(完整word版)北京初二数学知识点与常见题型总结,推荐文档
- 格式:doc
- 大小:2.88 MB
- 文档页数:25
北师大版八年级数学上册完全复习知识点+典型例题(word 版可编辑修改)- 1 -北师大版八年级数学上册完全复习知识点+典型例题(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版八年级数学上册完全复习知识点+典型例题(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为北师大版八年级数学上册完全复习知识点+典型例题(word 版可编辑修改)的全部内容。
- 2 -八年级数学上册复习 第一章 勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即222a b c +=。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法).3.勾股定理逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形.满足222a b c +=的三个正整数称为勾股数. 第二章 实数1.平方根和算术平方根的概念及其性质:(1)概念:如果2x a =,那么x 是a 的平方根,记作:a 的算术平方根。
(2)性质:①当a ≥0时0;当a<0时,;②2=a;③a=。
2.立方根的概念及其性质:(1)概念:若3x a =,那么x 是a 的立方根,(2)性质:a =;②3a=;=3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称; (2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零.无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意=ab a b=义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
北京初中数学知识点总结大全一、数与代数1. 整数和有理数- 整数的概念:正整数、负整数、零- 有理数的概念:分数、小数、混合数- 有理数的四则运算:加法、减法、乘法、除法- 有理数的比较大小:绝对值、相反数、倒数2. 不等式与方程- 一元一次不等式及其解法- 一元一次方程及其解法- 含有绝对值的一元一次方程- 二元一次方程组的解法:代入法、消元法3. 函数- 函数的概念:定义、函数关系式- 线性函数、二次函数、反比例函数的图像和性质- 函数的基本运算:函数的和、差、积、商4. 几何图形的坐标表示- 平面直角坐标系的建立- 点的坐标表示- 直线、圆的方程表示5. 几何图形的计算- 三角形、四边形的面积计算公式- 圆的周长和面积公式- 立体图形的表面积和体积公式二、几何1. 平面几何- 点、线、面的基本性质- 角的概念:邻角、对角、同位角- 三角形的分类与性质:等边、等腰、直角三角形- 四边形的分类与性质:平行四边形、矩形、菱形、正方形- 圆的基本性质:圆心、半径、直径、弦、弧、切线2. 空间几何- 空间图形的基本概念:点、线、面、体- 空间直线与平面的位置关系- 空间图形的计算:体积、表面积3. 变换几何- 平移、旋转、对称(轴对称、中心对称)的概念及其在几何图形中的应用- 通过变换解决几何问题的方法三、统计与概率1. 统计- 数据的收集、整理与描述- 频数分布表和直方图的绘制与解读- 平均数、中位数、众数的计算与意义2. 概率- 随机事件的概念- 概率的计算:古典概型、列举法- 事件的可能性和不可能性四、解题技巧与方法1. 逻辑推理- 演绎推理、归纳推理、类比推理- 通过逻辑推理解决数学问题2. 解题策略- 分析法、综合法、反证法- 通过策略选择解决复杂问题3. 数学思维- 数学建模、抽象思维、空间想象- 培养解决实际问题的能力以上是北京初中数学的主要知识点总结。
在实际学习过程中,学生应该注重理解和掌握每个知识点的内在联系和逻辑结构,通过大量的练习来巩固和深化理解。
初中数学知识点北京版总结一、数与代数1. 有理数的运算- 正数、负数、整数、分数、小数的概念- 有理数的加、减、乘、除运算规则- 乘方、开方的概念及运算- 绝对值的概念及性质2. 整式的运算- 单项式、多项式的概念- 整式的加减、乘法、除法运算- 因式分解的方法:提公因式、公式法、分组分解法3. 代数式的化简与变形- 代数式的基本概念- 代数式的化简技巧- 代数式的变形方法4. 一元一次方程与不等式- 方程与方程的解法- 不等式的性质与解法- 线性方程组的解法:代入法、消元法5. 函数的基本概念与性质- 函数的定义与表示方法- 函数的图象与性质- 常见函数:一次函数、二次函数、反比例函数二、几何1. 平面图形的认识- 点、线、面的基本性质- 角的概念:邻角、对角、平行线与对顶角- 三角形的分类与性质:等边、等腰、直角三角形2. 图形的变换- 平移、旋转、对称(轴对称、中心对称)的概念及性质 - 坐标系中点的平移与坐标变化规律3. 圆的性质- 圆的基本性质:圆心、半径、直径、弦、弧、切线- 圆的定理:垂径定理、圆周角定理、切线长定理4. 面积与体积的计算- 平面图形的面积计算公式:矩形、三角形、梯形、圆- 立体图形的体积计算公式:长方体、正方体、圆柱、圆锥5. 解析几何初步- 坐标系中点的位置表示- 直线与曲线的方程表示三、统计与概率1. 统计- 数据的收集、整理与描述- 频数与频率的概念- 统计图表的制作与解读:条形图、折线图、饼图2. 概率- 随机事件的概念- 概率的计算方法- 简单事件与组合事件的概率四、综合应用1. 实际问题的数学建模- 运用数学知识解决实际问题- 数学建模的基本步骤2. 数学思想方法的应用- 逻辑思维与数学推理- 数学归纳法、反证法等数学证明方法3. 数学综合题的解题策略- 分析问题、寻找解题思路- 综合运用各种数学知识点解题以上是北京版初中数学的主要知识点总结,学生在学习过程中应注重理解和掌握每个知识点的内涵和联系,通过大量的练习来提高解题能力和应用能力。
八年级北京版核心知识点八年级是初中中段的一个关键阶段,学生需要掌握许多重要的知识点,才能够顺利地迈入高中。
下面是北京版八年级学科的核心知识点,帮助学生在这个关键时期更好地了解考试重点。
数学1.代数运算:包括整式的加减法、乘法,分式的加减法、乘法、除法。
2.方程及不等式:包括一元一次方程、一元二次方程,一元一次不等式等。
3.几何:包括平面几何和立体几何。
4.统计与概率:包括统计中的频率和频率分布,概率中的事件、随机事件和条件概率。
语文1.阅读理解:包括文言文、现代文和报告文学等文体的阅读理解。
2.作文:包括议论文、说明文、应用文和作文技巧等。
3.红楼梦:深入理解红楼梦这部中国古典小说的情节和意义。
英语1.语法:包括动词时态和语态、被动语态、虚拟语气等。
2.听力:包括理解日常用语、口语表达和听懂讲座等。
3.阅读:包括短文理解、词汇、语法和完形填空等。
4.写作:包括书信、应用文和写作技巧等。
历史1.建国初期的社会主义建设:包括“五年计划”、“大跃进”和“文化大革命”。
2.近代史:包括鸦片战争、辛亥革命、五四运动和中国共产党的成立等。
3.世界史:包括古代人类的演化、文化交流、世界大战和联合国等。
地理1.中国的地理环境:包括天气、气候、地形和水文等。
2.人口与城市:包括人口分布、城市规划、交通和旅游等。
化学1.化学元素:包括元素周期表、元素简介和元素反应等。
2.化学反应:包括酸碱反应、氧化还原反应和化学方程式等。
3.化学实验:包括安全实验操作、实验记录和实验分析等。
物理1.力学:包括牛顿三定律、运动学和牛顿定律等。
2.光学:包括光的反射、折射和光的成像等。
3.声学:包括声音的传播、共振和波动等。
生物1.细胞:包括细胞结构、细胞生命周期和细胞分裂等。
2.遗传:包括DNA、RNA和基因等。
3.生态:包括生态系统、生物群落和生态学原理等。
以上就是北京版八年级各科的核心知识点,希望学生们可以针对性地准备各科考试,取得好成绩。
初中数学知识点大全1、一元一次方程根的情况△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)×180度②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果 ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
北京初中数学知识点总结第一篇:北京初中数学知识点总结备战2010中考:初中数学知识点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A 的立方根。
一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
北京初中数学知识点总结一、数的概念与计算数的概念数的分类:自然数、整数、有理数、实数数轴的认识及应用分数分数的基本概念与性质分数的加减乘除运算分数的化简与比较大小小数小数的基本概念与性质小数的加减乘除运算小数与分数的相互转化百分数百分数的基本概念与应用百分数的加减乘除运算百分数与分数、小数的互相转化简便计算简便计算法则的灵活运用主要包括乘法口诀、除法术语、多位数观念的运用等二、代数运算代数式代数式的基本概念与性质代数式的加减乘除运算方程与不等式方程的基本概念与性质一元一次方程的解法一元一次不等式的解法方程与不等式的应用问题函数与图像函数的基本概念与性质一次函数与二次函数的特征与表示函数与图像的关系及应用三、几何图形的认识几何图形的分类与性质角的认知与性质线段、中点、垂直、平行线的认知与性质三角形三角形的分类与性质三角形的周长和面积计算三角形的相似与全等直线与曲线直线与曲线的基本概念与性质直线与曲线的交点及其应用圆圆的特征与性质圆的计算:长度、面积圆与直线的位置关系四、统计与概率统计统计的基本概念与方法数据图表的读取与应用平均数的计算与比较概率概率的基本概念与性质随机事件的计算与分析概率与实际问题的应用五、其他几何与代数的结合几何和代数的转化与应用解方程的实际应用将实际问题转化为方程求解运用比例比例的认识与应用质因数分解质因数分解的方法与应用这是对北京初中数学知识点的一个简要总结,涵盖了数的概念与计算、代数运算、几何、统计与概率等主要内容。
通过系统学习这些知识点,希望能够帮助同学们巩固数学基础,提升数学能力。
北京初二数学下知识点归纳总结数学是一门重要的学科,它帮助我们理解并运用逻辑思维解决问题。
在初中的数学学习中,北京的学生们学习了许多知识点。
本文将对北京初二数学下的知识点进行归纳总结,以便帮助学生们更好地复习和巩固所学知识。
一、代数与方程1. 代数表达式- 代数字母与实数的关系- 代数式的定义与运算2. 方程与不等式- 一元一次方程的解法- 一元一次不等式的解法- 一元二次方程的解法(求根公式、配方法)3. 基本运算律- 乘方的运算规则- 收集同类项、消去因子二、图形与几何1. 二维图形- 基本二维图形的性质(点、线、线段、射线、角) - 平行线与垂直线的性质- 三角形的性质(内角和、外角)2. 相似与全等- 相似图形的判定与性质- 全等图形的判定与性质3. 圆的性质与运用- 圆的定义与性质- 弧与扇形的计算三、数据与概率1. 统计与概率- 数据的收集与整理- 数据的分析与解读- 概率的基本概念与计算2. 平均数与中位数- 平均数的计算与应用- 中位数的计算与应用3. 抽样调查与推断统计- 抽样方法与误差分析- 样本调查数据的推断统计四、空间与立体1. 空间图形的投影- 正交投影与倾斜投影的概念- 立体图形的正交投影与倾斜投影2. 空间图形的计算- 直线与平面的交点计算- 空间图形的体积与表面积计算3. 空间图形的相交关系- 空间图形的投影与判断- 平行、垂直关系的判断以上是北京初二数学下的主要知识点总结。
通过系统地学习和复习这些知识点,学生们可以更好地理解数学概念,并能够灵活运用于解决实际问题。
希望本文的归纳总结对学生们的学习有所帮助!。
北京课改版八年级数学(下)知识点总结(经典)第十五章一次函数知识结构图知识要点1.常量:在一个过程中,的量叫做常量。
2.变量:在一个过程中,的量叫做变量。
x 3.函数的概念:一般地,在中,有,对于变量的y,变量,我们就把称为自变量,称为因变量,是的函数。
初中对函数概念的理解,主要应抓住一下三点:⑴;⑵;⑶.4.定义域:一般地,一个函数的叫做这个函数的定义域。
5.定义域的确定方法首先考虑自变量的取值必须使函数关系式有意义:⑴当函数关系式是整式时,函数的定义域是;⑵当函数关系式是分式时,函数的定义域是;⑶当函数关系式是二次式时,函数的定义域是;⑷当关系式中有零指数时,函数的定义域是。
当函数表示实际问题时,其定义域不仅要 ,而且要 。
6. 叫做函数的解析式。
用解析式表示函数关系的方法叫 。
7.用 来表示函数关系的方法叫列表法。
8.用 来表示函数关系的方法叫图像法。
9.平面直角坐标系内的点与 一一对应。
10.四个象限内点的横、纵坐标的特点第一象限内的点 ;第二象限内的点 ;第三象限内的点 ;第四象限内的点 。
11.特殊位置的点的坐标特点⑴轴上的点;轴上的点。
x y ⑵第一、三象限角平分线上的点 ;第二、四象限角平分线上的点 。
⑶与轴平行的直线上的点 ;x 与轴平行的直线上的点 ;y 12.关于坐标轴和原点对称的两对称点的坐标特点⑴关于轴对称的两个点 ;x ⇔⑵关于轴对称的两个点 ;y ⇔⑶关于原点对称的两个点 。
⇔13.坐标平面上两点间的距离⑴同轴上两点间的距离:①轴上两点间的距离:已知,、,,则;x (1x A )0(2x B )0__________=AB ②轴上两点间的距离:已知,、,,则;y (0P )1y (0Q )2y __________=PQ ⑵异轴上两点间的距离:已知,、,,则。
(x M )0(0N )y __________=MN 14.点到坐标轴及原点的距离⑴点到坐标轴的距离:①点,到轴的距离;(x P )y x _____=d②点,到轴的距离。
知识点复习与基本题型总结1.平行四边形的定义两组对边分别平行的四边形叫做平行四边形这个定义包含两层意义:①四边形;②两组对边分别平行2.对角线的定义平行四边形不相邻的两个顶点连成的线段叫做它的对角线3.平行四边形的性质①从边看:平行四边形的对边平行且相等②从角看:平行四边形的对角相等,邻角互补③从对角线看:平行四边形的对角线互相平分,互相平分是指两条线段有公共的中点4.平行四边形的面积平行四边形的面积等于它的底和这个底上的高的积.5.平行四边形的判别方法①两组对边分别平行的四边形是平行四边形②一组对边平行且相等的四边形是平行四边形③两组对边分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形⑤两组对角分别相等的四边形是平行四边形6.平行四边形的性质与判定的区别平行四边形的性质是指平行四边形的边,角,对角线等所具有的大小或位置之间的关系,而平行四边形的判定是指四边形具有什么条件就是平行四边形7.矩形的定义有一个角是直角的平行四边形是矩形8.矩形的性质①具有平行四边形的一切性质②矩形的四个角都是直角③矩形的对角线相等④矩形是轴对称图形,它有两条对称轴9.矩形的判定①有一个内角是直角的平行四边形是矩形②对角线相等的平行四边形是矩形③有三个角是直角的四边形是矩形另外还有对角线相等且互相平分的四边形是矩形10.直角三角形的性质直角三角形斜边上的中线等于斜边的一半11.矩形对角线产生的三角形的特点矩形的一条对角线把矩形分成两个全等的直角三角形,两条对角线把矩形分成四个小的全等的等腰三角形12.有关矩形面积的计算①面积公式:矩形面积=长⨯宽②如图.矩形ABCD的两条对角线相交于O,则14 ABO BCO CDO ADOS S S S S∆∆∆∆====矩形ABCDOAB CD13.菱形的定义一组邻边相等的平行四边形叫做菱形14.菱形的性质①具有平行四边形的一切性质②菱形的四条边都相等③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角④菱形是轴对称图形,每条对角线所在的直线都是它的对称轴15.菱形的判定方法①有一组邻边相等的平行四边形是菱形②对角线互相垂直的平行四边形是菱形③四条边都相等四边形是菱形16.有关菱形的面积计算由于菱形的对角线互相垂直平分,11()22ABD CBDS S S BD OA OC BD AC ∆=+=+=⋅ABC DO也可以用平行四边形的面积计算公式=底⨯高17.正方形的定义一组邻边相等的矩形叫做正方形正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形18.正方形的性质正方形具有平行四边形,矩形,菱形的一切性质①边:四边相等,对边平行②角:四个角都是直角③对角线:互相平分;相等;且垂直;每一条对角线平分一组对角,即正方形的对角线与边的夹角为45︒④正方形是轴对称图形,有四条对称轴19.正方形的判定①菱形+矩形的一条特征②菱形+矩形的一条特征③平行四边形+一个直角+一组邻边相等说明一个四边形是正方形的一般思路是:先判断它是矩形,在判断这个矩形也是菱形;或先判断它是菱形,再判断这个菱形也是矩形20.正方形对角线产生的三角形特点正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个小的全等的等腰直角三角形21.正方形常用的辅助线添加方法①正方形中常连对角线,把四边形的问题转化为三角形的问题②有垂直时做垂线构造正方形③有正方形一边中点时常取另一边中点构造图形来应用④利用旋转法将与正方形有关的题目的分散元素集中起来,从而为解决问题创造条件22.平行四边形,菱形,矩形,和正方形四者之间的关系对角线垂直对角线相等一个内角为直角一组邻边相等正方形菱形平行四边形矩形23.梯形定义:一组对边平行而另一组对边不平行的四边形叫做梯形梯形的底:梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底梯形的腰:梯形中不平行的两边叫做梯形的腰梯形的高:梯形两底之间的距离叫做梯形的高等腰梯形:两腰相等的梯形直角梯形:一腰垂直于底的梯形24.梯形的判定①判定四边形一组对边平行,另一组对边不平行②一组对边平行但不相等的四边形是梯形25.等腰梯形的性质①两底平行,两腰相等②等腰梯形在同一底上的两个角相等③等腰梯形的两条对角线相等④等腰梯形是轴对称图形,只有一条对称轴,一底的垂直平分线是它的对称轴26.等腰梯形的判定①两腰相等的梯形是等腰梯形②在同一底上的两个角相等的梯形是等腰梯形(以前出现,但是在新课标中没有出现的判定方法:对角线相等的梯形是等腰梯形)27.梯形的面积面积=(上底+下底)×高÷228.三角形中位线:连接三角形两边中点的线段,叫做三角形的中位线,三角形的中位线平行于第三边,并且等于第三边的一半梯形中位线:连接梯形两腰中点的线段,叫做梯形的中位线.梯形中位线平行于两底,并且等于两底和的一半梯形辅助线的添法(图一) (图二) (图三)(图四) (图五) (图六)(图七) (图八)基础题型1.如图在平行四边形ABCD 中,:5:3A B ∠∠=,求这个平行四边形各内角的度数ABCD解:Q 四边形ABCD 是平行四边形∴AD BC ∥,180A B ∠+∠=︒ 由于:5:3A B ∠∠=故设5A x ∠=,则3B x ∠=中点中点即53180x x +=︒解得22.5x =︒ 因此522.5112.5A ∠=⨯︒=︒,322.567.5B ∠=⨯︒=︒ ∴平行四边形各内角度数分别是112.5︒,67.5︒,112.5︒,67.5︒ 2.已知平行四边形ABCD 的周长为38cm ,AC ,BD 相交于O ,且AOB ∆的周长比BOC ∆的周长小于3cm ,如图,求平行四边形ABCD 各边的长 解:Q 四边形ABCD 为平行四边形∴OA OC =,AB CD =,BC AD =Q AOB ∆的周长=OA OB AB ++ BOC ∆的周长=OC OB BC ++且AOB ∆的周长比BOC ∆的周长小于3cm ∴()()3OC OB BC OA OB BC ++-++= 3BC AB ∴-=又Q 平行四边形ABCD 的周长为38cm ∴19BC AB +=∴8AB =cm ,11BC =cm ∴8CD =cm ,11AD =cm3.如图,已知:在平行四边形ABCD 中,BD 是对角线,AE BD ⊥于E ,CF BD ⊥于F 求证:AE CF =DCBAEF证明:方法一:Q 四边形ABCD 是平行四边形 ∴AB CD ∥,AB CD = ∴ABE CDF ∠=∠ Q AE BD ⊥,CF BD ⊥ ∴AEB CFD ∠=∠∴()ABE CDF AAS ∆≅∆ ∴AE CF =O DCBAEF方法二:连接AC ,交BD 于O Q 四边形ABCD 是平行四边形∴OA OC =,又AE BD ⊥,CF BD ⊥ ∴AEO CFO ∠=∠,而AOE COF ∠=∠ ∴AEO CFO ∆≅∆(AAS )∴AE CF = 4.如图所示,在平行四边形ABCD 中,E ,F 分别是AC ,CA 延长线上的点,且CE AF =,则BF 与DE 具有怎么样的位置关系?试说明理由EF ABCD解:BF DE ∥证明:方法一:在平行四边形ABCD 中,AB CD ∥,AB CD =, ∴BAC DCA ∠=∠Q 180BAC BAF ∠+∠=︒,180ACD DCE ∠+∠=︒ ∴BAF DCE ∠=∠又Q AF CE = ∴AFB CED ∆≅∆()SAS方法二.连接BD ,交AC 于O在平行四边形ABCD 中,AO CO =,BO DO = Q AF CE = ∴OF OE =Q FOB EOD ∠=∠ ∴BOF DOE ∆≅∆(SAS ) ∴F E ∠=∠ ∴BF DE ∥OEF ABC DOEF ABCD方法三.连接BD ,交AC 于O ,连接DF ,BE 由方法二知.OF OE =,OB OD = ∴四边形BEDF 为平行四边形 ∴BF DE ∥5.如图,已知O 是平行四边形ABCD 对角线的交点,38AC =cm ,24BD =cm ,14AD =cm ,那么OBC ∆的周长为_____ODCBA解:根据平行四边形对角线互相平分以及对边相等的性质可知14BC AD ==cm ,11241222OB BD ==⨯=cm ,11381922OC AC ==⨯=cm∴OBC ∆的周长为14121945BC OB OC ++=++=cm6.如图平行四边形ABCD 中,EF AB ∥,GH AD ∥,EF 与GH 交于O ,则该图形中的平行四边形的个数共有( )A.7 B.8 C.9 D. 10FED CB AGHO由题意可知图中的平行四边形分别是:DEOH ,EAGO ,HOFC ,OGBF ,DAGH ,HGBC ,DEFC ,EABC ,DABC 所以共有9个7.如图,平行四边形ABCD 中,AF 平分DAB ∠交CD 于N ,交BC 的延长线于F ,DE AF ⊥,交AB 于M ,交CB 延长线于E ,垂足为O ,试证明:BE CF =ON MF EABCD证明:Q 四边形ABCD 为平行四边形 ∴AD BC ∥,AB CD ∥,AB CD =∴DAF F ∠=∠,ADE E ∠=∠,EDC AMD ∠=∠ Q DE AF ⊥,∴90AOM AOD ∠=∠=︒ Q AF 平分DAB ∠,∴DAF BAF ∠=∠ Q OA OA = ∴AOM AOD ∆≅∆(ASA )∴ADM AMD ∠=∠,BAF F ∠=∠,EDC E ∠=∠ ∴AB BF =,CD CE =BF CE ∴=∴BE CF =8.如图,已知:D ,E ,F 分别在ABC 的各边上,DE AF ∥,DE AF =,延长FD 到G ,使2FG FD =.求证:AG 与DE 互相平分.ABCDEFGABC D EF G证明:连接AD ,EGQ DE AF ∥,DE AF =∴四边形AEDF 是平行四边形 ∴DF AE =,DF AE ∥又Q 2FG FD =∴12DG DF FG ==∴DG AE =,而DF AE ∥ ∴四边形AEGD 为平行四边形 ∴AG 与DE 互相平分9.如图,已知D 是ABC ∆的边AB 的中点,E 是AC 上的一点DF BE ∥,EF AB ∥试说明:AE 与DF 互相平分ABCDEFABCDE F证明:连接AF ,DE Q DF BE ∥,EF AB ∥∴四边形BDFE 为平行四边形,∴EF BD = Q D 是AB 中点 ∴BD AD =∴AD EF =,AD EF ∥ ∴四边形ADEF 为平行四边形 ∴AE 与DF 互相平分10.如图,点M ,N 分别在平行四边形ABCD 的边BC ,AD 上,且BM DN =,ME BD ⊥,NF BD ⊥,垂足分别为E ,F ,求证:MN 与EF 互相平分MNABCDEF MNABCDE F证明:连接EN ,MFQ 四边形ABCD 是平行四边形 ∴BC AD ∥,∴CBD ADB ∠=∠Q 90MEF NFE ∠=∠=︒,90MEB NFD ∠=∠=︒ ∴ME NF ∥Q BM DN = ∴BME DNF ∆≅∆()AAS∴ME NF =∴四边形EMFN 是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴MN 与EF 互相平分11.如图,AF 与BE 互相平分,交点为M ,EC 与DF 互相平分,交点为N ,那么,四边形ABCD 是平行四边形么?你是怎么判定的?NM EFABCDNM EFABCD解:四边形ABCD 是平行四边形证明:连接AE ,BF ,EF ,DE ,CF Q AF 与BE 互相平分∴四边形ABFE 是平行四边形 ∴EF AD ∥,EF AD = Q EC 与DF 互相平分∴四边形BCEF 是平行四边形 ∴EF BC ∥,EF BC = ∴AD BC =,AD BC ∥∴四边形ABCD 是平行四边形12.如图,已知BE ,CF 是ABC ∆的高,D 是BC 的中点.求证:DE DF =ABCDEF证明:Q BE ,CF 是ABC ∆的高,∴BFC ∆,BEC ∆均为直角三角形 Q D 是BC 的中点∴DF 是Rt BFC ∆斜边上的中线,DE 是Rt BEC ∆斜边上的中线∴12DF BC =,12DE BC =∴DE DF =13.如图,先将矩形纸片ABCD 对折一次折痕为EF ,展开后又将纸片折叠使点A 落在EF 上,此时折痕为BM ,求NBC ∠度数的大小MNABCDEF GFEDCBAN M提示:根据题意得111222AE BE DF FC CD AB BN ======过点N 作NG BC ⊥,垂足为G则12NG BN =,∴30NBC ∠=︒(直角三角形中30︒角所对的直角边等于斜边的一半,反过来也成立)14.过矩形ABCD 对角线AC 的中点O 作EF AC ⊥分别交AB ,DC 于E ,F ,点G 为AE 的中点,若30AOG ∠=︒,求证:13OG DC =GFEAB CDOODCBAEFG证明:连接CEQ 四边形ABCD 是矩形 ∴OA OC = Q EF AC ⊥∴EF 是线段AC 的垂直平分线 ∴EA EC =Q 30AOG ∠=︒ ∴60ACB ∠=︒,30OCE ∠=︒∴30BCE ∠=︒ ∴12BE EC =Q G 是AE 中点∴1122OG AG GE AE CE ==== ∴OG AG GE EB ===∴13OG DC =15.在矩形ABCD ,6AB =,8BC =,将矩形折叠,使点C 与点A 重合,折痕为EF ,在展开,求折痕EF 的长FEDCBAO解:Q 6AB =,8BC = ∴由勾股定理可得10AC =根据题意有AF CF =,设AF CF x ==,8BF x =-由勾股定理222AB BF AF +=,即2226(8)x x +-= 解得254x = ∴254FC =Q 2575642AFCE S CF AB =⨯=⨯=Y ,12AFCE S AC EF =⨯Y ∴152EF =(提示:对角线互相垂直的四边形面积等于对角线乘积的一半) 16.已知:如图,O 是矩形ABCD 对角线的交点,AE 平分BAD ∠,120AOD ∠=︒,求AEO ∠的度数EODC BA答案:提示ABE ∆为等腰直角三角形,OAB ∆为等边三角形,OBE ∆为等腰三角形 30OBE ∠=︒,75OEB ∠=︒,754530OEA ∠=︒-︒=︒17.如图,MN 为过Rt ABC ∆的直角顶点A 的直线,且BD MN ⊥于D ,CE MN ⊥于点E ,AB AC =,F 为BC 的中点,求证:DF EF =ABCDEFNMABCDEFNM证明:连接AFQ ABC ∆为直角三角形,F 为斜边BC 的中点 ∴BF AF CF ==Q 90BAC ∠=︒ ∴90BAM NAC ∠+∠=︒ Q BD MN ⊥,CE MN ⊥∴90BAM DBA ∠+∠=︒,90BDA AEC ∠=∠=︒∴DBA EAC ∠=∠,又Q AB AC = ∴DBA EAC ∆≅∆(AAS )∴DB AE =Q AB AC =,90BAC ∠=︒,F 为BC 的中点 ∴45ABC FAC ∠=∠=︒∴DBA ABC CAF CAN ∠+∠+∠+∠,即DBF FAE ∠=∠又Q DB AE =,AF BF = ∴DBF EAF ∆≅∆(SAS )∴DF EF =总结:在直角三角形中,出现中点时,常见的辅助线是斜边上的中线以及中位线18.如图E 是菱形ABCD 边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于G ,求证:AB 与EF 互相平分GHA BC DEFFEDCBAHG证明:Q 四边形ABCD 是菱形∴BAC DAC ∠=∠ Q AC EG ⊥,AH AH = ∴AHE AHG ∆≅∆(ASA )∴AE AG = Q 12AE AD =∴12AG AB = Q AD BC ∥ ∴F AEG ∠=∠Q BGF AGE ∠=∠ ∴AGE BGF ∆≅∆(AAS ) ∴EG FG =,AG GB = 即AB 与EF 互相平分方法二:连接AF ,BE由12AE AD =,12AG AB =得AGE AEG BGF BFG ∠=∠=∠=∠,则AE AG BG BF === ∴AE BF ∥且AE BF =∴四边形AFBE 为平行四边形 ∴AB 与EF 互相平分19.如图,在ABC ∆中,90ACB ∠=︒,AD 是A ∠的平分线,交BC 于点D ,CH 是AB 边上的高,交AD 于F ,DE AB ⊥于E .求证:四边形CDEF 是菱形 ABCDEFH证明:Q AD 是A ∠的平分线 ∴CAD EAD ∠=∠ Q 90ACB ∠=︒,CH AB ⊥∴90CAD CDA ∠+∠=︒,90FAH AFH ∠+∠=︒ ∴CDA AFH ∠=∠ Q AFH CFD ∠=∠∴CFD CDF ∠=∠ ∴CF CD =Q AD 是A ∠的平分线,CD AC ⊥,DE AB ⊥ ∴CD DE = ∴CF DE = Q CH AB ⊥,DE AB ⊥∴CH DE ∥∴四边形CFED 是平行四边形Q CD CF = ∴平行四边形CFED 是菱形20.菱形ABCD 中,120DAB ∠=︒,如果它的一条对角线长为12cm ,求菱形ABCD 的边长 解:AB CDODCBA若对角线12AC =cm ,如图Q 四边形ABCD 为菱形,且120DAB ∠=︒∴60DAC BAC ∠=∠=︒则ADC ∆为等边三角形 ∴菱形ABCD 的边长为12cm 若对角线12BD =cm ,如图Q 四边形ABCD 为菱形,且120DAB ∠=︒∴60DAC BAC ∠=∠=︒则ADC ∆为等边三角形 又Q OD OB =∴6OD OB ==cm 设OA x =,2AD x =, 由勾股定理可得222(2)6x x =+,解得23x =,∴43AD =cm 综上所述:菱形ABCD 的边长为12cm 或43cm22.如图,四边形ABCD 是正方形,E 是CD 的中点,F 是BC 上的一点,且3BF FC = 求证:AE EF ⊥ABCDEFABCDEF证明:连接AF ,设FC k =,则4BC k =Q 四边形ABCD 是正方形 ∴90B C D ∠=∠=∠=︒,4AB BC CD AD k ==== Q E 为CD 中点 ∴2DE EC k ==在Rt ABF ∆中,222225AF AB BF k =+= 在Rt ECF ∆中,22225EF EC FC k =+= 在Rt ADE ∆中,222220AE AD DE k =+= 则222AE EF AF +=,∴AEF ∆是直角三角形∴90AEF ∠=︒ ∴AE EF ⊥(到初三的时候此题还有额外的证明方法)23.如图,过正方形ABCD 对角线BD 上一点P ,作PE BC ⊥于E ,作PF CD ⊥于F ,连接AP ,EF .求证:AP EF =,AP EF ⊥FEPABCDH DCBAPEF证明:连接PC ,延长AP 交EF 于点HQ 四边形ABCD 是正方形∴45ABP CBP ∠=∠=︒,AB BC =Q BP BP = ∴ABP CBP ∆≅∆(SAS ) ∴AP CP =,BAP BCP ∠=∠Q PE BC ⊥,PF CD ⊥,BC CD ⊥∴四边形PECF 为矩形(有三个角为直角的四边形为矩形) ∴PC EF = ∴PA EF =Q PF EC =,90EPF PEC ∠=∠=︒ ∴PEF EPC ∆≅∆(HL )∴PFE PCE ∠=∠ ∴PFE BAP ∠=∠Q AB BC ⊥,PE BC ⊥ ∴AB PE ∥ ∴BAP EPH ∠=∠Q 90PFE PEH ∠+∠=︒ ∴90EPH PEH ∠+∠=︒ ∴AP EH ⊥24.如图正方形ABCD 中,M 是AB 的中点,MN DM ⊥,BN 平分CBE ∠,交MN 于N 求证:DM MN =NABCDEMFM EDCBAN证明:取线段AD 的中点F ,连接FM Q 四边形ABCD 为正方形∴AB AD =,90A ABC ∠=∠=︒ Q F 为AD 中点,M 为AB 中点 ∴DF AF AM MB ===∴45AFM AMF ∠=∠=︒ ∴135DFM ∠=︒ Q BN 平分CBE ∠ ∴45CBN EBN ∠=∠=︒ ∴135MBN ∠=︒ ∴DFM MBN ∠=∠ Q DM MN ⊥ ∴90DMA NMB ∠+∠=︒Q 90DMB ADM ∠+∠=︒ ∴ADM MBN ∠=∠在DMF ∆与MNB ∆中MDF NMB DF MB DFM MBN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴DMF MNB ∆≅∆()ASA ∴DM MN =思考:若点M 是线段AB 上一个动点,其他条件不变,则上面的结论还成立么?M EDCB ANFM EDCBAN请参考上面的解题思路,本题还有额外的证明方法,但是需要初三学习的知识,现在就不列举了25.如图,在梯形ABCD 中,AD BC ∥,AD BC <,E ,F 分别是AD ,BC 的中点,且EF BC ⊥,求证:梯形ABCD 为等腰梯形AB CDEF M NAB CDEF证明:过E 分别作AB ,DC 的平行线交BC 于M ,N ,易知四边形ABME 和四边形DCNE都是平行四边形∴AE BM =,DE NC =,AB EM =,DC EN =Q E ,F 分别是AD ,BC 的中点 ∴AE DE =,BF CF =∴BM CN = ∴BF BM CF NC -=- ∴MF NF ⊥Q EF BC ⊥ ∴EM EN = ∴EF 是线段MN 的垂直平分线 ∴ME NE = ∴AB CD = 故梯形ABCD 是等腰梯形26.已知等腰梯形ABCD 中,AB CD =,60B ∠=︒,15AD =cm ,49BC =cm ,求它的腰长DC B AEAB CD解:方法一:过点A 作AE DC ∥,交BC 于点E Q AD BC ∥ ∴四边形AECD 为平行四边形∴AD EC =,DC AE =Q AB DC = ∴AE AB = Q 60B ∠=︒ ∴四边形ABCD 为等边三角形∴BE AB = Q 15AD =,49BC = ∴491534BE BC CE BC AD =-=-=-= ∴34AB CD ==cm方法二MNABCD过点A 作AM BC ⊥,垂足为M ,过点D 作DN BC ⊥,垂足为N Q 四边形ABCD 为等腰梯形 ∴AB CD =,B C ∠=∠ Q 90AMB DNC ∠=∠=︒ ∴ABM DCN ∆≅∆(AAS ) ∴BM CN =Q 90AMN MND ADN ∠=∠=∠=︒∴四边形AMND 为矩形 ∴AD MN = 49BC =Q ,15AD =∴11()(4915)1722BM CN BC AD ==-=-=Q 60B ∠=︒ ∴30BAM ∠=︒ ∴234AB BM ==cm27.如图,在ABC ∆中,AB AC >,AD 平分BAC ∠,CD AD ⊥,点E 是BC 的中点求证:①DE AB ∥ ②1()2DE AB AC =-ABCD EFE DCBA证明:①延长CD 交AB 于点FQ AD CD ⊥,∴90ADC ADF ∠=∠=︒ Q AD 平分BAC ∠ ∴DAC DAF ∠=∠ Q AD AD =∴ADC ADF ∆≅∆(ASA )(AD 又是高,又是角平分线,很容易联想到“三线合一”) ∴AC AF =,FD DC = Q 点E 是BC 的中点∴DE 是三角形CBF ∆的中位线∴DE BF ∥,12DE BF =②Q AB AF BF -=∴BF AB AC =-∴1()2DE AB AC =-28.如图,在梯形ABCD 中,DC AB ∥,BC DC AB =+,E 是AD 中点 求证:90CEB ∠=︒ABCDEABCDEF证明:取BC 中点F ,连接EF 由梯形中位线性质可知EF DC AB ∥∥且1()2EF DC AB =+Q BC DC AB =+ ∴2EF BC = ∴EF CF FB == ∴90CEB ∠=︒ 基础知识达标一、精心选一选(每小题3分,共30分)1、在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A .1:2:3:4B .1:2:2:1C .2:2:1:1D .2:1:2:1 2、菱形和矩形一定都具有的性质是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .对角线互相平分且相等 3、下列命题中的假命题是( )A .等腰梯形在同一底边上的两个底角相等B .对角线相等的四边形是等腰梯形C .等腰梯形是轴对称图形D .等腰梯形的对角线相等 4、四边形ABCD 的对角线AC 、BD 交于点O ,能判定它是正方形的是( )A .AO =OC ,OB =OD B .AO =BO =CO =DO ,AC ⊥BD C .AO =OC ,OB =OD ,AC ⊥BD D .AO =OC =OB =OD 5、给出下列四个命题⑴一组对边平行的四边形是平行四边形 ⑵一条对角线平分一个内角的平行四边形是菱形中 点中 点中 点⑶两条对角线互相垂直的矩形是正方形⑷顺次连接等腰梯形四边中点所得四边形是等腰梯形。