延迟焦化工艺新技术探索
- 格式:doc
- 大小:16.50 KB
- 文档页数:4
2019年08月为了提高燃料油的品质,对炼油加氢技术措施进行优化,油品的质量向着轻质化的方向发展,预测炼油加氢技术的发展趋势,优化生产装置,对炼油加氢技术进行管理,降低炼油化工生产的成本。
随着含硫的原料及杂质含量高的原料的增多,对炼油加氢技术进行优化,才能保证炼油化工生产的顺利进行。
优选最佳的催化剂体系,保证炼油催化加氢技术的顺利实施,获得高品质的汽油或者柴油产品,达到炼油化工生产的产能指标,为炼油化工企业创造最佳的经济效益。
对石油炼制的工艺程序进行优化,优选最佳的反应器,对炼油化工原材料进行预处理,避免由于原料中的杂质成分过高,而影响到最终汽油或者柴油的品质,影响到炼油化工生产企业的经济性。
对生产获得的油品进行换热及制冷处理,避免生产条件发展改变,而影响到产品的质量。
针对循环加氢系统的优化,保证氢气的用量,防止消耗过高的氢气而增加炼油化工生产的成本。
实施联合精制的技术措施,获得低含硫量,低含芳烃量的高品质的燃料油产品,成为新时期成品油市场的主流。
催化柴油加氢的技术进行优化,尤其对柴油加氢的深度处理,选择和应用双功能的催化剂体系,达到选择性发生化学反应的作用效果。
脱除产物中的硫、氮、芳烃,提高产品的质量。
在保证柴油产品收率的前提下,降低柴油的密度,提高柴油产品的十六烷值,因此提高柴油产品的价值,促进柴油炼制工艺的进步。
对汽油加氢裂化工艺技术进行优化,预测汽油加氢裂化工艺的发展前景,保证汽油经过加氢净化处理后,达到更高的产品质量要求。
汽油产品中的硫含量最低,芳烃含量低,辛烷值高,达到燃料油市场的要求。
随着炼油化工生产的不断发展,预测炼油加氢技术的发展趋势,以最少的能量消耗,获得最佳的生产效益。
通过室内试验研究的方式,选择和应用最适宜的催化剂体系,依据不同的原材料,应用相匹配的催化剂体系,提高加氢催化裂化生产的效率,尽可能提高产品的收率,降低产品的损失,获得最理想的产品的收率,以此作为评价炼油加氢技术的标准,保证各种加氢技术的顺利实施,才能保证燃料油产品的质量,为炼油化工企业的健康发展,提供保障措施。
石油化工劣质重油延迟焦化工艺探讨石油化工是现代工业中的核心产业之一,炼油工艺是石油化工的前沿技术之一。
重油是炼油过程中产生的一个副产品,而延迟焦化则是一种通过将劣质重油加热炼制而得到商业价值的工艺。
本文旨在探讨石油化工劣质重油延迟焦化工艺及其优化方法。
一、延迟焦化概述延迟焦化是通过采用特定的工艺技术,将不适合作为原料油品的劣质重油加热至高温,使其发生裂解分解,从而得到高值油品和焦炭的一种工艺过程。
因为在这个过程中油品裂解速率相对焦化速率较慢,所以又称为延迟焦化。
延迟焦化的优点是:首先,能够将否则会被废弃的劣质重油转化成更有价值的产品,提高了炼油厂的收益;其次,延迟焦化设备结构简单,投资上相对较低;最后,焦炭是一个重要的原材料,可以用于钢铁冶炼、化肥生产等领域。
二、延迟焦化工艺流程1、预热:将重油由预热器预热至一定温度。
2、反应:将预热后的重油注入反应器,在足够高的温度下(通常为450℃到500℃)进行裂解分解,得到烃类混合物和焦炭。
3、分离:将反应器出口的气体混合物进入分离塔分离出干气和重油。
4、蒸馏:重油经过蒸馏分离出汽油、柴油、炼压油。
5、焦炭处理:对生产的焦炭进行后处理、筛分等工序,以得到满足市场需求的产品。
在实际生产工艺中,延迟焦化还面临一系列的技术问题,如:沉淀剂的选择、产生低成品率现象的控制、重油的优化预处理等。
为了解决这些问题,需要对延迟焦化工艺进行优化。
三、延迟焦化优化方法延迟焦化的优化方法主要有以下几种:1、控制加热方式:延迟焦化设备中加热方式主要有内部和外部两种。
内部加热方式较外部加热方式有更高的裂解率和热利用率;但内部加热方式有较高的停工维修成本和安全隐患。
可以根据具体情况选则合适的加热方式。
2、优化重油性质:通过添加催化剂或溶剂使劣质重油的物理性质改善,从而增加产出油品的比例。
3、加热技术控制:延迟焦化反应温度对焦炭品质和产出比例影响较大,需要进行精确控制。
4、控制反应时间:适当的延长反应时间可以增加焦炭比例,但过长的反应时间会使反应产生过多难以利用的气体。
简述延迟焦化的一种新技术
延迟焦化是炼油行业常用的一种重要工艺,它能够将原油加工成高附加值的石化产品。
但是传统的延迟焦化工艺存在一些问题,比如产生大量的二氧化碳和硫化物废气,造成环境污染,同时对设备的磨损也比较大。
为了解决这些问题,石化企业开始研究和开发新的延迟焦化技术。
其中一种新技术被称为“高效延迟焦化技术”,它采用了先进的催化剂和反应技术,可以减少废气排放,提高产品质量,同时延长设备的使用寿命。
这项技术的核心是在延迟焦化反应器中添加催化剂,使反应更为充分,同时减少废气生成。
此外,该技术还可以采用多级反应器来提高转化率和产品选择性,从而获得更高价值的产品。
高效延迟焦化技术不仅可以减少环境污染,还可以提高能源利用效率,降低石化企业的生产成本,促进石油化工行业的可持续发展。
在未来,这种技术有望成为延迟焦化的主流技术,为石油化工行业的发展带来更多的机遇和挑战。
- 1 -。
石油化工劣质重油延迟焦化工艺探讨石油化工行业是现代工业的重要组成部分,而重油作为石油加工产品中的一种,因具有较高的硫含量、较大的粘度和较高的密度,通常被称为“黑黄金”。
重油的加工利用存在一定的技术难题,因此延迟焦化技术应运而生。
延迟焦化是一种石油加工技术,通过将重油在高温和高压的条件下进行裂解,将其中的轻质烃类分离出来,得到高质量的焦炭和其他副产品。
该技术具有资源利用高、产品质量好、操作灵活等优点。
这种工艺最早于1929年在美国得到应用,并不断发展完善。
延迟焦化工艺主要包括预加热、裂解和冷却三个过程。
将稠固鼻液进一步预加热至适宜的温度,旨在提高其流动性和降低黏度。
接下来,将预热后的重油喷入裂解炉中,通过高温和高压的裂解反应,将重油分解成轻质烃类,并产生油气混合物。
冷却和分离,将裂解产物中的焦油冷却凝固成焦炭,同时通过冷却和分离工艺将油气分离出来,得到高质量的焦炭和其他副产品。
延迟焦化工艺在实际应用中依然存在一些问题。
由于重油本身的不确定性,使得延迟焦化工艺控制难度较大。
由于存在一定的热损失,使得能耗较高。
焦炭产量和品质也受到影响。
针对这些问题,可以从以下几个方面进行改进和探讨。
可以通过提高预热温度和压力,改善重油的流动性,减少黏度。
可以优化裂解反应条件,如调整反应温度、压力和停留时间,达到更好的裂解效果。
对于冷却和分离过程,可以加强对沉积物和杂质的清除,以提高最终产品的品质。
结合其他辅助技术,如催化剂、添加剂等,也可以进一步提高延迟焦化工艺的效果。
石油化工劣质重油的延迟焦化工艺在近百年的发展中取得了不小的突破,实现了资源的高效利用和产值的最大化。
与此也面临着一些挑战。
通过持续改进和探讨,我们相信延迟焦化工艺在石油加工中的地位将更加重要,并为石油化工行业的发展做出更大的贡献。
分析延迟焦化装置工艺技术特点及其应用
延迟焦化是一种石化工艺,它将重油迅速加热至高的温度和压力下进行裂解,生成烯
烃和芳香烃。
它的工艺技术特点主要体现在以下几个方面:
1. 裂解时延迟:延迟焦化采用了反应器之外的加热装置,将液态重油迅速加热至高
温度,并在反应器中加入催化剂,让重油进行裂解。
这种工艺使得反应时间延迟,可以增
加裂解产物的芳香烃和烯烃含量。
2. 高温高压:延迟焦化反应器内部的温度和压力非常高,通常需要在1000℃以上和1.5 MPa以上的条件下操作。
高温高压环境才能促进重油的裂解,同时也会增加反应物中
间体的生成和分解,从而增加了反应物转化率。
3. 重油先热解再裂解:在延迟焦化中,重油首先经过热解阶段,使得重油中的大分
子化合物转化为小分子烃,主要为液化气,成分为丁烷、丙烷和乙烷等。
热解反应所生成
的烃类会随后进入裂解阶段,利用催化剂进一步裂解为烯烃和芳香烃。
4. 高效催化剂:延迟焦化需要使用高效催化剂,以提高重油的裂解效率和选择性。
目前常用的催化剂有氢氧化镁、氢氧化钠和氢氧化钾等。
延迟焦化可以处理各种成分的重油,包括低成分的重油、深层储层的油田油和油砂等。
它能够生产高品质的清洁燃料,如芳香烃和烯烃,被广泛应用于石化工业领域中。
同时,
使用延迟焦化可以降低重油的处理成本,提高原油利用率和产品质量,具有很高的经济效
益和社会效益。
分析延迟焦化装置工艺技术特点及其应用延迟焦化装置是一种用于延迟焦化过程的工艺设备,它在炼油和化工生产中扮演着至关重要的角色。
本文将分析延迟焦化装置的工艺技术特点及其应用,旨在为相关领域的工程师和研究人员提供参考和借鉴。
延迟焦化是一种石油加工过程,通过对重油进行深度裂解和重整,产生高附加值的产品,如汽油、柴油、煤沥青等。
延迟焦化装置是延迟焦化过程的核心设备,它的工艺技术特点主要包括以下几个方面。
延迟焦化装置具有高效节能的特点。
通过对重油进行高温高压的催化裂解和重整,可以最大限度地提高重油转化率,减少能源消耗和化工原料的浪费。
延迟焦化装置还可以通过余热回收等技术手段,实现能量的自给自足,达到节能减排的目的。
延迟焦化装置具有高度自动化和智能化的特点。
随着工业自动化技术的不断发展,延迟焦化装置在生产过程中实现了高度的自动化控制和智能化管理,大大提高了生产效率和产品质量。
延迟焦化装置还可以通过远程监控和故障诊断等技术手段,实现对生产过程的实时监测和远程控制,保证生产的稳定和持续。
延迟焦化装置具有模块化和集成化的特点。
随着工艺技术的不断进步,延迟焦化装置的设计和制造也不断向模块化和集成化的方向发展,通过模块化设计和制造,可以实现设备的标准化和通用化,降低了制造成本和维护成本,提高了设备的可靠性和可维护性。
延迟焦化装置具有多产物生产的特点。
在延迟焦化过程中,通过对重油进行裂解和重整,可以产生多种高附加值的产品,如汽油、柴油、煤沥青等,满足了不同领域的需求,扩大了产品的市场应用范围,提高了生产的经济效益。
延迟焦化装置的应用范围非常广泛,主要包括炼油和化工领域。
在炼油领域,延迟焦化装置主要用于重油加工和产品升级,通过对重油进行裂解和重整,产生高附加值的产品,提高了炼油厂的经济效益。
在化工领域,延迟焦化装置主要用于煤化工和煤化学品生产,通过对煤制品或煤油进行裂解和重整,产生各种化工产品,满足了化工行业的需求。
延迟焦化装置是一种具有高效节能、高度自动化和智能化、模块化和集成化、多产物生产等特点的工艺设备,它在炼油和化工生产中具有重要的应用价值。
延迟焦化在炼油工业中的技术优势及进展引言炼油工业一直是国民经济的支柱产业之一,其技术水平和生产效率直接关系到国家的能源安全和经济发展。
延迟焦化作为炼油工业中的关键技术之一,在提高产品质量、降低能耗、增加产值等方面具有重要意义。
本文将重点介绍延迟焦化在炼油工业中的技术优势及进展。
一、延迟焦化技术优势1. 优化产品结构延迟焦化可以将重油转化为高附加值产品,如汽油、柴油等,通过高温高压下的催化反应,改变油品分子结构,提高产品质量。
这一优势可以帮助炼油企业提高产品附加值,增加经济效益。
2. 降低燃料成本在延迟焦化过程中,废气和废热可以被回收再利用,降低燃料成本。
延迟焦化可以提高原油利用率,减少资源浪费,降低成本。
3. 减少环境污染延迟焦化过程中产生的废气和废水可以通过先进的污染处理技术进行处理,达到国家环保标准。
与传统炼油工艺相比,延迟焦化对环境影响更小。
4. 提高装置稳定性采用延迟焦化技术可以降低炼油装置的生产风险,提高运行稳定性。
这对于保障生产安全,确保供应稳定具有重要意义。
1. 催化剂技术的提升催化剂是延迟焦化过程中的关键因素之一,不断提升催化剂的活性和稳定性可以提高产品质量和产率。
目前,石油化工行业正在加大对新型催化剂的研发投入,以适应市场对高品质产品的需求。
2. 自动化控制技术的应用延迟焦化装置需要复杂的自动化控制系统来确保生产过程的稳定运行。
近年来,随着工业互联网技术的发展,炼油企业对自动化控制技术的应用程度不断提高,有助于提高生产效率和安全性。
3. 能源利用的优化能源在炼油工业中是一个重要的生产成本,延迟焦化技术的发展也包括对能源利用的优化。
通过余热回收、废气处理等技术手段,可以降低能耗,提高能源利用效率。
4. 环保技术的创新随着环保要求的不断提高,炼油企业在延迟焦化技术中也积极探索更多的环保技术。
采用生物降解剂处理废水、引入低排放燃烧技术等,为炼油工业的可持续发展做出贡献。
1. 高效、低排放未来延迟焦化技术的发展方向将更加注重实现高效生产、低排放。
延迟焦化工艺新技术探索我国大部分原油具有重质渣油多、沥青质、残炭量少的特点,采用延迟焦化工艺加工重质渣油,可以得到高达78%的馏分油收率。
所得馏出油中,汽油馏分较少,柴油与汽油的产量比值可达2.3左右,经加氢精制后,产品质量可达到规格要求,比较适合我国市场对中间馏分日益增长的需求状况。
标签:延迟焦化;工艺;新技术焦炭化过程(简称焦化)是以渣油为原料,在高温(500-550℃)下进行深度热裂化反应的一种热加工过程,包括延迟焦化、流化焦化和灵活焦化等多种工艺过程。
反应产物有气体、汽油、柴油、蜡油(重馏分油)和焦炭。
焦化工艺自20世纪30年代开发成功以来,已成为燃料型炼油厂主要的渣油转化过程。
1 延迟焦化产品主要特点焦化汽油的特点是烯烃含量高,安定性差,马达法辛烷值较低。
汽油中的硫、氮和氧的含量较高(与原料性质有关),经过稳定后的焦化汽油只能作为半成品,必须进行精制脱除硫化氢和硫醇后才能作为成品汽油的调和组分。
焦化重汽油组分经过加氢处理后可作为催化重整的原料,以进一步提高质量。
表15-1为阿拉伯重质原料的减压渣油进行焦化时,所得焦化汽油的加氢精制数据以及加氢精制前后的汽油质量比较。
焦化柴油的十六烷值较高,含有一定量的硫、氮和金属杂质;含有一定量的烯烃,性质不安定,必须进行精制脱除硫、氮杂质,使烯烃、芳烃饱和才能作为合格的柴油组分。
焦化过程中,转化为焦炭的烃类所释放的氢转移至蜡油、柴油、汽油和气体之中。
由于原料中的氢转移方向与催化裂化不同,使焦化柴油的质量明显优于催化裂化柴油。
焦化蜡油是指350-500℃的焦化馏出油,也称焦化瓦斯油(CGO)。
焦化蜡油性质不稳定,它与焦化原料油性质和焦化的操作条件有关。
焦化蜡油可作为加氢裂化或催化裂化的原料,有时也用于调和燃料油。
焦炭,即石油焦,是黑色或暗灰色坚硬固体石油产品,带有金属光泽,呈多孔性,是由微小石墨结晶形成粒状、柱状或针状构成的炭体物。
石油焦组分是碳氢化合物,含碳90%-97%,含氢1.5%’-8环,还含有氮、氯、硫及重金属化合物。
第九章延迟焦化新技术的发展与应用由于延迟焦化工艺的重要作用,近几年延迟焦化装置工艺和设备技术得到飞速发展。
本章主要介绍几个典型新技术的发展与应用。
9.1延迟焦化工艺技术的发展9.1.1可灵活调节循环比工艺技术9.1.1.1可灵活调节循环比工艺流程目前,国内延迟焦化工艺主要有传统流程、改进流程和可灵活调节循环比流程,传统流程是国内最早应用的技术,见图9-1-1.改进流程是国内第一套大型焦化上海石化焦化采用的技术,见图9-1-2。
可灵活调节循环比流程是洛阳石化工程公司针对国内焦化不能实现小循环比操作而开发的新工艺,见图9-1-3。
传统流程是大家比较熟悉的流程。
改进流程与传统流程相比主要是改进了焦化炉的流程,原料直接进对流、辐射加热,克服了传统流程焦化炉对流、辐射分开加热,对流容易超温的问题。
可灵活调节循环比流程主要是解决国内焦化小循环比操作分馏塔容易结焦而开发的新流程。
9.1.1.2可灵活调节循环比工艺流程的原理和优点可灵活调节循环比工艺流程(洛阳石化工程公司专利技术,专利号:ZL02139312.5),与经典流程相比,区别在于原料不进分馏塔,在分馏塔底部改为循环油抽出。
循环比的调节直接采用循环油与原料在罐里混合。
反应油气热量在分馏塔内采用经换热后的冷循环油换热,此流程有以下优点:①可灵活调节循环比采用循环油代替原料减压渣油在进料段与高温油气进行换热,由于循环油中胶质、沥青质大大低于减压渣油,其结焦倾向比减压渣油明显降低。
从分馏塔抽出的循环油还可以不进加热炉直接出装置,此此循比降至零。
该流程循环油不但可以是在分馏塔蒸发层冷凝下来的循环油,也可以是重蜡油、轻蜡油或柴油,实现馏分油循环。
②反应油气热量采用循环油中段回流取热方式取走,蒸发层和塔底温度可根据需要来调节。
③分馏塔底介质为循环油。
同时,温度一般可控制在360℃左右,避免了塔底结焦。
④重质原料不进焦化分馏塔,不和高温高速(油气速度可达30~40m/s)油气混合,对改善上部蜡油产品质量很有好处。
延迟焦化在炼油工业中的技术优势及进展延迟焦化(Delayed Coking)是一种重要的炼油工业技术,它在原油加工过程中具有重要的作用。
延迟焦化工艺可以将重质原油中的高分子碳氢化合物转化为高附加值的产品,具有很高的经济效益。
本文将详细介绍延迟焦化在炼油工业中的技术优势及进展。
延迟焦化工艺是一种将重质原油中的高分子碳氢化合物转化为低碳烯烃和焦油的方法。
在延迟焦化装置中,原油经过加热后,进入一个高温高压的反应器中,在高温条件下,原油分子内部的碳-碳键被断裂,形成烯烃和芳烃,同时生成一定量的焦炭。
经过蒸馏,可以得到低碳烯烃和焦油产品。
延迟焦化工艺的技术优势主要体现在以下几个方面:延迟焦化工艺可以有效提取出较高附加值的产品。
在延迟焦化装置中,原油中的高分子碳氢化合物经过催化裂化反应后,可以得到大量的轻质低碳烯烃和芳烃产品。
这些产品在化工行业中有着广泛的用途,可以用于生产乙烯、丙烯、苯乙烯等重要化工产品,具有很高的经济价值。
延迟焦化工艺可以降低原油的硫含量。
在延迟焦化装置中,高温高压的反应条件能够有效地将原油中的硫化合物转化为可分离的硫化氢,从而有效降低产品中的硫含量。
这对于符合环保要求的产品生产具有非常重要的意义。
延迟焦化工艺还可以充分利用原油中的残渣。
在炼油过程中,原油中的残渣通常被视为难以处理的废物,但延迟焦化工艺可以将这部分残渣有效地转化为有价值的产品,从而实现了资源的充分利用。
延迟焦化工艺在炼油工业中的应用已经有了长足的进展。
随着技术的不断发展,延迟焦化装置的设计和操作水平也在不断提高。
一方面,新型的延迟焦化装置不断出现,可以实现更高的产品收率和更低的能耗;延迟焦化工艺的自动化程度也在不断提高,能够更好地保证生产的安全和稳定性。
延迟焦化工艺也在不断拓展其应用范围。
除了在常规炼油工业中的应用外,延迟焦化工艺还可以用于生产生物柴油和生物乙二醇等生物能源产品。
这些产品具有较高的环保性能和可再生性,能够更好地满足当今社会对清洁能源的需求。
延迟焦化工艺新技术探索
作者:梁丽
来源:《中国新技术新产品》2012年第20期
摘要:我国大部分原油具有重质渣油多、沥青质、残炭量少的特点,采用延迟焦化工艺加工重质渣油,可以得到高达78%的馏分油收率。
所得馏出油中,汽油馏分较少,柴油与汽油的产量比值可达2.3左右,经加氢精制后,产品质量可达到规格要求,比较适合我国市场对中间馏分日益增长的需求状况。
关键词:延迟焦化;工艺;新技术
中图分类号:TF802.66 文献标识码:A
焦炭化过程(简称焦化)是以渣油为原料,在高温(500-550℃)下进行深度热裂化反应的一种热加工过程,包括延迟焦化、流化焦化和灵活焦化等多种工艺过程。
反应产物有气体、汽油、柴油、蜡油(重馏分油)和焦炭。
焦化工艺自20世纪30年代开发成功以来,已成为燃料型炼油厂主要的渣油转化过程。
1延迟焦化产品主要特点
焦化汽油的特点是烯烃含量高,安定性差,马达法辛烷值较低。
汽油中的硫、氮和氧的含量较高(与原料性质有关),经过稳定后的焦化汽油只能作为半成品,必须进行精制脱除硫化氢和硫醇后才能作为成品汽油的调和组分。
焦化重汽油组分经过加氢处理后可作为催化重整的原料,以进一步提高质量。
表15-1为阿拉伯重质原料的减压渣油进行焦化时,所得焦化汽油的加氢精制数据以及加氢精制前后的汽油质量比较。
焦化柴油的十六烷值较高,含有一定量的硫、氮和金属杂质;含有一定量的烯烃,性质不安定,必须进行精制脱除硫、氮杂质,使烯烃、芳烃饱和才能作为合格的柴油组分。
焦化过程中,转化为焦炭的烃类所释放的氢转移至蜡油、柴油、汽油和气体之中。
由于原料中的氢转移方向与催化裂化不同,使焦化柴油的质量明显优于催化裂化柴油。
焦化蜡油是指350-500℃的焦化馏出油,也称焦化瓦斯油(CGO)。
焦化蜡油性质不稳定,它与焦化原料油性质和焦化的操作条件有关。
焦化蜡油可作为加氢裂化或催化裂化的原料,有时也用于调和燃料油。
焦炭,即石油焦,是黑色或暗灰色坚硬固体石油产品,带有金属光泽,呈多孔性,是由微小石墨结晶形成粒状、柱状或针状构成的炭体物。
石油焦组分是碳氢化合物,含碳90% -97%,含氢1.5%'-8环,还含有氮、氯、硫及重金属化合物。
延迟焦化过程生产的石油焦称为原焦,又称为生焦。
由于焦化原料油性质不同,生焦在性质和外形上也有差异。
生焦经过燃烧除去挥发分和水分后即称为燃烧焦,又称为熟焦。
生焦硬度小,易粉碎,水分和挥发分含量
高。
焦炭除了可作为普通固体燃料外,还可用作高炉炼铁之用。
如果焦化原料及生产方法选择适当,石油焦经燃烧及石墨化后,可用于制造炼铝、炼钢的电极等。
2影响延迟焦化工艺的主要因素
2.1原料油性质
焦化过程的产品产率在很大程度上取决于原料油的件质。
对于不同原料油,随着原料油的密度增大,焦炭产率增大;对于同种原油而拔出深度不同的减压渣油,随着减压渣油产率的下降,焦化产物中蜡油产率和焦炭产率增加,而轻质油产率则下降。
不同原料油所得产品的性质各不相同。
原料油性质与加热炉炉管内结焦的情况有关。
性质不同的原料油具有不同的最容易结焦的温度范围,此温度范围称为临界分解温度范围。
原料油的特性因数值越大,则临界分解温度范围的起始温度越低。
在加热炉加热时,原料油应以高流速通过处于临界分解温度范围的炉管段,缩短在此温度范围的停留时间,从而抑制结焦反应。
原料油性质对选择适宜的单程裂化深度和循环比也有重要影响。
2.2操作温度
操作温度一般是指焦化加热炉出口温度或焦炭塔温度,是延迟焦化装置的重要操作指标,它的变化直接影响到炉管内和焦炭塔内的反应深度,从而影响到焦化产物的产率和性质。
当操作压力和循环比固定后,提高焦炭塔温度,将使气体和石脑油收率增加,瓦斯油收率降低,焦炭产率将下降,并将使焦炭中挥发分下降。
但是,焦炭塔温度过高,容易造成泡沫带并使焦炭硬度增大,造成除焦困难。
焦炭塔温度过高还会使加热炉炉管和转油线的结焦倾向增大,影响操作周期。
如焦炭塔温度过低,则焦化反应不完全,将生成软焦或沥青。
2.3操作压力
操作压力是指焦炭塔塔顶压力。
焦炭塔塔顶最低压力是为克服焦化分馏塔及后继系统压降所需的压力。
操作温度和循环比固定之后,提高操作压力将使塔内焦炭中滞留的重质烃量增多和气体产物在塔内停留时间延长,增加了二次裂化反应的概率,从而使焦炭产率增加和气体产率略有增加,1-s以上液体产品产率下降,焦炭的挥发分含量也会略有增加。
延迟焦化工艺的发展趋势之一是尽量降低操作压力,以提高液体产品的收率。
焦炭塔的操作压力控制在0. 1~0. 28MPa,但在生产针状焦时,为了使富芳烃的油品进行深度反应,采用0. 7MPa的操作压力。
2.4循环比
降低循环比也是延迟焦化工艺发展趋向之一,其目的是通过增产焦化蜡油来扩大催化裂化和加氢裂化的原料油量,然后,通过加大裂化装置处理量来提高成品汽、柴油的产量。
另外,
在加热炉能力确定的情况下,低循环比还可以增加装置的处理能力。
降低循环比的办法是减少分馏塔下部重瓦斯油回流量,提高蒸发段和塔底温度。
这将引起塔底和炉管结焦,开工周期缩短。
因此塔底温度不宜超过4000C。
3延迟焦化工艺新技术探索
2.1除焦技术
水力除焦是间断性操作,每一次由热渣油进入焦炭塔进行焦化到打开焦炭塔进行水力除焦,再到重新封闭焦炭塔,进行预热和进料,都要切换大最的阀门和进行一系列的操作。
为了减轻劳动强度,避免误动作,提高自动化水平,保证人员和设备的安全,提高出焦过程的自动控制水平至关重要。
在消化吸收引进技术的基础上,国产的水力除焦程序控制系统,已经具有国外类似产品的功能,能够对全部除焦设备的操作,实现显示、白动控制和安全联锁。
钻具位移模拟显示系统,可以以米为单位显示钻具在焦炭塔内的位置。
除焦控制阀,钻机绞车和高压水泵的工况得到了完整的显示,安全联锁防止了误操作的发生,只有在塔位选择正确、钻机选择正确,各相关阀门开关位置正确,除焦控制阀工况正确的情况下,高压水泵才能具备启动条件,避免可能发生的事故。
国产的变频钻机和大型化的钻杆及自动切换联合切焦器在焦炭塔直径为9.4m的扬子1.60Mt/a延迟焦化装置上取得了很好的效果。
3.2环境保护新技术
通过采用旋液分离器将冷焦水中所含的油和焦粉回收后,整个冷焦水系统可以处于全密闭的状态。
由焦炭塔排出的冷焦水进入冷焦水缓冲罐,然后用泵送至旋液分离器,分离出油和焦粉,进入空冷器冷却后循环使用。
由于冷焦水处于全密闭状态,冷焦水缓冲罐和冷焦水沉降罐的罐顶设置有脱硫剂,将这几个罐由于呼吸而排放出的大最有害气体进行吸收。
冷焦水密闭循环流程的成功设计和运行,彻底解决了过去存在的冷焦水污染问题。
同时山于冷焦水密闭循环系统内的旋液分离器具有除油作用,冷焦水的补充水可以使用延迟焦化装置自身所产的含油污水,这样,既减少了装置的污水排放量,又节约了新鲜水的用量。
结语
近年来,随着原油重质化、劣质化趋势的加剧,原油加工难度加大,轻质油品收率降低,而市场对优质轻质油品的需求又在不断增加,环保法规也越来越趋向严格。
炼油工业面临更加严峻的挑战,重油加工和充分利用正成为全球炼油业关注的主要话题。
参考文献
[1]尹先清.《化学化工专业实习》,石油工业出版社,2009.
[2]肖瑞华编,《炼焦化学产品生产技术问答》,冶金工业出版社,2007.。