汽车尾气净化催化剂
- 格式:doc
- 大小:2.42 MB
- 文档页数:6
化学催化原理在汽车尾气净化中的作用随着汽车数量的不断增加,汽车尾气排放对环境造成的污染也越来越严重。
尾气中含有大量的有害物质,如一氧化碳、氮氧化物和挥发性有机物等,对空气质量和人体健康都带来了严重的威胁。
为了减少汽车尾气的污染,科学家们研究出了一种有效的方法,即利用化学催化原理进行汽车尾气净化。
化学催化原理是指通过催化剂来加速化学反应速率的原理。
催化剂是一种能够降低反应活化能的物质,它能够提供一个新的反应路径,使得反应能够以更低的能量进行。
在汽车尾气净化中,催化剂起到了至关重要的作用。
首先,催化剂可以促进尾气中的氧化反应。
尾气中的一氧化碳(CO)是一种有害物质,它会对人体的呼吸系统造成严重的损害。
通过使用催化剂,可以将CO氧化为二氧化碳(CO2),从而减少对环境的污染。
催化剂通常是由铂、钯等贵金属制成,这些贵金属具有良好的催化活性,能够加速CO的氧化反应。
其次,催化剂还可以催化尾气中的还原反应。
尾气中的氮氧化物(NOx)是另一种有害物质,它会对大气层造成破坏,并形成酸雨。
通过使用催化剂,可以将NOx还原为氮气(N2)和水(H2O),从而减少对环境的污染。
催化剂通常是由钯、铑等金属制成,这些金属具有良好的还原活性,能够加速NOx的还原反应。
此外,催化剂还可以催化尾气中的氧化还原反应。
尾气中的挥发性有机物(VOCs)是一类对人体健康有害的物质,它们会对大气层产生光化学反应,形成臭氧和细颗粒物。
通过使用催化剂,可以将VOCs 氧化为无害的物质,从而减少对环境的污染。
催化剂通常是由铜、铁等金属制成,这些金属具有良好的氧化活性,能够加速VOCs的氧化反应。
综上所述,化学催化原理在汽车尾气净化中起到了至关重要的作用。
通过使用催化剂,可以加速尾气中有害物质的氧化、还原和氧化还原反应,从而减少对环境的污染。
随着科学技术的不断进步,催化剂的性能也在不断提高,使得汽车尾气净化技术更加高效和可靠。
相信在不久的将来,汽车尾气净化技术将会得到更广泛的应用,为改善环境质量和保护人类健康做出更大的贡献。
催化剂在汽车尾气净化中的应用汽车的普及带来了很多便利,但同时也带来了严重的环境污染问题。
尤其是汽车尾气中的有害气体排放,给人们的健康和大气环境都造成了严重威胁。
为了解决这个问题,科学家们发展出了一种有效的净化技术,即催化剂在汽车尾气净化中的应用。
本文将探讨这种技术的原理和应用情况。
一、催化剂的原理催化剂是一种物质,通过降低反应的活化能,加速化学反应的进行,但本身不参与反应过程。
在汽车尾气净化中,催化剂起到了关键的作用。
催化剂通常由一种或多种金属元素组成,比如铂、钯、铑等。
这些金属元素通过吸附、催化和还原等反应机制,能够将有害气体转化为无害的物质。
二、催化剂在汽车尾气净化中的应用1. 三元催化转化器三元催化转化器是汽车尾气净化系统中最常用的催化剂装置之一。
它主要用于去除汽车尾气中的一氧化碳(CO)、氮氧化物(NOx)和挥发性有机化合物(VOCs)等有害物质。
三元催化转化器的核心部分是由贵金属催化剂涂覆的陶瓷基底,通过反应将有害气体转化为二氧化碳(CO2)、氮气(N2)和水蒸气(H2O)等无害物质。
这种催化剂的应用使得汽车尾气的有害物质排放大大降低。
2. 柴油氧化催化转化器柴油车排放的颗粒物和有毒有害气体对环境和人体健康造成了严重威胁。
柴油氧化催化转化器是一种专门用于减少柴油车尾气排放的催化剂装置。
它能有效降低柴油车的颗粒物、一氧化碳和氮氧化物排放。
催化剂通过化学反应将有害物质转化为无害物质,并催化颗粒物的氧化反应,使其变得更易捕捉和去除。
3. 其他应用除了三元催化转化器和柴油氧化催化转化器,催化剂在汽车尾气净化中还有其他应用。
比如,选择性催化还原(SCR)系统用于减少柴油车尾气中的氮氧化物排放;氧化还原催化剂用于减少游离态氮氧化物的生成;还有一些特殊催化剂用于净化富氧燃烧和催化燃烧发动机的尾气。
这些应用都能有效地减少汽车尾气对环境的污染。
三、催化剂在汽车尾气净化中的优势和挑战1. 优势催化剂在汽车尾气净化中具有明显的优势。
三元催化器成分
摘要:
1.三元催化器的主要成分
2.载体和催化剂涂层的介绍
3.三元催化器的作用
4.三元催化器的结构
5.总结
正文:
三元催化器是一种重要的汽车尾气净化装置,它能够将汽车尾气排出的一氧化碳、碳氢化合物和氮氧化物转化为无害的气体,从而降低汽车尾气对环境的污染。
那么,三元催化器的主要成分是什么呢?
三元催化器的主要成分包括载体和催化剂涂层。
载体通常由陶瓷或金属制成,其形状有蜂窝状、网状等,用于支撑催化剂涂层。
催化剂涂层则由铂、铑、钯等贵金属以及二氧化铈、三氧化二铝等助催化剂组成,它们被涂在载体的内壁上,起到催化作用。
三元催化器的作用主要体现在降低汽车尾气的排放,其中最具代表性的是减少一氧化碳、碳氢化合物和氮氧化物的排放。
在汽车尾气经过三元催化器时,催化剂涂层会与废气中的有害物质发生反应,使它们转化为无害的氮气、二氧化碳和水蒸气等物质,从而达到净化尾气的目的。
三元催化器的结构由壳体、减震垫、绝热层、载体和催化剂涂层等部分组成。
壳体通常由不锈钢制成,用于保护内部零件;减震垫和绝热层则用于减少
震动和保温;载体和催化剂涂层则是三元催化器的核心部分,它们共同作用,使尾气得到净化。
综上所述,三元催化器的主要成分是载体和催化剂涂层,它们共同作用,使汽车尾气中的有害物质得到转化,从而降低尾气对环境的污染。
三元催化清洗剂工作原理
三元催化清洗剂是一种用于净化汽车尾气中有害物质的催化剂。
其主要工作原理如下:
1. 氧化反应:三元催化清洗剂中的钯、铂和铑等贵金属以及氧化物作为催化剂,可以促使尾气中的一氧化碳(CO)和氮氧
化物(NOx)在催化剂表面与氧气(O2)发生氧化反应。
一
氧化碳氧化成二氧化碳(CO2),氮氧化物经过氧化反应转化为氮气(N2)和水气(H2O),从而减少有害气体的排放。
2. 还原反应:在富氧条件下,三元催化清洗剂可以将氮氧化物转化为氮气和水。
在催化剂表面,尾气中的氮氧化物与一氧化碳反应生成氮气和二氧化碳。
这一还原反应也使得氮氧化物从尾气中减少排放。
3. 氧气储存和释放:当发动机负荷较低、尾气温度较低时,三元催化清洗剂可以一度储存氧气。
当发动机负荷增加、尾气温度升高时,催化剂释放储存的氧气,以促进催化反应的进行。
总的来说,三元催化清洗剂通过催化作用使尾气中的一氧化碳和氮氧化物氧化为无害的二氧化碳、氮气和水,从而减少有害气体的排放。
汽车尾气催化净化技术进展1汽车尾气净化催化发展概况随着汽车工业和交通运输业的发展汽车日益增多汽车尾气已成为当今城市空气污染的主要原因。
它严重影响了人们身体健康动植物的生长。
汽车尾气中含有许多有害物质主要包括CO、氮氧化合物NOx、碳氢化合物以及一些颗粒物(铅化物、黑烟和油雾)、臭气(甲醛或丙烯醛)等。
[1] 汽车尾气净化催化剂最早从20世纪70年代开始的氧化型催化剂它包括两种类型:一种是以柏和钯贵金属为活性组分的氧化催化剂一种是以ABO3型钙钛矿结构的复合氧化物为代表的贱金属催化剂。
当时的汽车尾气排放法规只限制CO和HC的排放而这个时期的催化剂恰好是氧化CO和HC的催化剂。
由于贵金属催化剂活性比贱金属催化剂活性高100倍以上故贱金属催化剂逐渐被贵金属催化剂淘汰。
[1] 70年代末到80年代中期又有了Pt/Rh双金属催化剂。
这期间人们开始考虑尾气中的NO_的净化转化。
人们发现铑能促进NO_还原生成N2因而产生了双床催化剂及三床催化剂。
双床催化剂采用两个反应器氧化、还原分段进行但由于这种催化剂结构复杂NOx还原后可能重新被氧化所以这种催化剂很快被淘汰了。
随后Pt/Rh三效催化剂TWC(Three Way ConversionCatalyst)开始应用在A/F(供给发动机里的空气与汽油的混合比)操作窗口内CO、HC和NO_转化率可达到80%-90%以上。
[1] 80年代中期开始Pt/Rh/Pd新一代催化剂产生了这种催化剂活性成分是Pt、Pd及Rh等贵金属它能同时降低CO、HC 和NO_而且不受汽车发动机的影响还能经受发动时由常温到高负荷的高温变化。
[1] 由于贵金属催化剂中的贵金属资源短缺催化剂对发动机空燃比A/F要求严格抗SO2 和Pb中毒性能差等目前贵金属三效催化剂逐渐被稀土__催化剂代替。
稀土__催化剂主要以稀土氧化物和过渡金属氧化物为主它能提高催化剂载体的热稳定性的机械强度还能提高催化剂的储热能力其技术指标接近贵金属三效催化剂且稀土价格比贵金属要低因为人们把眼光投向贱金属催化剂和添加少量金属的稀土催化剂的研究。
三元催化器汽车排气系统汽车尾气净化装置三元催化三元催化三元催化器三元催化,是指将汽车尾气排出的CO、HC和NOx等有害气体通过氧化和还原作用转变为无害的二氧化碳、水和氮气的催化。
主要是用三元催化器,三元催化器的载体部件是一块多孔陶瓷材料,安装在特制的排气管当中。
称它是载体,是因为它本身并不参加催化反应,而是在上面覆盖着一层铂、铑、钯等贵重金属。
是安装在汽车排气系统中最重要的机外净化装置。
原理三元催化器的工作原理是:当高温的汽车尾气通过净化装置时,三元催化器中的净化剂将增强CO、碳氢化合物和NOx三种气体的活性,促使其进行一定的氧化-还原化学反应,其中CO在高温下氧化成为无色、无毒的二氧化碳气体;碳氢化合物在高温下氧化成水(H20)和二氧化碳;NOx还原成氮气和氧气。
三种有害气体变成无害气体,使汽车尾气得以净化。
三元催化器保养由于中国的燃油品质普遍较差,燃油中含有硫、磷以及所使用的抗爆剂MMT中含有锰,这些化学成分在燃烧后随着废气的排出,会在氧传感器表面和三元催化器内部形成化学络合物。
另外,由于驾驶员的不良驾驶习惯,或者长期行驶在拥堵路面,发动机经常处于不完全燃烧状态,会在氧传感器和三元催化器内形成积炭。
此外,国内很多地区使用乙醇汽油,这种汽油有很强的清洗作用,会将燃烧室内的积垢清洗但不能分解燃烧,因此随着废气的排放这些污垢也会沉积在氧传感器表面和三元催化器内。
正是由于诸多因素,使得汽车在行驶一段里程后,除了会在进气门和燃烧室内产生积炭外,还会造成氧传感器和三元催化器中毒失效、.三元催化三元催化器堵塞以及EGR阀被沉积物阻塞卡滞等故障,造成发动机工作不正常,造成油耗增加、动力下降和尾气超标等问题。
传统的发动机定期保养仅限于润滑系统、进气系统以及燃油供给系统的基本养护,却无法满足现代发动机润滑系统、进气系统、燃油供给系统和排气系统的全方位保养要求,特别是排放控制系统保养的要求。
因此车辆即使长期正常保养,也难以避免上述问题的产生。
汽车尾气催化剂三元催化剂生产技术工艺配方0001、尾气催化净化装置02、一种净化内燃机尾气的NOx储存-还原催化剂03、一种汽车尾气净化催化剂及其制备方法04、尾气净化用催化剂05、一种天然气汽车尾气净化催化剂06、用于汽车尾气净化的La1-xAgxMnO307、一种同时脱除汽车尾气中氮氧化物和一氧化碳的催化剂08、光催化净化发动机尾气的装置09、用于汽车尾气处理的陶磁催化剂10、汽车尾气净化催化剂及其制备方法11、硫磺尾气加氢催化剂的制备方法12、含硫富氧尾气中氮氧化物净化催化剂13、一种高效净化汽车尾气催化剂及制备方法14、用于尾气净化的整体式低温等离子体催化反应器15、一种稀土基摩托车尾气净化催化剂的制备方法16、摩托车尾气净化催化剂17、降低柴油车尾气中碳烟颗粒燃烧温度的催化剂及制备方法18、天然气发动机尾气净化催化剂及其制备方法19、用于柴油机尾气中碳颗粒燃烧的纳米超细微粒催化剂及其制备方法20、一种汽油车尾气催化剂及其制备方法21、稀燃汽油车尾气排放氮氧化物选择性还原催化剂制备方法22、汽车尾气净化器催化剂金属载体及其制备方法23、柴油车尾气碳烟燃烧和NOx存储-还原的双功能催化剂及制备方法24、净化汽车尾气三效催化剂及制备方法25、克劳斯尾气加氢催化剂26、一种天然气汽车尾气催化性能评价系统27、净化汽车尾气的催化剂及专用补气装置28、用作尾气催化剂储氧和释氧成分的富铈材料的磨制方法29、包含铑、氧化锆和稀土氧化物的尾气催化剂30、一种汽车尾气催化净化的催化剂及其制备方法31、汽车尾气净化催化剂及一次性制备方法32、具有NOx存储催化器和前置催化器的尾气净化方法和尾气净化装置33、汽车尾气净化三效催化剂及其制备方法34、一种吸波催化剂、其制备及其在净化汽车尾气中的应用35、泡沫陶瓷载体三效汽车尾气净化催化剂制备方法36、一种汽车尾气催化净化催化剂及其制备工艺37、从汽车尾气废催化剂中回收铂、钯、铑的方法38、硫磺尾气加氢催化剂及其制备方法39、汽车尾气净化催化剂及其制备方法40、溶胶-凝胶法制备三效尾气催化剂的方法41、汽车尾气净化催化剂及其使用该催化剂的载体的制造方法42、富氧尾气氮氧化物净化催化剂43、汽车尾气催化转化器44、稀散元素催化剂汽车尾气净化方法45、稀散元素汽车尾气净化催化剂及制备方法46、用以净化柴油机尾气的催化剂47、一种内然机尾气净化催化剂及制备方法48、机动车尾气催化剂49、用于净化内燃机尾气的催化剂50、臭氧-催化剂法汽车尾气净化器及其净化工艺51、实用高效多元催化汽车尾气净化技术52、用于净化工业废气和汽车尾气的催化剂53、汽车尾气微波净化催化剂54、汽车尾气氧化氮净化用催化剂55、机动车尾气净化催化剂及其与金属载体结合的制作工艺56、用于净化内燃机尾气和/或工业废气的催化剂及其制备57、一种金属载体汽车尾气催化净化器58、汽车尾气催化剂59、四元柴油尾气催化剂和应用方法60、汽车尾气净化催化剂及其制备方法61、一种催化剂用于汽车尾气催化净化的用途和方法62、一种汽车尾气净化用微波催化净化装置63、基于球弧蜂窝板的汽车尾气催化器64、基于圆形蜂窝板的尾气催化器65、对设置在内燃机尾气通道上的NOx-存储催化剂进行NOx-再生的方法和装置66、稀燃汽油机用三效催化器和空燃比优化控制降低尾气中NOx排放的方法67、汽车尾气三元催化剂及其制备方法68、控制内燃机尾气通道中设置的NOx-存储催化剂脱硫的装置和方法69、内燃机节油及尾气四元催化净化器70、黄磷尾气固定床催化氧化净化的方法71、一种用于汽车尾气处理的复合介孔催化剂材料及制备方法72、一种汽车尾气净化催化剂的制备方法73、一种汽车尾气净化催化剂的涂覆方法74、一种涂覆汽车尾气净化催化剂的方法75、应用微波技术的发动机尾气处理器及其催化剂和制备方法76、稀薄燃烧尾气氮氧化物净化催化剂及净化方法77、用于汽车尾气处理的催化剂及制备方法78、一种稀薄燃烧型汽车尾气催化净化方法和装置79、含稀土型焦炉尾气净化回收硫的催化剂及制备方法80、一种在蜂窝载体上负载汽车尾气净化催化剂的方法81、一种负载汽车尾气净化催化剂在蜂窝载体上的方法82、用于净化汽车尾气的催化剂83、一种制备高分子量脂肪族聚碳酸酯的三元催化剂84、无铑三元催化剂85、无铂三元催化剂86、稀土复合氧化物型三元催化剂及制备方法87、铜基复合氧化物三元催化剂及制备方法88、用于处理废气的三元催化剂89、工业化制备稀土三元催化剂的方法90、净化汽车尾气用抗硫四效催化剂注意事项:1、以上均为专利技术原文(原文什么样,我们提供给您的就什么样).专利文献中包含专利发明人,发明时间,技术原理,工艺流程,配方,图纸,以及实现其产品的生产全过程。
汽油发动机的尾气净化催化剂1、满足欧Ⅳ及以上排放标准的汽油车尾气净化催化剂尾气排放特征:常规污染物为HC,CO,NOx,尾气温度有时超过1000℃以上,高空速(30,000-100,000h-1), 高水蒸气(10%左右)浓度和SOx存在的极端条件下具有高活性和10万公里耐久性要求,且要求低贵金属。
欧Ⅵ及以上排放标准采用密偶催化剂(CCC)+三效催化剂(TWC)。
1)密偶催化剂(CCC):靠近发动机、解决发动机冷启动时尾气排放。
主要功能是降低冷启动时HC的排放量, 大部分HC是冷启动时排出的,这时催化剂未达到起燃温度不能进行反应和发动机启动时处于富油工况,氧化过程因贫氧而不完全。
其关键是催化剂的低温活性、高温稳定性、抑制CO的转化和HC的高转化率。
2)三效催化剂(TWC):在密偶催化剂(CCC)后,低贵金属,高性能及高温抗老化性(10-16万Km耐久试验)。
3)组成:●基体:陶瓷蜂窝体或金属蜂窝体●催化剂载体:氧化铝、储氧材料等●助剂:ZrO2, La2O3等辅助材料●活性组分:Pt、Pd、Rh等贵金属4)尾气净化催化反应原理:HC+O2 ® CO2 +H2O (1)CO+O2® CO2 (2)NO+CO ® N2+CO2 (3)NO+HC ® CO2+N2+H2O (4)NO+H2® N2+H2O (5)CO+H2O ® CO2+H2 (6)HC+H2O ®CO+H2 (7)空燃比控制好才能保证最佳反应效果,每个反应都需两种反应物,λ=1,才能保证所需的各种反应物的量是合适的,净化效果最好,若空燃比偏差增大,净化效果急剧下降,甚至不能净化。
应用领域:轻型汽油车新车配套及在用车改装2 、满足国Ⅲ及以上排放标准的摩托车尾气净化催化剂尾气排放的特征:常规污染CO 、HC 、NOx,成分复杂,温度高,空速大,对催化剂的要求非常苛刻。
三元催化剂标准
三元催化剂(TWC,Three-Way Catalytic Converter)是一种用于汽车尾气净化的催化转化器,主要用于同时减少氮氧化物(NOx)、一氧化碳(CO)和碳氢化合物(HC)的排放。
各个国家和地区都可能有相关的标准和规定,这些标准通常由相关的汽车排放控制机构或标准制定组织负责。
以下是你可能要查找的一些与三元催化剂相关的标准:
1.美国标准:
•在美国,联邦环境保护局(EPA)负责管理汽车排放标准。
你可以查阅相关的《清洁空气法案》(Clean Air Act)以及
EPA发布的有关三元催化剂的技术标准和要求。
2.欧洲标准:
•欧洲汽车排放标准通常由欧洲委员会颁布。
查找欧洲排放标准的最新版本,并检查其中关于三元催化剂的规定。
3.中国标准:
•中国国家标准可能包括对三元催化剂性能和排放的规定。
查找由中国国家标准化管理委员会(SAC)发布的相关标
准。
4.其他国家标准:
•其他国家和地区也可能有自己的汽车排放标准,例如日本、韩国等。
查找这些地区的相关标准文件。
请注意,由于标准可能会定期更新,建议你查阅最新版本的标准
文档以确保你获取的是最准确和最新的信息。
最好的途径是直接联系相关的标准制定机构或汽车排放控制机构,或者查阅其官方网站。
催化剂的定义:能改变反应速率,而本身的组成、质量和化学性质在反应前后均不发生变化的物质叫做催化剂。
加快反应的为正催化剂,减慢反应的为负催化剂。
催化剂的特点:催化剂只能实现热力学上可以发生的反应;催化剂只能缩短或延长到达平衡的时间,而不能改变转化率;催化剂具有选择性;催化剂是第一步的反应物,最后一步的产物,即经过一次化学循环后又恢复到原来的。
绿色催化剂定义:绿色化学要求最大限度地合理利用资源,最低限度地产生环境污染和最大限度地维护生态平衡。
它对化学反应的要求是:采用无毒、无害的原料;在无毒无害及温和的条件下进行;反应必须具有高效的选择性;产品应是环境友好的。
这四点要求之中有两点涉及到催化剂,人们将这类催化反应成为绿色催化反应,其使用的催化剂也就称为绿色催化剂。
汽车尾气净化的方法:国外早在20世纪60年代中期对汽车污染控制技术已经进行了研究开发,目前己达到实用阶段。
研究表明,通过改善催化剂及其载体的性能和生产工艺,改善汽车内燃机燃烧技术及三效催化剂排气系统的处理可净化这些有害气体。
汽车尾气污染控制可以分为机内和机外两种技术。
机内净化主要是提高燃油质量和改善燃料在发动机中的燃烧条件,尽可能减少污染物的生成;机外净化的主要方式是安装催化净化器,对有害气体进行处理是机外尾气净化最有效的方法,催化剂又是净化效果的关键。
因此开发实用高效的汽车尾气净化催化剂是控制汽车尾气排放的最佳措施之一。
汽车尾气催化净化的目的就是将有害的CO和HC氧化为CO2和H2O,将NOx 还原成N2。
由于汽车尾气的化学成分很复杂,其转化率除和催化剂的活性有关外,还和反应气是氧化气还是还原气有关,因此催化剂在功能上分为氧化型和还原型两部分。
氧化型催化剂主要催化CO和HC的氧化反应,有关反应如下:2CO+O2 2CO24HC+5O2 4CO2+2H2O2NO+2CO 2CO2+N2HC+NO2 CO2+H2OHC+CO N2+CO2+H2O3NO+2NH3 2N2+3H2O2NH3 N2+3H2O还原型催化剂主要催化NOx的还原反应:2NO+CO N2+CO22NO+H2 N2+2H2O2NO+HC N2+H2O+CO2NO和H2反应除生成无毒的N2和H2O外,尚有所不希望发生的副反应:2NO+5H2 2NH3+H2O2NO+H2 N2O+2H2O因两种反应要求的化学环境不同,故早期的催化剂将两者分立。
催化科学与技术的里程碑-尾气净化催化剂陈耀强四川大学催化材料研究所汽车尾气的污染随着经济的发展,汽车产量迅速增长,2013年全球汽车产量达到8280万辆,预计将在2021年突破1亿辆。
我国2013年的汽车产量为2212万辆,已连续五年蝉联全球第一。
2013全国汽车保有量1.37亿辆车辆从2003年到2013年10年间,我国汽车保有量增长迅速,从2400万辆增长到1.37亿辆,年均增加1100多万辆。
在今后相当长的时期内,我国汽车社会发展仍将保持强劲势头。
随着汽车保有量的不断增加,汽车尾气污染物的排放量不断增加。
2012年,全国机动车排放污染物4612.1万吨,其中,氮氧化物(NOx)640.0万吨,颗粒物(PM)62.2万吨,碳氢化合物(HC)438.2万吨,一氧化碳(CO)3471.7万吨。
汽车尾气污染物的危害不仅体现在排放量大,更重要的体现在尾气污染物的特征和排放部位上。
以PM2.5为例说明汽车污染物的特征。
PM2.5的危害取决于三个方面:(1)尺寸越小危害越大,(2)化学组成的毒性越大危害越大,(3)数量越大危害越大。
PM2.5的主要来源为汽车,工业排放(以燃煤为主)和扬尘。
扬尘的颗粒较大,主要为氧化硅等无机物,有机组分最少,危害小,防控容易。
燃煤和汽车的PM2.5均含有高致癌的多环芳烃(PAHs)及其他有机组分,但燃煤的PM2.5所占比例没有汽车高,颗粒较大,质量比汽车大,但数量远没有汽车的PM2.5多,燃煤和其他工业排放的PM2.5也属于重点控制对象。
汽车尾气的PM2.5的特征为:(1)汽车的PM2.5的粒度为0.04-0.3μm(柴油车0.3μm,汽油车0.1μm ,摩托车0.04μm),可在人体的任何地方造成危害。
(2)化学组成的毒性大,含有16种多环芳烃(图4)等高致癌物质和致病物质。
(3)数量极大,目前排放PM2.5最少的压缩天然气车每公里排放6000亿个PM2.5,PM2.5的危害是以数量而不是以质量。
(4)基本上不沉降,长期累积。
汽车尾气的排放部位离地面仅30-50cm左右,在人的呼吸带内,人体吸进去的是未经稀释的高浓度污染物,是一类极其特殊的污染物排放。
而其他的污染源(如离城市20公里燃煤电厂)排放经过空间稀释后浓度已降到原始浓度的数万分之一,这是汽车尾气污染危害远大于其他类型的污染的关键所在,对呼吸系统,心,脑血管,神经系统和眼睛造成巨大危害。
图1、柴油车,压缩天然气车和汽油车的PM2.5图2、柴油车,汽油车和摩托车的排污状况排放法规和尾气净化技术面对日益严重的尾气污染,各国制定了汽车尾气排放法规并且尾气控制技术的发展逐步加严以控制汽车尾气污染。
世界的主要排放法规有,美国,欧盟,日本,印度等法规体系,我国采用的欧盟的法规。
表1为欧盟的汽油车排放标准的排放限值。
欧盟的汽油车排放限值CO (g/km) HC+ NOx(g/km)HC(g/km)NOx(g/km)PM(number)寿命(万km)欧II 2.2 0.5 8欧III 2.3 0.2 0.15 8欧IV 1.0 0.1 0.08 10 欧V 1.0 0.1 0.06 5×101116 欧VI 1.0 0.1 0.06 5×101116我国的汽车尾气排放标准参照欧洲排放标准制定的,排放限值以及测试方法基本一致。
自2000年起开始对各类机动车分阶段颁布实施了国Ⅰ、国Ⅱ、国Ⅲ和国Ⅳ和国Ⅴ排放标准。
汽车尾气控制技术包括机内净化技术和机外净化技术。
机内控制技术主要提高发动机性能,减少污染物排放,近年来发展了燃油电子喷射技术,废气在循环技术(EGR),氧传感器技术,NOx传感器技术,高压共轨技术,涡轮增压技术等一系列技术,以降低发动机的污染物排放。
但单凭机内净化是达不到排放标准要求的。
机外净化技术主要是尾气催化净化技术,包括理论空然比燃烧的汽油车催化剂,摩托车催化剂,理论空然比的压缩天然气车催化剂技术,稀燃的柴油车的NOx选择性还原(SCR)催化剂,氧化催化剂(DOC),带催化剂涂层的颗粒物捕集器(CDPF)技术和稀燃压缩天然气车的氧化催化剂技术。
机内净化和机外净化配合共同达到排放标准,如柴油车在实施国IV排放阶段,采取机内燃油电子喷射,高压共轨和涡轮增压技术后,将发动机排放的NOx降到9g/kwh,而机外的SCR催化剂则将排放的NOx降到3.5g/kwh,从而达到国IV排放标准。
汽车尾气净化催化剂的技术难点和要求汽车尾气净化催化剂是近40年来催化领域发展最为成功的催化剂[1],也是环境领域污染物控制的最成功范例,是由各国政府的排放法规推动的重大科学创新。
以CO为例,在上世纪60年代,汽车尾气的CO排放量为40g/km左右,在2000年实施欧Ⅲ排放标准和2005年实施欧Ⅳ排放标准后则分别降为2.3g/km 和1g/km,比未治理时分别下降了94%和97%,在人口和车辆持续增加的情况下,世界上很多城市实现了汽车尾气污染持续大幅度下降,PM2.5,美国,日本等已下降到年均12微克/立方米,实现了空气质量的根本好转。
汽车尾气净化催化剂是科学和技术同时密集产品,已有27000多项专利和40000多篇论文。
如此众多的科学和技术积累在其他催化剂领域是极为少见的。
但在世界范围内,能够提供满足排放标准的主要公司仅有巴斯夫,庄信,优美科三家,处于变相垄断的地位,并且这三家公司均在我国建立独资工厂,争夺我国的市场。
汽车尾气净化催化剂的工作条件极为苛刻:(1)汽油车催化剂是在高温(最高可达1000℃)和高空速(每小时处理尾气的体积相当于催化剂自身体积的3万到10万倍),柴油车催化剂是在低温和高空速的条件下工作,并且有水蒸气和毒物(SOx)存在。
(2)由于汽车运行不断处于加速,减速和停止等状态,导致尾气的温度,流速和排气组成处于不断变化之中,尾气净化催化剂始终处于非稳态,与工业催化剂在稳态工作形成鲜明对比。
(3)由于要同时净化HC,CO,NOx 和PM2.5多种污染物,催化剂上要同时高效进行氧化,还原,氧化还原,水气变换,蒸气重整等多个不同类型化学反应,难度极大。
汽车尾气净化是按燃烧方式的不同而采取不同的催化净化方法,汽燃烧方汽油车和摩托车都是使用汽油为燃料,发动机采用的是理论空燃比的燃烧方式,部分天然气车,主要是小排量的车也是采用理论空然比的燃烧方式。
柴油车以及大排量的压缩天然气车采用稀燃的燃烧方式。
所谓理论空燃比就是按燃料完全燃烧(氧化)所需氧供给空气的空气和燃料的质量比,对于汽油燃料发动机,空气和燃料的质量比为14.7。
对于稀燃的柴油发动机空气和燃料的质量比为26。
下面按汽油车和柴油车介绍尾气净化催化剂。
尾气净化催化剂是整体式催化剂,由基体和涂覆在基体上的催化剂涂层组成。
基体分为两类,通透式和壁流式。
通透式又分为陶瓷蜂窝体和金属蜂窝体两类。
陶瓷蜂窝体由堇青石,莫来石,富铝红柱石等组成,但实际使用的基本上堇青石。
金属蜂窝体是由特定组成的铁铬铝薄带经过卷制后真空钎焊制成。
壁流式基体用于净化PM2.5,是由通透式的孔道两端交替封堵而成,孔为正方形,由一个孔不封堵的一段进气,由于另一端被封堵,气体由四个孔壁透过到另一端不封堵的四个孔排除,PM2.5被捕集在孔道中经由催化转化或喷油燃烧去除。
壁流式基体主要由碳化硅(CSi),堇青石等材料制备。
催化剂涂层的厚度在40微米左右,由几微米大小的催化剂粉体材料(载体+活性组分)和粘接剂等组成。
图陶瓷基体和金属基体汽油车尾气净化催化剂1975年美国首先在汽油车上安装催化转化器,1986年欧洲,日本也开始安装。
早期的催化剂为氧化催化剂,只氧化HC和CO,八十年出现三效催化剂,同时净化HC,CO和NOx。
随着氧传感器和燃油电子喷射闭环控制系统的出现,空燃比控制精度的显著提高,为三效催化剂提供了更好的尾气环境。
三效催化剂由最原始的氧化铝负载的Pt,Rh三效催化剂,添加大量CeO2的所谓“高技术”三效催化剂,到铈锆固溶体储氧材料和稳定的氧化铝同时作为载体的三效催化剂和净化冷启动期间排放的密偶催化剂,净化效率和催化剂寿命显著提高。
在欧Ⅴ排放标准阶段,催化剂的寿命已达到16万公里,已实现大部分时段污染物已接近零排放,在冷启动,变速等工况排放少量污染物。
汽油车尾气净化催化剂是发展最为成功的催化剂。
目前的催化剂涂层组成为:两种载体材料,铈锆固溶体和稀土稳定的氧化铝,贵金属有Pd/Rh ,Pt/Pd/Rh,Pt/Rh等组合,Ce,Zr,La,Pr,Ba 等助剂,实际上在40μm厚度的涂层中有多种催化剂存在,同时实现对多种污染物的高效净化。
汽油车催化剂的发展趋势是催化剂的寿命和性能的提高,寿命最好能与整车同寿命,现在看来还有很大距离,燃油缸内直喷技术和混合动力车的发展,也给汽油车催化剂科学和技术提出了挑战。
柴油车尾气净化催化剂柴油车尾气的特征是低温,氧过量,HC和CO还原剂偏少,NOx和PM高,单种技术不能解决问题。
采用选择性催化还原(SCR)催化剂净化NOx,采用氧化催化剂(DOC)净化HC,CO和PM中的有机液体组分(SOF),采用带催化剂涂层的颗粒物捕集器净化PM中的干碳(Soot)部分。
柴油车尾气净化的成本远高于汽油车。
柴油车的SCR,DOC和CDPF配置如图3所示。
图3柴油车的SCR,DOC和CDPF配置柴油车的SCR系统由于涉及到还原剂尿素溶液随运行工况喷射形成了一个复杂的系统,如图3所示。
包括尿素溶液的供给和喷射,催化剂,传感器等。
SCR 催化剂早期使用的是由火电厂脱硝的钒基催化剂,由于其毒性和耐高温性能差,不能与CDPF匹配使用,现在在发达国家已停止使用,主流催化剂为负载Cu或Fe的分子筛催化剂,此外复合氧化物催化剂正在发展中。
图4 尿素-SCR系统柴油车的DOC净化HC,CO和PM中的SOF,催化剂中的Pt氧化HC和CO,催化剂中的Ce组分氧化SOF,催化剂中的分子筛组分在柴油车冷启动期间吸附HC和CO直至尾气温度升高到其转化温度。
此外,DOC还要求具有将NO氧化成NO2的功能,NO2在后置的CDPF中参与对PM的低温氧化,所以DOC属于多功能催化剂。
其发展趋势是进一步优化其性能并提高耐久性。
柴油车的CDPF捕集和净化PM的干碳部分,催化剂涂层氧化掉一部分,来自DOC的NOx在较低的温度下通过NO2+C→CO2+NO就可氧化一部分,催化剂涂层将NO再次氧化成NO2,重复前述过程。
催化剂和NO2对PM的氧化仍不能阻止PM 在CDPF上的聚集,只是大为延缓聚集时间。
当PM在CDPF上载到一定量时,就会在DOC前喷入燃油,增高尾气温度,使CDPF上的PM燃烧反应而去除,在此过程中,催化剂起着加快燃烧速率,减少燃油消耗的作用。
待CDPF上的PM清除后停止喷油,重复前述过程。