b [b0 , b1 , , bM 1 , bM ]
[h,k] = impz(b, a, n):计算n点单位脉冲响应h[k]; 也可简写为:h = impz(b, a, n)。 impz(b, a):绘制单位脉冲响应h[k]的图形。
实验四
离散系统分析
1. 离散系统的时域响应
离散系统响应y[k]的计算
h[k] 2
(1) 计算前40个点的单位脉冲响应N=40; a=[1,0.4,-0.12]; b=[1,2]; y=impz(b,a,N); stem(y) xlabel('k');title('h[k]')
1.5
1
0.5
0
-0.5
-1
0
5
10
15
20 k
25
30
35
40
实验四
离散系统分析
(2) 计算前100个点的零状态响应N=100; b=[1,2]; a=[1,0.4,-0.12]; x=ones(1,N); y=filter(b,a,x)
3.离散系统的频率响应
当离散因果LTI系统的系统函数H(z)的极点全部位于z平 面单位圆内时,系统的频率响应可由H(z)求出,即
H ( e ) H ( z ) z e j H ( e ) e
j
j
j ( )
[H, w]=freqz(b, a, n): 计算系统的n点频率响应H,w为频率点向量。 H=freqz(b, a, w) :计算系统在指定频率点向量w上的频响; freqz(b,a): 绘制频率响应曲线。 其中:b和a分别为系统函数H(z)的分子分母系数矩阵;
(3) 计算前100个时刻的完全响应 filter(b,a,x,zi)中的初始值zi不是y[-1]= 1, y[-2]= 2, 它可以由filtic函数计算。 N=100; b=[1,2]; a=[1,0.4,-0.12]; x=ones(1,N); zi=filtic(b,a,[1,2]); y=filter(b,a,x,zi);