城市基础设施三维可视化管理平台(简介)
- 格式:docx
- 大小:584.16 KB
- 文档页数:10
基于CIM平台的数字城市三维可视化平台功能设计作者:曹恒雷号来源:《科学导报·学术》2020年第28期摘要:结合GIS、BIM等信息技术,开展数字城市三维可视化平台建设,形成“一站式” 管理平台,实现全生命周期的数据管理、二三维成果展示及工程信息管理。
在空间维度上实现地上、地下、地面,在时间维度上实现对“过去”(历史影像)、“现在”(建设现状)、“未来”(规划用地)的展示,进而实现数字城市“一张图”的管理与展现等,实现城市各业务部门各层次业务人员能够快速获取与岗位工作相关的业务专题信息参考,为科学决策提供可视化数据支撑。
1.项目背景为更加科学有效的开展高质量、高水平的城市规划和建设,基于CIM城市信息模型(City Information Modeling)的数字城市三维可视化平台的建设是城市智慧运营中心研究建设的核心工作目标之一,是城市规划建设全生命周期数据管理的重要手段,是城市建设阶段对外宣传展示的新名片,是掌握城市大数据资源的重要战略。
本次平台建设,在现有城市信息化成果和规划设计建设数据资源的基础上,将各种信息资源集成在二三维一体化平台上,进行统一的数据管理、规建展示和工程信息管理,实现规划信息资源的整合集成、充分共享和有效利用,更深层次的规划信息价值挖掘和规划管理规律探究奠定坚实基础,为对外展示和工作汇报提供平台载体,为工程信息管理和工程推进提供辅助决策支撑。
2.总体设计数字城市三维可视化平台建设包含业务应用系统(包括数据管理系统、规划综合展示系统、产业服务系统、建设工程管理系统和运维管理系统等)、数据整理与建库(包括现状、规划、设计、施工以及系统等数据的整理、技术标准编制(平台施工图设计BIM标准、BIM施工模型交付标准、BIM模型BIM对象数据交付标准、平台编码手册等)、标准规范(数据入库标准、数据库建设标准等)、基础软硬件建设(软硬件设施、通信网络等)。
系统的总体框架设计由五层结构、两大保障体系构成,采用了层次化设计思想,以實现不同层次间的相互独立性,保障系统的高度稳定性、实用性和可扩展性,体现了“一个中心、一个平台、两大保障”的思想[1][2-3]。
设备管理—214—城市地上地下三维空间一体化管理平台研究与实现黄正刚(长治市容海智成电力勘测设计有限公司,山西 长治 046000)引言城市三维空间的建设,能够为城市提供更加精确、直观的空间表达,因此我国各大城市都在如火如荼的进行城市三维空间的系统建设,一方面将传统二维空间所能解决的问题以及优点进行吸收,在二维空间的基础上再次进行系统升级优化,当前三维空间的可视化处理依旧是存在的一个重大难点。
此外,城市地下环境复杂,因此在进行信息数据的收集时难度较大,并且信息数据的真实性存在疑虑,上述难题就导致在进行信息化的智能三维空间构造中所涵盖的范围减少,并且所能检测的空间类型、体积与质量单一化,但是当前城市发展必须要求能够全面掌控城市地上地下的空间信息数据,国家发展与进步也必须具备立体化的城市地上地下信息数据,综上所述,进行城市地上地下三维空间一体化管理平台的研究与实现已经刻不容缓。
1、地上地下三维空间数据对比与分析创建三维空间城市规划的基础是进行地理空间信息的提取,根据地理空间的信息类型可以分为矢量地理图表信息、影像信息、智能化模拟信息、分类表格信息、城市三维空间图以及纹理信息。
其中城市三维空间信息的收集是将城市划分为三部分,地下、地表以及地上,根据城市地上地下三维空间一体化管理平台的建设构想,所必须进行收录的信息如下表1所示: 表1 三维空间城市信息类型表 序号 信息名称 位置1 建筑房屋模型 地上2 公共基础设施模型 地上3 交通道路模型 地上4 水体模型 地上5 影像模型 地表6 DEN 信息 地表7 地下建筑模型 地下8 管道模型 地下9 基坑模型 地下 10 地质模型 地下 11 其他模型 地下 结合上述表格信息,三维空间的信息哀怨各有不同,并且信息特性也存在差异,但是上述信息都是在城市空间中收集的,因此具有一定的联系,并且此种联系能够促进城市三维空间一体化构想的实现,对上述城市空间信息进行对比发现,该城市三维空间信息存在下列特性: 城市地上信息的来源比较广泛,而地下信息的来源比较贫瘠。
三维可视化运维管理平台建设方案V1随着云计算、大数据等先进技术的发展,企业信息化建设已成为企业发展的重要支撑。
而运维管理作为企业信息化建设中不可或缺的一环,如何提高运维效率和管理水平已成为企业面临的重要问题之一。
目前,运维管理中的三维可视化技术已逐渐普及,让企业运维管理更加直观、高效、快捷。
本文将详细阐述如何建设一套基于三维可视化技术的运维管理平台。
一、需求分析为了满足企业运维管理的需要,我们需要进行需求分析。
首先,根据企业的实际情况,确定运维管理平台的功能。
例如,设备监控、性能监测、告警管理、日志管理、资产管理等;其次,根据企业和用户的使用习惯和喜好,进一步确定运维管理平台的界面设计等方面的需求。
二、技术选型确定需求之后,需要根据需求选择具体的技术方案。
本平台使用三维可视化技术,可以使用WebGL进行前端开发,并使用jQuery、BootStrap等工具库进行美化、响应式布局等。
在服务器端,可以使用Java、Node.js等语言进行开发。
数据库方面,可以选用MySql、Mongodb等关系型或非关系型数据库。
三、系统架构设计根据技术选型,对系统进行架构设计。
在前端方面,需要进行数据可视化展示设计,包括2D、3D地图展示,图表展示等。
在后端方面,需要对数据进行存储和管理。
可以使用数据仓库、数据湖等方式进行数据管理,实现各种监控、告警等运维管理功能。
四、具体实现系统架构设计完成后,需要进行具体实现。
在具体实现的过程中,需要注意以下几点:1.前端界面的简洁易用,符合用户习惯;2.实现了监控、告警等多种运维管理功能,提高运维效率;3.实现数据的实时采集和处理,提高运维管理的准确性;4.符合安全性、可扩展性等要求。
五、测试和部署实现完成后,需要进行测试和部署。
在测试过程中,需要对系统进行全面的测试,包括功能测试、性能测试、安全测试等。
在部署过程中,需要按照实际情况选择公有云、私有云等部署方式,并进行相应的安全策略和可扩展性设计。
都市基础设施三维可视化管理系统(介绍)随着全球信息化的变革,科技的不停进步,三维模拟技术的合用领域也越来越广泛。
基础设施三维可视化管理系统(下列简称为可视化管理系统)是就对现在基础设施资源基础数据三维模拟的综合应用。
通过可视化管理系统的建立,模拟整全城的市貌,动态生成管网三维,并通过对基础设施的管理、分析,为基础设施建设、维护、指挥决策等各方面的应用提供根据。
可视化管理系统是将基础设施平面数据的三维可视化呈现,通过将平面数据以及三维数据动态的联动,增强了“所见即所得”的顾客体验。
能够通过属性查询来获取现在的三维信息,也能够通过三维图形获取对应的属性信息,达成真正的图文联动,“三维”和“属性”的互查;能够通过动态生产管网三维,展示现在管网的三维模拟效果,并在此基础上进行日常的测量、浏览、查询、分析等,加强了基础设施的数字化建设,为基础设施的建设、指挥决策提供了更加明了、更加形象的可视化根据。
可视化管理系统的建立是符合现在社会新潮、满足现在社会需要的新型产业软件,是三维模拟技术与数字化基础设施结合的产物,含有蓬勃的发展潜力。
一、系统目的建立可视化管理系统时,应在基础平台选择、数据规范、应用系统的可维护性和可扩充性等方面予以全方面的考虑和留有充足的余地,使之能随着前期目的的实现,有计划有环节地开展数据收集和建库工作,不停完善系统功效、扩大应用范畴,使系统逐步演进成一种更高层次的可视化管理系统。
结合市现在规划管理的业务特性,遵照求实可行的方针,以实用性、先进性、开放性、可靠性为原则,在统一的软硬件平台上,建立起可视化管理系统,具体目的重要有:建立多个建筑物、纹理材质以及管网附属设施模型库,是动态生成三维场景必不可少的一部分;建立三维的基础地形数据库;实现动态生成管网三维并建立对应的管网数据库;建立可视化管理系统,实现对都市管网属性的查询、管理,以及分析功效,为都市规划、建设提供决策根据和服务,为管网规划、抢险、改建、扩建等提供技术支持。
智慧城市基础设施管理平台建设方案目录1.概述 (1)1.1、建设前言 (1)1.2、发展趋势 (2)1.3、现状分析 (3)1.3.1、缺乏统一规划 (3)1.3.2、存在重复建设 (3)1.3.3、数据不能共享 (4)1.3.4、无法统一管理 (4)1.4、智慧城市基础设施管理平台 (6)1.4.1、地理位置精准化 (7)1.4.2、动静管理可视化 (8)1.4.3、指挥调度多维化 (9)1.4.4、资源管理统一化 (10)2.整体设计方案 (11)2.1、整体实现目标 (11)2.2、整体方案构成 (13)2.3、整体的示意图 (15)2.4、相关组织架构 (16)2.4.1、道路管理子系统 (16)2.4.2、桥梁管理子系统 (17)2.4.3、轨道交通子系统 (18)2.4.4、给水管理子系统 (19)2.4.5、排水管理子系统 (20)2.4.6、地下管网子系统 (21)2.4.7、环卫管理子系统 (22)2.4.8、绿化管理子系统 (23)2.4.9、基础综合管理云平台 (24)3.智慧城市基础设施管理平台应用介绍.......................... 错误!未定义书签。
3.1、道路管理子系统 (25)3.1.1、系统概述 (25)3.1.2、系统结构 (26)3.1.3、系统功能 (27)3.2、桥梁管理子系统 (30)3.2.1、系统概述 (30)3.2.3、系统拓扑 (31)3.2.3、功能框架 (32)3.3、轨道交通子系统 (34)3.3.1、系统概述 (34)3.3.2、系统架构 (34)3.3.3、系统组成 (36)3.4、给水管理子系统 (43)3.4.1、建设背景 (43)3.4.2、建设价值 (45)3.4.2.1、对政府的价值 (46)3.4.2.2、对生产的价值 (47)3.4.2.3、对市民的价值 (48)3.4.2.4、对服务的对象 (49)3.4.3、系统架构 (50)3.4.4、系统组成 (52)3.4.4.1、生产运行管理系统 (52)3.4.4.1.1、水厂集散控制系统 (54)3.4.4.1.2、社区二次给水及分质监控系统 (55)3.4.4.1.3、给水远程数据采集与监控系统 (56)3.4.4.1.4、给水管网信息管理系统 (57)3.4.4.1.5、管网水力模型系统 (58)3.4.4.1.6、给水科学调度系统 (59)3.4.4.2、对外服务系统 (60)3.4.4.2.1、用户智能报装系统 (62)3.4.4.2.2、抄表和营业智能收费系统 (63)3.4.4.2.3、给水智能服务热线系统 (64)3.4.4.2.4、客户智能管理系统 (65)3.4.4.2.5、终端用户智能服务系统 (66)3.4.4.3、对内服务系统 (67)3.4.4.3.1、门户网站与办公自动化系统 (68)3.4.4.3.2、管理信息系统(MIS系统) (69)3.4.4.3.3、安防和视频监控系统 (70)3.5、排水管理子系统 (71)3.5.1、系统概述 (71)3.5.2、系统创新 (73)3.5.3、系统架构 (76)3.5.4、系统功能 (77)3.5.4.1、GIS管理子系统 (77)3.5.4.2、工程管理子系统 (80)3.5.4.3、管网管理子系统 (82)3.5.4.4、防汛抗台指挥管理子系统 (89)3.5.4.5、统计分析子系统 (91)3.5.4.6、系统维护子系统 (93)3.6、地下管网子系统 (96)3.6.1、系统概述 (96)3.6.2、系统目标 (98)3.6.3、创新优势 (100)3.6.3.1、管网自动建模 (101)3.6.3.2、三维管网模型编辑与维护 (101)3.6.3.3、三维管网模型拓扑分析 (102)3.6.3.4、丰富、规范的管件模型库 (103)3.6.3.5、业务数据整合方便快捷 (104)3.6.3.6、地上地下全景三维模拟 (105)3.6.4、系统框架 (106)3.6.5、系统功能 (107)3.6.5.1 审核及入库 (107)3.6.5.2 管网标注与统计 (109)3.6.5.3 管网布置 (114)3.6.5.4 管网查询 (116)3.6.5.5 管网综合分析 (119)3.6.5.6 管网数据的动态更新 (134)3.6.5.7 应用出图 (135)3.6.5.8 办公管理 (137)3.6.5.9 用户定制 (138)3.7、环卫管理子系统 (139)3.7.1、系统概述 (139)3.7.2、建设内容 (140)3.7.3、系统功能 (141)3.8、绿化管理子系统 (143)3.8.1、建设背景 (143)3.8.2、系统框架 (145)3.8.3、系统功能 (146)3.9、基础综合管理云平台 (150)3.9.1、平台概述 (150)3.9.1.1、现状分析 (150)3.9.1.2、问题分析 (151)3.9.1.3、难点分析 (152)3.9.1.4、综合平台 (153)3.9.2、平台架构 (154)3.9.3、组成结构 (155)3.9.4、功能框架 (159)3.9.5、平台功能 (160)3.9.5.1、平台配置 (160)3.9.5.2、组织用户 (162)3.9.5.3、设备管理 (164)3.9.5.4、报警管理 (168)3.9.5.5、地图管理 (170)3.9.5.6、服务运维 (171)3.9.5.7、数据挖掘 (172)3.9.5.8、日常操作 (174)3.9.5.9、日志统计 (227)1.概述1.1、建设前言目前我国发达地区已经拉起了开始建设“互联网+物联网+云计算基础”的帷幕 ,已经在日常的智慧城市基础设施管理、应急救灾、规划决策、环保、基础执法等方面发挥了极其巨大的作用。
三维可视化数据管理系统解决方案三维可视化数据中心管理系统是一种针对数据中心行业的完善可视化产品,它将三维仿真建模与数据可视化技术充分融合,以3D情景的形式展现各种可视化数据,协助客户一目了然地掌握业务趋势,获取数据使用价值,完成高效率管理方法与经营。
TWaver数据中心三维可视化管理系统软件是一种技术先进、应用门槛低、兼容性强的产品,它可以完成数据中心内全部机器设备目标的三维仿真,以完全3D方式搭建全部数据中心环境,并将数据中心内的监管子系统列入到可视化机房管理服务平台中,实时剖析查询监管信息内容。
软件的作用已经得到了广泛的认可,现阶段它已经完成了数据中心资产、容积、动环、智能安防、管道及其布线等阶段的可视化作用,成为很多数据中心管理必不可少的关键工具。
其中,数据中心产业园区环境可视化是软件的一个重要功能,它可以以三维虚拟仿真技术搭建数据中心所属产业园区的自然环境,包含产业园区中的工程建筑房屋、园林景观及设备,以形象化的方法管理、展现数据中心产业园区,完成数据中心的虚拟仿真。
软件可以详细展现数据中心产业园区的外貌,包含土石、园林景观、河道、路面等,构建与真正产业园区一致的虚拟环境。
此外,软件还可以适用于产业园区内的各类IOT 机器设备,如智能灯杆、智能垃圾桶、道闸机等,完成实时的监管,实现高效、方便快捷的集中型管理,减少经营成本。
另外,软件还可以完成对数据中心内多楼房全部资产的三维可视化模型,包含中央空调、服务器机柜、配电箱、UPS等单独机器设备,及其PC网络服务器、网络交换机、无线路由等平台式机器设备。
全部机器设备维持与真正型号规格品牌一致。
现阶段软件的模型库中早已内嵌2000种以上的资产实体模型,而且总数仍在迅速的提升。
文章中没有明显的格式错误和问题段落,但可以对每段话进行小幅度的改写,使其更加流畅易懂。
资产可视化检索查询:可以在3D情景中进行资产查询和检索,通过任意字段名的模糊搜索,将搜索结果形象化呈现在3D情景中,便于快速定位和查询。
CIM平台可视化建设⼀、从BIM+GIS到CIM2018年11⽉,住房和城乡建设部发布了⾏业标准《“多规合⼀”业务协同平台技术标准》的征询意见,激励“有条件的城市,可在BIM应⽤的基础上建⽴CIM”。
那么什么叫CIM?⾸先我们得从BIM讲起。
BIM指的是建筑信息模型,简单地说,BIM便是围绕从建筑的设计、施⼯、运作直到终结的建筑全⽣命周期,将各类信息⼀直整合于⼀个三维模型信息数据库中。
利⽤BIM这⼀个⾼度集成的三维模型,极⼤地提⾼了建筑⼯程的信息化⽔平,为建筑⼯程项⽬涉及到的各⽅⼯作⼈员提供⼀个⼯程信息交换和共享的平台。
兴起于⼯程建筑领域的BIM技术如今已得到普遍的认同和应⽤,它让建筑施⼯变的更⾼效、更绿⾊、更安全,总体成本更低。
然⽽,BIM在提供精准的地理位置、建筑物周边环境总体展现和空间地理信息分析上存在不⾜,⽽三维GIS恰好可以对这些不⾜进⾏补充,实现建筑物的地理位置定位及周边环境空间分析,健全⼤场景的展现,促使信息更完善及全⾯。
通过和GIS技术进⾏融合,BIM的应⽤范畴从单⼀化建筑物扩展到建筑群及其道路、隧道、铁路、港⼝、⽔电等⼯程领域。
BIM整合的是城市建筑物的总体信息,⽽GIS则整合及管理建筑物的外部环境信息,它们的融合建⽴了⼀个包含城市海量信息的虚拟城市模型。
因此,引出来了CIM的概念。
CIM指的是城市信息模型,是以城市信息数据为基础,建⽴起三维城市空间模型和城市信息的有机综合体。
从狭义上的数据类型上讲,CIM 是由⼤场景的GIS数据+BIM数据组成的,是属于智慧城市建设的基础数据。
基于BIM和GIS技术的融合,CIM将数据颗粒度精准到城市建筑物内部的单独模块,将静态的传统式数字城市加强为可感知的、实时动态的、虚实交互的智慧城市,为城市综合管理和精细化治理提供了关键的数据⽀撑。
CIM从开始提出之初,指的是城市信息模型。
在2015年的规划实务论坛会上,同济⼤学吴志强院⼠对CIM的概念进⾏了更进⼀步的拔⾼,提出城市智慧模型。
BIM可视化管理平台建设方案2021年1月目录一、项目概述 (1)1.1项目背景 (1)1.2建设依据 (2)1.2.1政策文件 (2)1.2.2法律法规 (3)1.2.3国家标准 (4)1.2.4行业标准 (5)1.2.5其他标准 (6)二、BIM建筑信息模型应用现状与需求分析 (6)2.1BIM建筑信息模型简介 (6)2.1.1什么是BIM? (6)2.1.2BIM基本特性 (7)2.1.3BIM的三个层面 (11)2.2BIM应用中存在的问题 (11)2.3BIM+GIS解决方案 (11)2.3.1GIS提供多种数据导入方法 (12)2.3.2BIM+三维GIS的展示方式 (13)2.3.3搭建BIM运维管理平台 (13)2.4GIS技术助力BIM (13)2.4.1GIS强大的自然环境与人为信息收集存储能力让BIM从微观走向宏观132.4.2BIM拓展了GIS的应用领域 (14)三、BIM可视化管理平台总体设计 (21)3.1BIM可视化管理平台设计理念 (21)3.2建设思路 (22)3.3建设目标 (23)3.4总体架构 (24)3.5平台特点 (25)3.5.1所见即所得 (25)3.5.2多数据兼容 (25)3.5.3BIM+GIS深度融合 (25)3.5.4所见即可控 (25)3.5.5支持多场景应用 (25)四、BIM可视化管理平台建设方案 (26)4.1建设方案 (26)4.1.1多种多源数据集成 (26)4.1.2模型轻量化 (27)4.2BIM管理大数据中心 (27)4.2.1BIM可视化管理平台大数据中心 (28)4.2.2BIM基础数据库 (28)4.2.3构建建筑信息模型(BIM)基础数据库 (28)4.2.4构建业务数据库 (29)4.3BIM一张图 (29)4.4BIM可视化管理平台 (29)4.4.1数据一张图模块 (30)4.4.2轻量化浏览 (30)4.4.3可视化分析 (30)4.4.4数据管理模块 (31)4.4.5项目管理模块 (31)五、应用案例 (33)5.1智慧路桥隧BIM可视化 (33)5.2综合管廊BIM可视化 (33)一、项目概述1.1项目背景2014年7月,《关于推进建筑业发展和改革的若干意见》,在2015年6月《住房城乡建设部关于印发推进建筑信息模型应用指导意见的通知》意见指出BIM未来的发展目标,即到2020年末,建筑行业甲级勘察、设计单位以及特级、一级房屋建筑工程施I企业应掌握并实现BIM与企业管理系统和其他信息技术的一体化集成应用。
1. 概述三维虚拟仿真平台旨在建设一个具有大范围的海量城市数据一体化管理、无缝三维实时漫游、独具特色的空间多媒体信息查询、表示、分析和决策功能的虚拟城市管理信息系统。
近年来,数字省市、数字城镇已经成为世界各国发达省市和地区21世纪的发展战略、争先抢占的科技、产业和经济制高点之一。
加速城市的发展,提高管理水平,需要借助于现代化的科学手段--3D网站,进行城市体系规划与管理建设。
据目前对我国大部分城市的摸底调查,除少数大、中城市已建立了城市管理信息系统外,而绝大部分地区的空间信息管理手段仍然沿用比较落后的手工操作方式,即便是用一些地理信息系统(GIS)管理着空间数据,但仍停留在简单的二维数据管理、显示的基本功能,分散地、相对独立地和非标准地管理模式,很难进行地域管理的三维综合研究和空间分析,使各级领导部门不可能及时地得到对空间的清晰、直观的认识。
城市规划设计的主要研究对象是城市的体形结构与各个要素,在设计过程中需要进行大量的空间形象思维。
传统的城市模型只能获得城市的鸟瞰形象;效果图只能提供静态局部的视觉体验;动画不具备实时的交互性,人是被动的,并且制作周期长。
这些传统技术只能实现简单、固定的演示功能,尚不能很好地满足当前城市设计的需要。
另外,随着空间范围的扩大,传统的方法也无法胜任空间数据的管理和维护。
同时,城市中存在大型的港口、工厂、地下管网、人防设施等部门,它们具有地形起伏较大、管网密集、需要精确定位等特点,用传统二维的表示方法很难加以准确描述和信息管理。
VR虚拟环境是由计算机生成的,通过视、听、触觉等作用于用户,使之产生身临其境感觉的交互式视景仿真。
从二维地图、沙盘、动画,到虚拟视景仿真是一个合乎人们认识深化和技术发展的必然结果。
2. VR虚拟城市与仿真技术发展美国目前已经有50个城市计划建立了“数字虚拟城市”。
我国北京、上海、香港、台北、深圳、广州、南海、厦门等城市也正在积极筹建之中。
普遍认为,3D-GIS、空间视景数据库的建立是建立数字虚拟城市首先要解决的问题。
市政设施管理平台1、功能需求介绍该项目的一期在以GoogleEarth为核心的市政系统包括部分基础数据的管理模块,主要功能是在地图上标注相关的市政设施,功能单一、易用性不强,考虑现在市政业务的业务扩展,将现有的这套GIS系统和其它业务系统、视频监控等多个子系统整合,平台化一个综合管控的软件,在GIS上除了标注相关市政设施,集成一些管网规划、报警、视频等。
系统平台子系统集成模块化、平台化,以GIS信息系统为该系统的核心支撑平台,达到实用、易用的功能化、视觉化,合理化的高度统一,充分考虑软件的稳定性和合理性(如网络利用等)。
2、平台的功能设计将各个模块集中到一个统一平台管理,便于信息和功能整合、数据查阅分析、集中管理和信息收集,便于相关设施维护以及人员管理,节约成本,为业务拓展和决策提供数据保障和支持。
GIS综合管控平台:为整合系统的亮点和重点,体现一体化管理的核心思想,有效区分管理权限和职责,为设施的维护保障提供了支持。
当下主流的GIS查看分为以下两种,各有千秋,相关阐述以供分享决策之用:1.互联网模式2离线集成模式功能设计如下:1、GIS综合管控平台基础数据图例的添加管理、定位等基础功能,实时视频查看、道路线条划分管理、动态报警、设备当前状态信息等。
2、基础数据管理子平台基础数据的导入、录入,包含设施、人员、经纬度坐标等。
3、决策分析子系统进行数据查询分析、报表生成和打印(图例、文档等);4、视频监控子系统包含实时视频数据的管理、配置、采集、查看、录像回放等。
5、报警子系统报警设备的管理、数据采集(下水道浓度、甲烷、烟感、门禁、温度报警灯)6、其他业务子系统权限管理、其他业务系统的接口等。
智慧园区三维可视化物联网运营管理平台以3DGIS+BIM模型为基础,构建统一地理坐标系和空间参考框架的智慧园区三维可视化平台,支持室内/室外、动态/静态、直接/间接、独立/关联等数据的集中展示,运用先进信息可视化手段,加工、提炼出数据背后的隐含价值,通过大屏能够实时反映示范区真实运行状态。
包括三维综合显示各系统设备位置及状态数据,涵盖监控设备、门禁设备、能耗设备、楼宇设备、消防设备、人员定位、车辆、绿色生态等建筑设备、电气、弱电设备、各子系统的实时运行监控服务。
系统主要功能要求一、多维研判全景沙盘与数据价值的深度分析打通智慧园区各部门互联互通渠道,建立统一的数据存储总线,依托精细运营管理平台、集成服务平台和其他途径获取的业务数据,实现区域级产业运营的综合分析。
其内容可包括空间运营分析、企业360°视图、产业综合运行分析等,为园区精准招商和优化运营提供决策支撑。
以三维电子沙盘的形式,展示入驻企业,系统应能自动获取入驻企业的数据,并进行大数据分析,包括:1)园区经济贡献度:对于各专业园区的经济贡献分析,动态显示产值、税收的同比分析、环比分析,实现对目标完成率、历史排名、历年变化趋势的分析、能耗、员工数量等指标在不同专业园区的值及所占的比例进行分析。
2)财产结构分析:对于园区的财产结构分析主要是按照总收入统计分歧技术领域的值及所占的比例来分析财产的结构。
3)经济指标分组统计:可以对整个园区按照按工商注册类型、按技术领域、按重点企业进行分类统计;也可以先按照专业园区再按照按工商注册类型、按技术领域、重点企业进行分类统计企业的经济指标4)用户画像:对用户进行全方面分析,笼统出相对应的标签,拟合成的虚拟的画象,主要包含基本属性、社会属性、行为属性及心理属性。
联合用户画像可针对分歧用户类型进行个性化推荐、广告精准营销、辅佐产物设计、细化运营等多方面营销手段;5)企业大数据:运用街区各种设备例如智能摄像头、门禁对入驻企业的能源的消耗、规模等多方面信息进行分析,得到企业的活跃度、企业人员密集度、企业人员举动频次等信息,并可将分析数据提供给招商经理制作针对性的招商计划等。
城市规划三维辅助决策系统介绍城市规划三维辅助决策系统是一种利用三维建模、数据分析和可视化技术,为城市规划领域的决策者提供辅助决策的工具。
该系统通过整合城市空间数据、经济社会数据和环境数据,构建城市的三维模型,以提供全方位的城市信息和支持决策分析。
城市规划三维辅助决策系统的核心功能包括数据管理、数据分析和可视化展示。
首先,该系统可以对各类城市数据进行集中管理和统一存储,包括地理信息数据、人口经济数据、资源环境数据等。
通过数据管理功能,系统能够实现数据的快速检索和查询,为后续的决策分析提供数据支持。
其次,系统还具备强大的数据分析功能,能够通过各种分析方法对城市数据进行整理、提炼和加工,从而得出有关城市规划的指标和关键信息。
最后,系统能够将数据分析结果通过三维可视化的方式进行展示,以提供直观、全面的城市信息,使决策者能够更好地了解城市的现状和发展趋势。
城市规划三维辅助决策系统的主要优势在于其全面性和实时性。
通过整合多源数据,该系统不仅可以提供城市的各种基础信息,如土地利用、道路交通、城市设施等,还可以融入更多的数据维度,如环境质量、社会经济等,以进一步综合分析城市的现状和潜在问题。
此外,系统还可以根据不同用户的需求定制化功能,使得决策者能够根据具体情况定制数据分析和可视化展示的方式,以提供更精准、实用的决策支持。
在实际应用中,城市规划三维辅助决策系统有多种应用场景。
首先,该系统可以应用于城市总体规划的制定阶段,通过对城市空间数据的分析和可视化展示,帮助决策者理解城市的发展潜力和问题所在,从而制定科学合理的规划方案。
其次,系统也可以应用于具体项目的规划和设计阶段,通过对项目区域的三维模型建立和数据分析,辅助决策者进行场地分析和方案定制。
此外,系统还可以应用于城市运营与管理的各个层面,如市政设施管理、交通运输管理、环境保护等,帮助决策者实现城市资源的合理配置和管理。
总的来说,城市规划三维辅助决策系统是一种具备数据管理、数据分析和可视化展示功能的工具,通过整合城市各类数据,为城市规划领域的决策者提供全方位的城市信息和支持决策分析。
城市三维地下管线管理系统线是否发生碰撞,对发生碰撞的管线予以警示,并提供与之发生碰撞的管线详细信息辅助决策。
12.断面分析,根据用户自定义的任意横剖线,分析切割区域的断面情况,或对指定管线进行纵向断面分析。
北京图众科技有限公司三维地下管线管理与应用系统系统基于MAPZONEGlobe三维引擎技术搭建,系统采用SOA体系架构,综合运用自动化建模技术、空间数据库技术、三维可视化等技术,实现了地下管线的三维可视化管理。
三、我司需推出的新系统功能综合上述企业已有技术情况并根据我司实际情况和实际管理需要,总结我司建设城市三维地下管网信息化平台需要推出的新系统功能如下:1.管网统计①管线长度统计,系统具备管线长度自动统计的功能,即系统可对指定区域内满足管线长度范围内的管线个数、总长度自动做出准确的系统统计,并可将所统计出的结果直接生成图表或导出Excel格式文件,大大降低了业务人员的工作强度。
②区域统计,系统可根据用户自己设置必要的查询条件,对任意指定的某一区域内管网的所有管线数量、管线长度、管点数量进行详细的区域管网信息综合统计功能,并可将统计结果直接生成图表或导出Excel格式文件。
2.管网查询系统具备强大的属性查询、区域查询、条件查询、图形查询、管线检测等查询功能。
3.管网标注管线标注主要包括:坐标标注、属性标注、流向标注、管线长度统计等功能。
①坐标标注,可在管网任意节点位置上进行坐标信息标注,也可对所选定的实体节点坐标信息进行标注。
②属性标注,在设定管线或管点标注属性内容后,可对管线或管点的属性进行标注。
可通过标注字段选择对话框对所选择的某个实体进行单个自行选择标注,也可实现对所选实体的多个字段信息进行组合标注。
③流向标注,可根据管网中各设施的开闭情况以及管线的拓扑信息,由管网系统自动计算出每根管线中的介质流向,并将流向标注在三维场景中。
4.管网综合分析①横断面分析。
在无需实地开挖管道的条件下,系统可根据任意选取的两点上直接生成地下管线横断面分析图,并从主视图中查看到该位置上的管道材质、埋深、管径、长度、历史年代信息及管线间距等信息,且支持图层、数据的EXCEL 文件导出和打印等功能。
I D C(I n t e r n e t D at a C e n t e r,指互联网数据中心)行业有这样一句操作效率的名言:"你无法控制没有经过测量的事物。
"言外之意:要想减少能源浪费情况就必须从最基本的测量开始。
但如果无法得知能源都用到了什么地方的话,管理人员就无法知悉将重点放哪。
本文介绍通过H T打造一个完整的三维数据中心可视化系统。
在实现传统的数据中心监控可视化的功能外,添加了极具图扑特色的设计元素,将中国的水墨画融合进了平时枯燥的运维监控系统中,为枯燥的场景增添了一抹独特的节奏与气韵。
// 宏观到微观,逐级下钻利用三维虚拟仿真技术对三维地球进行立体全景展示,通过采用H T 的球体模型加以匹配地理环球贴图来实现该效果。
并可通过接入各个数据中心的经纬度信息自动生成坐标点的位置,直观展示分布在全球各地的数据中心。
虽然H T 也整合了开源C e s u im 的方案实现GI S的功能,该方式完全不必采用W e bGI S相关功能模块,而是通过简单的三角函数进行球体坐标算法运算来实现预期效果,相比之下采用该方案来实现会更加轻量快捷,甚至不需要建模的介入就可以完成,极大降低了实施成本和周期。
虽然无法通过LO D动态加载出地图细节,但场景交互设计还能够更加自由发挥出各种视觉效果,例如通过交互、切换场景等实现逐级下钻,实现了从地球-区域-园区-机房-机柜设备的逐级下钻的功能,场景过度顺滑自然。
通过点击对应区域,逐层下钻到数据中心的园区外景。
整体场景采用了轻量化建模的方式,对数据中心所在园区、楼宇样貌进行高精度建模还原,支持360度观察虚拟园区,通过H T 自带交互,即可实现鼠标的旋转、平移、拉近拉远操作,同时也实现了触屏设备的单指旋转、双指缩放、三指平移操作不必再为跨平台的不同交互模式而烦恼。
图丨数据中心快速总览图,下方有视频详解这是个问答小模块——很多未做过可视化项目的会有疑问?1如何完成这样一个园区的三维建模?QUESTION AND ANSWER常规情况下可通过提供卫星云图、效果图、鸟瞰图、CAD图、现场照片等资料,由设计师进行轻量化建模。
3D数据中心可视化管理平台解决方案随着云计算、物联网和大数据技术的快速发展,数据中心已经成为现代企业不可或缺的核心基础设施。
为了更好地管理和监控数据中心的运行状态,提高数据中心的效率和可靠性,3D数据中心可视化管理平台应运而生。
本文将介绍3D数据中心可视化管理平台的解决方案。
首先,3D数据中心可视化管理平台利用先进的虚拟现实技术和模拟算法,将数据中心的各个组件和设备以三维形式呈现出来,实现了对数据中心的全方位可视化管理。
管理员可以通过平台实时查看数据中心的运行状态,包括设备的工作状态、温度和湿度等环境参数,以及网络流量和服务器负载等性能指标。
通过直观的可视化界面,管理员可以迅速判断数据中心是否正常运行,及时发现并解决潜在的问题,提高数据中心的稳定性和可靠性。
其次,3D数据中心可视化管理平台还提供了强大的监控和告警功能。
管理员可以设置监控规则,当数据中心出现异常情况时,平台会自动发送告警通知,包括短信、邮件等多种方式。
管理员可以根据告警信息快速定位问题所在,并采取相应的措施进行处理。
同时,平台还可以记录和分析历史数据,帮助管理员进行故障诊断和性能优化。
另外,3D数据中心可视化管理平台还具备灵活的扩展和集成能力。
平台可以与各类设备和系统进行集成,如服务器、网络设备、空调系统等,实现数据的自动采集和实时更新。
同时,平台还支持与其他管理系统的对接,如CMDB(配置管理数据库)、DCIM(数据中心基础设施管理)等,实现数据的互通和共享,提高数据中心管理的整体效率。
最后,3D数据中心可视化管理平台还具备友好的用户界面和便捷的操作方式。
管理员可以通过平台快速定位设备、查看设备信息和历史记录,并进行设备管理和配置操作。
平台还支持多终端接入,如PC、手机、平板等,管理员可以随时随地通过网络访问平台,实现对数据中心的远程管理。
综上所述,3D数据中心可视化管理平台是一种先进的数据中心管理工具,可以实现对数据中心的全方位可视化管理和监控。
YOUR LOGO三维可视化管理平台技术方案汇报人:xx时间:20XX-XX-XX目录01平台概述03技术方案实现02技术方案设计04技术方案测试与评估05技术方案应用场景与价值平台概述PART 1平台简介三维可视化管理平台是一种基于三维建模和可视化技术的管理平台。
平台通过将数据、模型和可视化技术相结合,实现对复杂系统的直观展示和实时监控。
平台适用于各种行业和领域,如建筑、交通、能源、医疗等。
平台具有高度的可扩展性和灵活性,可以根据用户需求进行定制和扩展。
平台架构硬件层:服务器、网络设备、存储设备等A应用层:三维可视化管理平台、数据分析工具等CB D软件层:操作系统、数据库、中间件等数据层:数据采集、数据处理、数据存储等平台特点010203040506安全性:采用加密技术,保障数据安全扩展性:支持自定义功能,满足不同需求交互性:支持用户与平台进行交互,提高操作效率实时性:实时更新数据,提供最新信息可视化:通过三维模型展示数据,直观易懂集成化:整合多种数据来源,提供统一视图技术方案设计PART 2数据采集与处理数据来源:传感器、设备、系统等数据类型:实时数据、历史数据、预测数据等数据处理:清洗、转换、聚合、分析等数据可视化:图表、地图、仪表盘等数据分析:趋势分析、关联分析、预测分析等三维可视化展示设计技术原理:利用三维建模、渲染等技术,将数据转化为三维可视化图像展示方式:支持多种展示方式,如3D模型、3D动画、3D地图等数据集成:支持多种数据格式,如CAD、BIM、GIS等交互功能:支持多种交互方式,如点击、拖拽、缩放等,方便用户操作和查看应用场景:适用于建筑、工程、规划、设计等领域,帮助用户更直观地理解和分析数据交互式操作设计界面设计:简洁明了,易于操作功能模块:模块化设计,易于扩展和维护数据可视化:采用三维可视化技术,直观展示数据交互方式:支持多种交互方式,如鼠标、键盘、触摸屏等03技术方案实现数据采集与处理实现数据采集:通过传感器、摄像头等设备实时采集数据数据存储:将处理后的数据存储到数据库或数据仓库中数据分析:利用机器学习、深度学习等方法对数据进行分析,挖掘有价值的信息数据预处理:对数据进行清洗、去噪、归一化等处理数据可视化:将分析结果以三维可视化的方式展示,便于理解和决策三维可视化展示实现技术原理:利用计算机图形学和虚拟现实技术,将数据转化为三维图像01应用场景:适用于建筑、工程、医疗、教育等多个领域03展示方式:通过三维模型、动画、交互等方式,实现数据的可视化展示02技术挑战:需要解决数据采集、数据处理、可视化渲染等多个技术难题04交互式操作实现支持鼠标、键盘和触摸屏等多种输入设备03提供丰富的API和开发工具,方便用户进行二次开发和定制04基于WebGL的三维可视化技术01采用HTML5和Javascript编写交互式操作界面0204技术方案测试与评估测试方案设计01测试目标:验证三维可视化管理平台的功能和性能02测试方法:黑盒测试、白盒测试、灰盒测试等03测试场景:模拟实际应用场景,如建筑、工厂、园区等04测试指标:响应时间、吞吐量、稳定性等05测试工具:自动化测试工具、性能测试工具等06测试报告:记录测试结果,分析测试数据,提出优化建议测试结果及分析测试环境:硬件配置、软件版本、网络环境等01测试方法:功能测试、性能测试、兼容性测试等0203测试数据:测试样本、测试结果、测试覆盖率等04测试结论:系统稳定性、性能表现、兼容性等优化建议:针对测试结果,提出优化方案和改进措施05方案评估及优化建议评估指标:功能完整性、性能、易用性、兼容性等优化建议:优化算法、提高性能、简化操作流程等评估结果:通过/不通过,需要改进的地方等测试方法:黑盒测试、白盒测试、灰盒测试等05技术方案应用场景与价值应用场景介绍建筑行业:三维可视化管理平台可以帮助设计师、工程师和施工人员更好地理解和沟通建筑设计方案,提高设计质量和施工效率。
Data Center Visualizer数据中心可视化平台Data Center Visualizer (DCV) 数据中心可视化平台是业界领先的三维IT管理可视化软件工具集,它融合强大的三维实时互动引擎技术、先进的数据中心管理理念和丰富的IT管理软件经验,凭籍立体化、仿真式、实时互动的系统特性,为数据中心管理系统提供统一的可视化平台。
在显著提升可视化管理程度的同时,DCV充分考虑数据中心日常运维工作的管理需求,与IT管理软件平台中的其它组件有效配合,帮助运维管理人员提升工作效率,加快响应时间,更有效地使用数据中心管理工具,以应对复杂数据中心的管理难题。
DCV数据中心可视化系统特点✓形象可视界面再现数据中心完整基础设施✓直观互动操控简化数据中心管理复杂度✓自然融汇多系统的信息与操作于统一视界全景仿真展现数据中心的运作需要从风火水电等基础环境设施到网络、主机、存储等专业IT设备共同支撑,管理对象种类繁多,数量庞大,将如此众多和庞杂的管理对象可视化呈现在运维管理人员眼前是有效管理数据中心的基础。
借助先进的三维实时互动引擎技术,DCV能够形象再现数据中心内的多样化资产。
从发电、制冷等大型设备直到端口、线缆等微小组件,均按照其在真实世界中的位置和关系各就其位,从而在计算机屏幕上实现数据中心完整基础设施的全仿真呈现。
大千世界,察无遗所,毫微之末,尽收眼底。
看得越清,理解越深,掌控越强。
运维管理人员能从容审视数据中心的全局图景,清晰掌握各类设备的位置和资产信息,自然为有效管理数据中心打下了更坚实的基础。
灵活操控调度数据中心得以在三维可视化场景中全仿真再现之后,运维管理人员便可以利用三维实时互动引擎的强大交互能力,自由穿梭于数据中心的每一个角落,查看其关心的各种基础设施组件,获取相关信息,查询实时状态,甚至执行必要的操作指令。
DCV数据中心可视化管理平台充分发挥了鼠标这一人机交互工具的全面功能,以符合人类直觉的操作方式灵活控制三维场景的快速切换。
城市基础设施三维可视化管理系统(简介)随着全球信息化的变革,科技的不断进步,三维模拟技术的适用领域也越来越广泛。
基础设施三维可视化管理系统(以下简称为可视化管理系统)是就对当前基础设施资源基础数据三维模拟的综合应用。
通过可视化管理系统的建立,模拟整全城的市貌,动态生成管网三维,并通过对基础设施的管理、分析,为基础设施建设、维护、指挥决策等各方面的应用提供依据。
可视化管理系统是将基础设施平面数据的三维可视化展现,通过将平面数据以及三维数据动态的联动,增强了“所见即所得”的用户体验。
可以通过属性查询来获取当前的三维信息,也可以通过三维图形获取对应的属性信息,达到真正的图文联动,“三维”和“属性”的互查;可以通过动态生产管网三维,展示当前管网的三维模拟效果,并在此基础上进行日常的测量、浏览、查询、分析等,加强了基础设施的数字化建设,为基础设施的建设、指挥决策提供了更加明了、更加形象的可视化依据。
可视化管理系统的建立是符合当前社会新潮、满足当前社会需要的新型产业软件,是三维模拟技术与数字化基础设施结合的产物,具有蓬勃的发展潜力。
一、系统目标建立可视化管理系统时,应在基础平台选择、数据规范、应用系统的可维护性和可扩充性等方面给予全面的考虑和留有充分的余地,使之能随着前期目标的实现,有计划有步骤地开展数据搜集和建库工作,不断完善系统功能、扩大应用范围,使系统逐步演进成一个更高层次的可视化管理系统。
结合市当前规划管理的业务特征,遵循求实可行的方针,以实用性、先进性、开放性、可靠性为原则,在统一的软硬件平台上,建立起可视化管理系统,具体目标主要有:建立各种建筑物、纹理材质以及管网附属设施模型库,是动态生成三维场景必不可少的一部分;建立三维的基础地形数据库;实现动态生成管网三维并建立对应的管网数据库;建立可视化管理系统,实现对城市管网属性的查询、管理,以及分析功能,为城市规划、建设提供决策依据和服务,为管网规划、抢险、改建、扩建等提供技术支持。
在实现初步目标后,通过充实和丰富基础地理数据库、管网数据库的内容,不断提高基础空间信息系统对基础设施管理应用的支持力度,由易到难逐步实现各种空间分析、管网辅助设计、监测、维修分析等功能,提高分析能力和辅助决策手段,强化管理的科学性。
通过循序渐进、滚动发展的原则,在局与各权属单位的共同努力下,逐步建成一个具有相当覆盖范围的,设计方案与辅助决策结合,地形及管网现状与动态更新结合,具有图文一体化的,能实现多级管理模式的可视化管理系统。
二、系统功能三维可视化管理系统功能分布图:1.可视化基础操作可视化基础操作是可视化管理系统基本操作的集合。
集中表现为放大、缩小、拖拽浏览、滑动模式、环绕飞行等浏览模式以及可视化系统中日常使用的其他操作,是可视化系统的基础。
1.放大/缩小浏览通过在三维界面上,滑动鼠标滚轮,从而实现放大/缩小三维图形。
可以通过选定级别进行浏览。
2.拖拽浏览通过在三维界面下,按住鼠标并拖动,从而实现拖拽浏览。
3.滑动模式浏览即在三维界面下,通过鼠标移动一个方向,系统自动按照鼠标的方向进行自动慢慢平移。
4.环绕飞行浏览以主视窗的中间点为中心360度环绕飞行进行浏览。
5.地下管网浏览模式透过道路查看地下管网信息,实现沿路横剖或纵剖行走察看地下管网数据。
6.行走模式通过制定人物视角,沿道路或者其他指定路线,对周围地物进行浏览。
7.捕捉设置开启/关闭三维场景的捕捉开关、以及设置三维场景中捕捉的内容。
8.二三维联动通过通信实现二维视图和三维视图之间的互动,体现在放大、缩小、移动等操作的互动。
可以随时启动或者取消联动。
2.可视化模型配置可视化模型配置集中管理了对三维符号模型以及管网纹理的配置,以便在动态生成三维管网过程时,根据模型配置调用适当的模型参数,生成更加形象逼真的三维管网。
可视化模型配置主要提供了对三维符号模型和管网纹理的配置。
1.三维符号模型配置三维符号模型配置功能主要针对当前管网数据,按照管点的节点性质,预先配置正确的节点模型,以便于在动态生成三维管网时,根据配置加载、应用正确的节点模型。
模型文件以本地文件方式存储加载。
三维节点模型分可缩放模型和不可缩放模型,不可缩放模型,按照管点位置,直接加载,移动即可,该类模型为实际固定大小(一般表现为路灯,调压箱等地上附属设施)。
可缩放模型分三轴同步缩放和平面同步、垂直不同步缩放两种模型,该类模型一般是指定比例大小来制作(为方便缩放,统一半径为1个单位)。
三轴同步模型是指在x/y/z三轴上的缩放比例一致,如直线点等;平面同步、垂直不同步缩放模型是指在水平面上缩放比例一致,但在垂直方向上缩放比例不一致的模型,比如污水井等附属设置。
地下管网三维符号统一按照1:1比例进行建模,在将管点与管网进行配准时,首先计算与此管点连接的管网,取得每条管网的管径和管网夹角,由此可得出符号的缩放比例和旋转角度,考虑连接管径有不同以及角度不平行或者垂直的情况,模型在建立时要进行分解,就是将需要连接管网的地方单独做模型,然后合并为一个整体模型,这样可以实现针对管径不同来进行不同的缩放,也可实现根据角度调整符号中与管网连接部分。
对于地上管网附属设施力争按照实际比例进行建模,在将管点与管网进行配准时,需要直接将该类管网设施按照实际的摆放位置插入即可。
在实际应用中,可以根据实际需求,实现更多细节上的功能,比如说是否拉伸到地面(一般的井类附属设施都会拉伸到地面);比如说模型底面是否固定,固定时,底部是圆形还是方形,大小为多少(井类附属设施底部一般都为固定大小);不固定时,默认取与之相连的管道/管沟的最大尺度;为了效果的突出,往往会将附属节点在水平方向是扩充一定比例(底部固定大小的除外),垂直方向上向下偏移尺度(井类设施如污水井,在取与之相连的所有管道中高程值最低的一个以后,还需要在垂直方向上,向下偏移一定的尺度)。
2.管网颜色以及纹理配置三维管网颜色以及纹理的配置,主要应用于在动态生成管网三维时,按照设定的正确配置来模拟生成地下管网三维的实际情况。
其中管网颜色可以在管网生成界面中自己自定义设置,也可以选择随层,即默认管网图层的颜色;纹理配置是指按照管网的实际情况,在生成的管道/管沟上贴上实际的纹理图片。
模型文件以本地文件方式存储加载。
1.1 动态生成三维管网对区域范围内基础设施资源管网数据,模拟生成基础设施资源管网的三维场景(地上三维地形场景通常静态建模以后直接调用)。
并可以对生成的三维场景进行观察、漫游与查询。
以便用户对区域范围内的复杂三维管线分布进行察看。
根据基础设施资源管网数据生成管网三维效果,通过设置地下浏览模式可以到查看地下管网三维效果。
通过设置整体浏览管道模式,可以透过路面直接查看地下管网,实现沿着道路的横剖面或纵剖面在有建筑参考的情况下浏览管网。
图:动态生成三维管网动态生成三维管网通过遍历范围内的每一条管道,根据属性信息,获取管网的三维起点、终点的坐标,计算倾斜角度,来绘制管网。
管网根据种类分圆形管道和方形管沟,圆形管道的圆柱体以12面为标准;方形管沟按照沟截面宽高属性值来绘制。
通过管网颜色以及纹理配置,读取当前管网的颜色或者纹理文件,对当前管网绘色或者贴图。
对于管点,通过三维符号模型配置获取对应的符号模型,以及缩放模式。
然后通过计算与之相连的所有管线的高程值,管径值(圆形管网)、沟截面宽高(沟状管网)来计算当前管点符号模型的缩放值、偏移值以及旋转角度,从而更加贴近的模拟实际管网附属设施的分布情况、以及与管网间的连接情况。
为方便管理,和平面二维数据类似,对于不同种类的管网,在动态生成管网三维时,同样按照管网种类分层管理。
1.2 可视化应用分析可视化管理系统的可视化应用分析模块主要是对系统动态生成的管网进行查询、分析,为基础设施的建设提供直观展示以及辅助决策。
1.测量工具量测工具是指三维平台本身提供的一些常用的测量工具,其测量范围主要有水平距离、垂直距离、空间距离以及面积。
(1)水平距离量算测量空间两点间的水平距离。
(2)垂直距离量算测量空间两点间的垂直距离。
(3)空间距离量算测量空间两点间的空间距离。
(4)面积量算测量空间区域范围的面积。
2.路径根据事先定义的路线,将整个过程进行回放。
包括创建路径、路径记录、播放路径、路径暂停、路径停止、路径起始位置以及路径终止位置的设置等。
(1)创建路径可以创建一个新的自定义路径。
(2)路径记录路径记录可以将用户的操作顺序记录下来,保存在路径里边,以便今后的回放。
(3)播放路径可以按照设定的路径进行自动浏览漫游,或者继续播放当前暂停的路径。
(4)路径暂停可以暂停当前播放的路径。
(5)路径停止退出路径执行状态。
(6)路径起始/终点位置设置路径的起始、终点的位置。
3.图形定位图形定位是在当前存在的基础资源数据中,通过指定条件、参数,将图形视野定位到该参数对应的位置。
(1)建筑物/道路定位通过建筑物或道路名称进行查询匹配定位。
将图形视野定位到该建筑物、道路对应的位置。
(2)坐标定位通过指定坐标来定位到该位置。
(3)图形对象定位通过图形对象列表,选择定位的对象,进行飞行定位。
4.查询统计(1)点击查询通过在三维视图上点击查询指定的图形,从而查询该图形的属性信息。
(2)区域对象分类统计选择多边形框选范围内的对象,并获得选中区域内的对象集,统计区域内的实体数并形成分类列表。
5.分析模块针对当前的三维图形信息,对动态生成的管网图形,模拟实现GIS系统中常用分析功能,模拟现实管网的真实分布情况,增强视觉体验。
主要有剖面分析、水平/垂直净距分析、汇水分析、等高线分析、最佳路径分析、视域分析等。
(1)剖面分析对所选地区场景进行剖面观察,可分析出地表起伏状况。
(2)水平净距分析同二维GIS中的水平净距分析,计算指定管网在区域范围内,和相邻管网之间的水平距离。
(3)垂直净距分析同二维GIS中的垂直净距分析,计算指定管网在区域范围内,和相邻管网之间的垂直距离。
(4)最佳路径分析根据给定的参数,如放样间隔,上升的最大坡度,下降的最大坡度,允许的放样宽度等信息,依据地形的走势,自动解算出最佳的放样线路(5)视域分析在场景中任选一点和视角范围可以进行视域可见分析。
1.3 系统维护模块系统维护模块主要是包含系统的日程维护信息、定位配置、以及符号模型的管理等功能。
其中系统的日志维护信息主要有日志管理、用户管理等。
是用户运行的基础保障。
1.日志管理日志管理主要是对登录系统的用户的信息进行记录,同时根据设置情况,把用户对一些功能操作情况也进行记录。
在管理窗口上可以对记录的日志信息进行按用户、按登录时间、按时间段、按角色(或用户组)、按IP进行查询;也可以把全部日志信息或部分日志信息进行导出归档;可以从记录表中删除日志信息;系统管理员可以根据业务管理需要,对用户使用的功能操作情况进行记录设置。