波导裂缝天线
- 格式:doc
- 大小:1.88 MB
- 文档页数:73
波导缝隙天线分析与研究波导缝隙天线是一种广泛应用于无线通信领域的设备,它的性能优劣直接影响到无线通信系统的性能。
本文将围绕波导缝隙天线展开分析与研究,具体包括其定义、特点、应用场景等方面,并对其优缺点进行深入探讨。
波导缝隙天线定义与特点波导缝隙天线是一种利用波导窄边缝隙作为辐射源的微波天线,它主要由波导和缝隙两个部分构成。
波导通常采用传输线形式,通过在波导窄边开缝产生辐射,实现电磁波的发射和接收。
波导缝隙天线具有结构简单、易于制造、成本低等优点,同时具有高辐射效率、宽频带及良好定向性等优良特性。
波导缝隙天线应用场景波导缝隙天线因其优良的性能而被广泛应用于卫星通信、移动通信和互联网等多个领域。
卫星通信在卫星通信领域,波导缝隙天线被广泛应用于地球站、卫星地面站等场所。
作为一种典型的微波通信方式,卫星通信对天线的性能要求较高,而波导缝隙天线的高辐射效率、宽频带及良好定向性等特点恰好满足其需求。
通过与其他微波器件的配合,波导缝隙天线可用于实现卫星通信链路的发送和接收。
移动通信在移动通信领域,波导缝隙天线同样具有广泛的应用。
例如,在基站建设中使用波导缝隙天线可以增强信号覆盖范围和提高信号质量。
波导缝隙天线还被用于移动终端设备中,以提高设备的通信性能。
互联网在互联网领域,波导缝隙天线主要应用于无线局域网(WLAN)和微波接入互联网(WiMAX)等无线通信系统。
在这些系统中,波导缝隙天线作为发射和接收装置,可以实现高速无线数据传输。
同时,其宽频带及良好定向性的特点有助于提高无线通信系统的容量和稳定性。
波导缝隙天线优缺点波导缝隙天线具有许多优点,如结构简单、易于制造、成本低等。
同时,它还具有高辐射效率、宽频带及良好定向性等优良特性。
然而,波导缝隙天线也存在一些缺点,主要表现在以下几个方面:交叉极化性能较差交叉极化是衡量天线性能的重要指标之一,它表示天线的辐射方向图中主极化分量与交叉极化分量的比值。
在实际应用中,波导缝隙天线的交叉极化性能较差,这可能导致信号质量的下降。
波导缝隙阵列天线与印刷缝隙单元天线研究波导缝隙阵列天线与印刷缝隙单元天线研究摘要:随着无线通信技术的迅猛发展,天线作为通信系统中不可或缺的重要组成部分,其设计和性能研究一直受到广泛关注。
在天线研究领域中,波导缝隙阵列天线和印刷缝隙单元天线是两种热门的研究方向。
本文将对这两种天线结构进行比较研究,探讨其特点、优缺点以及适用范围,以期为天线设计和应用提供一定的指导和参考。
关键词:波导缝隙阵列天线,印刷缝隙单元天线,特性比较,优缺点,适用范围1. 引言天线是无线通信系统中的重要组成部分,其设计和性能直接影响着通信系统的传输质量和性能。
波导缝隙阵列天线和印刷缝隙单元天线是当前研究较为广泛的两种天线结构,各自具有特点和优缺点。
本文将对波导缝隙阵列天线和印刷缝隙单元天线的特性进行比较研究,旨在为天线的设计和应用提供一定的参考。
2. 波导缝隙阵列天线2.1 特点波导缝隙阵列天线是一种在导电板上安装缝隙结构的天线。
其主要特点如下:a) 可以实现较高的方向性和较宽的工作频带;b) 抗干扰能力强,适用于高复杂度的通信环境;c) 具有较大的增益和较低的副瓣水平;d) 可以实现相位喷流控制和电子波束扫描。
2.2 优缺点波导缝隙阵列天线具有以下优点:a) 高方向性:可以实现较高的方向性和较宽的工作频带,适用于需要远距离通信的应用场景;b) 抗干扰能力强:其缝隙结构可以提高天线的抗干扰能力,适用于高复杂度的通信环境;c) 较大增益和较低副瓣水平:可以实现较大的增益和较低的副瓣水平,提高通信系统的传输质量。
然而,波导缝隙阵列天线也存在一些缺点:a) 结构复杂:波导缝隙阵列天线的制造和调整过程较为复杂,需要较高的技术要求;b) 尺寸较大:由于其结构特点,波导缝隙阵列天线的尺寸通常较大,不适用于体积较小的设备。
3. 印刷缝隙单元天线3.1 特点印刷缝隙单元天线是通过在平面导体上打开缝隙来实现的微带天线结构。
其主要特点如下:a) 结构简单:与波导缝隙阵列天线相比,印刷缝隙单元天线结构相对简单,制造和调整难度较小;b) 尺寸小巧:由于其基于微带技术,印刷缝隙单元天线通常具有较小的尺寸,适用于体积较小的设备;c) 易于集成:印刷缝隙单元天线可以方便地与其他电路元件进行集成。
图1 可快速迭代的波导阵列天线设计方法步骤一:从天线的指标出发(波束宽度、副瓣水平、波束指向等),通过天线综合的方法获得所需的口经场幅度、相位分布,典型的综合方法如泰勒综合法、切比雪夫综合法、伍德沃德加权综合法等。
此过程还依赖于天线的近远场转换技术,可在天线形式已知的情况下实现口径场与远场的相互转换,是一项关键的技术。
步骤二:利用口径场求解缝隙电导分布。
此过程的实现依赖于微波网络的分析技术,涉及多端口网络参数的相互转化,如根据口径场分布进而得到缝隙处的散射场(S参数),由S参数与导纳矩阵Y之间的转换关系,进而得到缝隙电导分布。
步骤三:通过获得的缝隙电导分布,确定每个缝隙的电图2 缝隙导纳分布波导缝隙的阻抗特性是决定天线阵单个阵元特性最为重要的特性。
确定缝隙阵列所需的导纳分布后,便要获得缝隙导纳与其电尺寸的对应关系,经拟合的缝隙倾角与归一化导纳之间的对应关系如图3所示。
另外,缝隙的切深可由谐振频率等因素确定。
图3 缝隙谐振时倾角与电导的拟合曲线本文设计中采用标准矩形波导BJ-100,内部尺寸22.86mm*10.16mm,波导壁厚为1.72mm。
设计由226元缝隙构成的天线阵,相邻缝隙间等间距分布、交替导向。
考虑到扫描角度、带宽、功率容量等因素,设定缝隙间距为 (a) 天线侧视图 (b)天线俯视图 (c)缝隙波导天线 (d)天线结构和尺寸图4 天线形式图4 高性能波导缝隙阵列天线测试结果采用XD-II型天线近远场天线测量系统,对阵列天线进行测试。
测试件数量为3个X波段雷达天线。
测试内容包括天线方向图、天线增益、天线电压驻波比。
测试方法如下。
(1)天线方向图。
在微波暗室内采用平面近场扫描方法,进行天线方向图测试。
被测天线为发射天线,探头接收发射信号。
将天线架设在转台上,调整天线的方位面和俯仰面,确定天线辐射阵面与探头扫描面保持平行。
天线架设及调平完毕以后,启用平面近(远)场测量测试软件,设置近(远)场平面测试系统测试参数,进行测试并自动记录,保存被测天线近场采集数据。
X波段缝隙波导天线阵列综合设计发布时间:2022-05-13T08:53:10.651Z 来源:《科技新时代》2022年3期作者:宋军林琦[导读] 实现了低幅瓣电平、40°余割平方宽波束维相位加权的缝隙波导阵列天线设计,为其他缝隙波导天线阵列综合设计提供参考。
贵州航天南海科技有限责任公司贵州省遵义市563000摘要:本论文立足于某雷达研制的应用背景,该雷达发射采用方位机扫+俯仰相扫体制,方位上通过泰勒加权优化缝隙波导,实现低幅瓣电平,俯仰上通过基于遗传算法优化加权,形成赋形波束(0~40°),接收采用BDF多波束形成。
本论文结合任务指标需求,采用AnsoftHFSS、CST、Matlab天线仿真软件,验证了波导建模和天线阵列赋形仿真,实现了低幅瓣电平、40°余割平方宽波束维相位加权的缝隙波导阵列天线设计,为其他缝隙波导天线阵列综合设计提供参考。
关键词:波导缝隙天线泰勒加权遗传算法波束赋形1 引言波导缝隙天线是从上世纪四十年代开始出现和发展起来的,现在已被广泛地应用于微波通信和雷达系统中。
它的优点在于阵列馈电系统与辐射系统合一,天线整体厚度很小。
而且波导缝隙可以用数控机床精密加工,波导本身就是低损耗馈电系统,所以可以精确的控制口面幅度和相位分布,容易构成高增益、低副瓣的天线。
在许多应用中需要阵列天线方向图形成指定波束以达到所需的要求,越来越多的人开始重视它的综合和设计的研究。
天线波束赋形有多种不同的方法,但对于相控阵天线来说,采用只改变馈电相位分布的仅相位加权方法可使其不改变原有功率分配馈电网络和不增加新设备的情况下,利用计算机控制移相器值的改变实现波束赋形,是非常经济的可行方法。
2 缝隙波导天线设计2.1 理论设计天线形式为裂缝波导阵列,波导为BJ100标准铝波导,波导窄边并联缝隙,行距,每行波导缝隙间距按照经验公式且上下边频对应的波导波长均满足该公式,取dx=18.5mm,采用泰勒分布。
基于车载雷达系统的波导缝隙天线设计O 引言波导缝隙天线自上世纪中叶以来有了很大的发展,广泛用于地面、舰载、机载、导航等各个领域。
由于缝隙阵列天线对天线口径面内的幅度分布容易控制,口径面利用率高,体积小,易于实现低或极低副瓣等特点,因而使其获得广泛使用。
在波导缝隙天线的研究方面,许多学者对缝隙天线理论和实验进行了大量基础性的研究工作,因而波导缝隙天线的理论越来越成熟。
本文所设计的就是基于车载雷达系统应用的一种小型波导缝隙天线。
该天线要求在水平面内具有宽波束的特点,能够覆盖比较宽的范围,从而更有效地提高车辆的战场生存能力。
天线需要满足的性能指标如下:a.增益:大于11dB;b.3dB波束宽度:E面为20°,H面为110°;c.副瓣电平:小于-13dB;d.驻波比驻波比:小于2。
为简化设计起见,本设计采用波导宽壁斜缝谐振阵的方式,切割的缝隙数为4个,达到了指标要求的效果。
1 理论分析1.1 串联缝隙阵的模型由波导内的场分布情况可知:当波导宽边中心开斜缝时,窄缝在纵向不切割电流线;在缝的横向由于对电场的扰动,使得总电场在缝的两侧发生跳变,即电压跳变,故相当于在传输线上串联了一个阻抗。
对中心馈电的谐振线阵线阵模型来说,假设波导壁上开有Ⅳ爪斜缝,缝与缝中心间距λg/2,为取得同相激励,相邻缝交叉倾斜放置,波导末端短路板距终端缝隙λg/2,以使缝隙中心处于电压或电流最大值位置,线阵模型。
其等效电路。
图中所示均为归一化的等效电阻。
1.2 缝隙特性参数的分析在天线工作频率工作频率的选取上,本雷达系统的工作频率为10.5GHz,故该天线的工作频率为10.5GHz,,对于阵列中各单元以等间距位于直线上的线阵,其阵列因子可表示为:其中An为激励的幅度,θ为观察方向与直线的夹角,d为阵元间距。
由于谐振阵各单元是同相的,即φn=O,则上式可简化为:当u=2mπ,m=O,±1,…时,S取最大值,且m=0时为主瓣。
波导缝隙天线的设计仿真方案详细教程1. 引言波导缝隙阵列天线口径幅度易于控制,具有辐射效率高,方向性强,结构紧凑等特点,而且容易实现低副瓣乃至极低副瓣,因此在雷达和通信领域有着广泛的应用。
高频仿真软件HFSS在电磁仿真领域有着广泛的应用,有着高仿真精度、高稳定性的特点。
使用HFSS 的3D建模功能,可以很容易解决简单的模型创建问题,但是对于复杂天线结构模型的建立,没有特别有效的方法,使得建模过程十分繁琐耗时,而且容易出错。
利用HFSS 提供的VBScript脚本功能,可以对软件进行二次开发,以VBScript作为接口,利用Matlab调用HFSS协同建模仿真,可以简化模型建立的操作,节约设计时间。
本文提出了一套波导缝隙天线的快速建模方法,设计了一个波导宽边裂缝阵列天线。
并以此波导缝隙天线为例,应用Matlab协同HFSS建立模型仿真,对仿真结果进行了分析。
2.基本理论波导缝隙天线是在波导宽壁或窄壁上开缝的天线,波导中传输的电磁波可以通过缝隙向外界进行辐射。
通常有宽边偏置缝、宽边倾斜缝、窄边倾斜缝隙这几种开缝形式。
根据波导终端的形式不同,波导缝隙阵天线可以分为行波阵和驻波阵。
行波阵的波导终端接吸收负载,单元间距稍大或稍小于g /2 ,驻波阵在距离终端g /4 处接短路滑块,单元间距均为g /2 ,本文设计的就是一个波导驻波阵天线。
2.1 波导缝隙天线理论分析波导上的辐射缝隙向外界辐射能量,引起波导负载的变化,应用传输线理论分析波导的工作状态比较方便,将相应的缝隙等效成与传输线串联的阻抗或并联的导纳,再建立对应的等效电路模型,进而可以求出各个缝隙的等效阻抗或导纳。
Stevenson 等效电路法,就是根据传输线理论和波导模的格林函数导出矩形波导缝隙的计算公式。
图1所示为波导宽边纵向偏置缝隙及其等效电路。
归一化等效谐振电导为:。
波导缝隙阵带宽总结一,改善波导缝隙天线带宽的方法:波导裂缝阵列天线具有较高的功率容量、较低的交叉极化、较低的馈电损耗以及较高的效率等优点而被广泛应用于雷达和通信领域。
波导缝隙天线虽然有很多优点,但是其也有固有的缺点,即工作频带很窄,相对带宽一般在1%-4%之间。
但是随着需求的发展,目前一些应用对波导缝隙天线的带宽也提出了要求,例如高分辨率合成孔径雷达,同时在这些应用中对交叉极化抑制的要求也很高,因此对宽带和低交叉极化的波导缝隙阵的研究是具有非常现实的意义的。
波导缝隙天线阵包括两种,行波阵和谐振阵。
前者波导辐射缝隙间距偏离半个波导波长,一端激励一端接匹配负载,电磁波在波导内成行波状态,通常应用与大型天线阵中。
后者单元间距为半个波导波长,一端激励一端在离最后一个辐射缝隙四分之一波导波长处短路,波导内电磁波呈驻波状态,这种阵一般应用于小型阵列。
前者频带宽些,但在大型阵中由于波导传输损耗及终端负载的吸收,效率较低。
后者一般效率高些,但是带宽窄些。
总之,工作频带都较窄。
早期人们采用串-并联缝隙,倾斜偏置缝或分别匹配每个缝隙的方法来展宽带宽,但是采用串-并联缝隙或倾斜偏置缝将带来另一计划分量增加的问题,而匹配每个缝隙对于天线阵设计来说是比较困难的事情。
目前,常用的改善波导缝隙天线带宽的方法有三种:1将天线分成若干个子阵;2采用中间馈电的馈电方式;3用脊波导代替矩形波导。
二,具体实例(1)对于波导窄边开斜缝天线阵,由于缝隙倾斜引起较高的交叉极化电平。
窄边非倾斜缝辐射单元形式。
由于辐射电磁波的电场分量垂直于辐射细缝,而此种辐射缝隙完全垂直于波导的轴线,排除了单元在垂直于波导纵向的电场分量,因此辐射电磁波只包含波导轴向分量,从而得到优越的交叉极化特性。
所以用非倾斜缝隙作为辐射单元组成的天线将得到非常高的交叉极化抑制性能。
本文提出一种非倾斜缝的新型激励方式,将一对切角矩形金属膜片置于缝隙两边,膜片紧贴于波导的宽边和上部窄边上,这种结构有利于天线阵的制作和增加可靠性。
波导缝隙天线的基本参数波导是一种用于传输电磁波的导波结构,而波导缝隙天线则是利用波导内部的狭窄缝隙来辐射或接收电磁波的一种天线结构。
波导缝隙天线具有许多优点,如宽带、高方向性、低噪声等,因此在无线通信系统、雷达系统、卫星通信系统等领域得到广泛应用。
1.工作频率范围:波导缝隙天线的工作频率范围是指天线能够有效辐射或接收的频率范围。
波导缝隙天线的工作频率范围取决于波导的尺寸和形状、缝隙的宽度和长度等因素。
为了实现宽带工作,通常采用多个缝隙或缩小缝隙宽度的方法来扩大工作频率范围。
2.驻波比:驻波比是指天线输入端的驻波电压和驻波电流之比。
较低的驻波比表示天线的输入端阻抗匹配较好,能够将尽可能多的能量传输到负载中,有效降低功率损耗。
对于波导缝隙天线而言,驻波比与缝隙的尺寸和位置密切相关,需要通过合适的设计来优化驻波比。
3.增益:增益是指天线在特定方向上辐射或接收电磁波的能力。
波导缝隙天线由于其特殊的结构,能够实现较高的增益。
增益与天线的尺寸、缝隙的宽度和长度、工作频率等因素有关,通过合理设计和优化这些因素,可以获得更高的增益。
4.方向性:方向性是指天线在空间中辐射或接收电磁波的方向性特性。
波导缝隙天线由于其特殊的波导结构,具有较高的方向性。
通过调节缝隙的长度和位置,可以改变天线的辐射或接收波束的方向。
5.带宽:带宽是指天线能够有效工作的频率范围。
波导缝隙天线由于其独特的结构和波导的特性,通常具有较宽的带宽。
带宽与缝隙的尺寸、形状、波导的尺寸等因素有关,在设计过程中需要综合考虑这些因素来满足特定应用的要求。
6.辐射效率:辐射效率是指天线将输入电能转化为辐射电磁波的能量所使用的比例。
波导缝隙天线由于其狭窄缝隙的结构,辐射效率通常较高。
辐射效率与波导的材料、波导结构、缝隙的尺寸和形状等因素有关,需要通过合适的设计来提高天线的辐射效率。
总之,波导缝隙天线具有宽带、高方向性、低噪声等优点,是一种理想的天线结构。
通过合适的设计和优化,可以实现所需的性能指标,满足不同应用领域的需求。
波导裂缝天线分类号密级U D C 单位代码10151基于时域有限差分法的缝隙天线分析与设计谭晓明房少军职称教授指导教师申请学位级别硕士学科与专业通信与信息系统论文完成日期2008.1 论文答辩日期2008.3.26学位授予单位大连海事大学答辩委员会主席The Analysis and Design of Slot Antenna Based on Finite-Difference Time-Domain MethodDissertation Submitted toDalian Maritime UniversityIn partial fulfillment of the requirements for the degree ofMaster of EngineeringByTan XiaoMing(Communication and Information System)January, 2008大连海事大学学位论文原创性声明和使用授权说明原创性声明本人郑重声明:本论文是在导师的指导下,独立进行研究工作所取得的成果,撰写成硕士学位论文“基于时域有限差分法的缝隙天线分析与设计”。
除论文中已经注明引用的内容外,对论文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明.本论文中不包含任何未加明确注明的其他个人或集体已经公开发表或未公开发表的成果。
本声明的法律责任由本人承担。
论文作者签名:年月日学位论文版权使用授权书本学位论文作者及指导教师完全了解“大连海事大学研究生学位论文提交、版权使用管理办法”,同意大连海事大学保留并向国家有关部门或机构送交学位论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大连海事大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,也可采用影印、缩印或扫描等复制手段保存和汇编学位论文。
保密□,在年解密后适用本授权书。
本学位论文属于:保密□不保密□(请在以上方框内打“√”)论文作者签名:导师签名:日期:年月日中文摘要摘要时域有限差分法(FDTD)作为一种电磁场数值计算方法以其简单、直观等特点近年来备受业界关注和厚爱。