x <<B .1, 12x x >≠且 C . 1x > D . 01x << 【答案】( )5. 设(32()log f x x x =+,则对任意实数,a b ,0a b +≥是()()0f a f b +≥的A. 充分必要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件 【答案】 ( ) 6. 数码1232006,,,,a a a a 中有奇数个9的2007位十进制数12320062a a a a 的个数为A .200620061(108)2+ B .200620061(108)2- C .20062006108+ D .20062006108- 【答案】( )二、填空题(本题满分54分,每小题9分)7. 设x x x x x f 44cos cos sin sin )(+-=,则)(x f 的值域是 。
8. 若对一切θ∈R ,复数(cos )(2sin )i z a a θθ=++-的模不超过2,则实数a 的取值范围为 .9. 已知椭圆221164x y +=的左右焦点分别为1F 与2F ,点P 在直线l :80x ++=上. 当12F PF ∠取最大值时,比12PF PF 的值为 .10. 底面半径为1cm 的圆柱形容器里放有四个半径为21cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3.11. 方程20062420042005(1)(1)2006x x x x x +++++=的实数解的个数为 .12. 袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为 . 三、解答题(本题满分60分,每小题20分)15. 设2()f x x a =+. 记1()()f x f x =,1()(())n n f x f f x -=2,3,n =,,{}R (0)2n M a n f =∈≤对所有正整数 ,. 证明:⎥⎦⎤⎢⎣⎡-=41 ,2M .2006年全国高中数学联合竞赛加试试卷 (考试时间:上午10:00—12:00)一、以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于C i (i =0,1)。