信号的采集与处理PPT课件
- 格式:ppt
- 大小:2.87 MB
- 文档页数:12
心率信号的采集与处理技术分类:医疗电子 | 2009-04-081 概述SoC 技术是一项很重要的电子应用技术,十分适合将其用于生物工程领域。
为了满足低电压、低功耗的需要,本次系统设计选择SoC 技术用于生物信号处理。
心率是一项重要的生理指标。
它是指单位时间内心脏搏动的次数,是临床常规诊断的生理指标。
为了测量心率信号,有许多技术可以应用,例如:血液测量,心声测量,ECG测量等等。
在混合信号SoC 的设计中,电路可以被分成两部分,模拟电路部分和数字电路部分。
其中模拟电路很容易被数字电路干扰,这是因为数字电路部分本身就是一个高频的噪声源。
作为一个混合信号的SoC,怎样处理模拟模块和数字模块的连接问题是一个挑战。
所以文中对噪声处理技术也进行了讨论。
在这篇文章里,第二部分给出了系统的设计框图,第三部分对心率信号处理中的问题进行了讨论,第四部分设计了一个心率信号处理的滤波器,第五部分是对其功能和指标的准确性进行了测试,第六部分是总结。
2 心率检测的SoC 系统框图用混合信号SoC 设计心率信号的处理系统,就需要低功耗和低电压的供给,所以电源电压为3.3V。
系统框图如图一所示。
图1 系统框图在图一中,传感器采用的是红外光电式传感器,用于把原始的心率信号转变为微电压信号。
信号调理电路包括放大器、滤波器和比较器。
调理电路的输入信号是传感器采集进来的原始心率信号,它的输出信号则是有一定电压幅度的脉冲信号。
C51 处理部分是数字信号中央处理单元,它的输入信号是上面提到的脉冲信号,输出的是心率数据,最后通过CPU 核把信号显示出来。
CPU 核是EZL-8051。
3 心率信号的采集将一对红外线发射与接收探头置于动脉一侧,当指尖的血流量随心脏跳动而改变时,红外线接收探头便接收到随心脏周期性地收缩和舒张的动脉搏动光脉冲信号,从而采集到心脏搏动信号。
图2 是单光束直射取样式光电传感器。
这类槽型光耦由高功率的红外光电二极管和红外光匹配性能强、透镜敏感度高、集电极电流范围大的光敏三极管组成。
基于单片机的脉冲信号采集与处理分析单片机应用系统是通过核心CPU设备来显示工业领域各个设备环节的系统。
单片机的应用程序比较复杂,现代经济的发展对单片机的应用提出了更高的要求,特别在当下机械加工、化工和石油工程等多个领域,对单片机的各种性能要求十分高。
而在我省工业自动化控制领域中,缺乏相应的单片机技术体系,难以满足当下工程的数据采集、计算机处理应用、数据通信等方面的需要。
为了确保工业自动化控制模式的正常开展,实现机械应用与计算机应用技术的协调发展,可通过优化单片机内部结构程序或使用内部倍频技术和琐相环技术等,达到提升其运算和内部总线速度的目的。
1单片机脉冲信号采集1.1单片机模拟信号采集单片机系统采集器的信号有模拟电压信号、PWM信号和数字逻辑信号等,其中,应用较广泛的是模拟信号采集。
模拟信号指的是电压和电流,采用的处理技术主要有模拟量的放大和选通、信号滤波等。
因为单片机测控系统有时需要采集和控制多路参数,如果对每条路都单独采用一个较为复杂且成本较高的回路,就会对系统的校准造成较大影响,几乎不能实现。
因此,可以选用多路模拟开关,方便多种情况下共用。
但在选择多路模拟开关时,要注意考虑通道数量、数漏电流设计、切换速度、通导电阻、器件封装、开关参数的漂移性和每路电阻的一致性这几点。
信号滤波是为了减少或消除工作过程中的噪声信号,滤波常用的有模拟滤波电路和数字滤波技术,后者在单片机系统中发展较快。
1.2随机脉冲信号采集卡的设计随机脉冲信号采集卡的硬件组成主要有输入输出接口、单片机运行和控制、复读采集和控制、信号重放和主机接口控制这五个电路模块。
该系统的主要硬件电路包括单片机主系统中的随机脉冲放大和限幅电路、脉冲幅度、脉冲宽度测量电路、高速信号采集、存储电路以及由EPLD等构成的控制信号电路等。
单片机除了负责随机脉冲信号的采集以外,还要将相关的数据与随机脉冲数据组织成一个完整的信号数据结构。
1.3单片机脉冲信号采集优化模式单片机脉冲信号的采集应用必须要做好相关软硬件的应用、采集模式等的剖析准备工作。
振动信号的采集与预处理几乎所有的物理现象都可看作是信号,但这里我们特指动态振动信号。
振动信号采集与一般性模拟信号采集虽有共同之处,但存在的差异更多,因此,在采集振动信号时应注意以下几点:1. 振动信号采集形式取决于机组当时的工作状态,如稳态、瞬态等;2. 变转速运行设备的振动信号采集在有条件时应采取同步整周期采集;3. 所有工作状态下振动信号采集均应符合采样定理。
对信号预处理具有特定要求是振动信号本身的特性所致。
信号预处理的功能在一定程度上说是影响后续信号分析的重要因素。
预处理方法的选择也要注意以下条件:1. 在涉及相位计算或显示时尽量不采用抗混滤波;2. 在计算频谱时采用低通抗混滤波;3. 在处理瞬态过程中1X矢量、2X矢量的快速处理时采用矢量滤波。
上述第3条是保障瞬态过程符合采样定理的根本条件。
在瞬态振动信号采集时,机组转速变化率较高,假设依靠采集动态信号〔一般需要假设干周期〕通过后处理获得1X和2X 矢量数据,除了效率低下以外,计算机〔效劳器〕资源利用率也不高,且无法做到高分辨分析数据。
机组瞬态特征〔以波德图、极坐标图和三维频谱图等型式表示〕是固有的,当组成这些图谱的数据间隔过大〔分辨率过低〕时,除许多微小的变化无法表达出来,也会得出误差很大的分析结论,影响故障诊断的准确度。
一般来说,三维频谱图要求数据的组数〔△rpm 分辨率〕较少,太多了反而影响对图形的正确识别;但对前面两种分析图谱,那么要求较高的分辨率。
目前公认的方式是每采集10组静态数据采集1组动态数据,可很好地解决不同图谱对数据分辨率的要求差异。
影响振动信号采集精度的因素包括采集方式、采样频率、量化精度三个因素,采样方式不同,采集信号的精度不同,其中以同步整周期采集为最正确方式;采样频率受制于信号最高频率;量化精度取决于A/D转换的位数,一般采用12位,局部系统采用16位甚至24位。
振动信号的采样过程,严格来说应包含几个方面:1. 信号适调由于目前采用的数据采集系统是一种数字化系统,所采用的A/D芯片对信号输入量程有严格限制,为了保证信号转换具有较高的信噪比,信号进入A/D以前,均需进展信号适调。