初三上期末复习《“配方法”的应用》专题提优含答案
- 格式:doc
- 大小:144.15 KB
- 文档页数:4
- 1 -FECB A一元二次方程配方法及应用试卷一、填空题:(每题4分)1.若,28,1422=++=++x xy y y xy x 则y x +的值为 .2.某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是 .3.实数c b a ,,满足,142,238,176222=+-=+-=+a c c b b a 则=++c b a .4.方程91292222=-++xy y x y x 的非负整数解是 .5.已知实数y x ,满足,31)2()12(222=-+++x y y x 则yx +的值是 .6. 已知,32,32-=-+=-c b b a 则=---++ca bc ab c b a 222.7.若y x ,是实数,且y x y xy x m 446422--+-=,则m 的最小值为 . 8.已知c b a ,,是整数,且01,422=-+=-c ab b a ,则c b a ++的值为 .二、 选择题:(每题4分)9、如图,在正三角形ABC 的边BC,CA 上分别有点E,F, 且满足BE=CF=a ,EC=FA=b (b a 〉),当BF 平分AE 时,则ba的值为 ( ) A.215- B.225- C.215+ D.225+ 10、已知),10(71〈〈=+x x x 则xx 1-的值为 ( ) A.7- B.5- C.7 D.5 11、已知b a ,是实数,),2(4,2022a b y b a x -=++=则y x ,的大小关系是( )A.y x ≤B.y x ≥C.y x 〈D.y x 〉 12、已知实数y x ,满足,3,3242424=+=-y y x x 则444y x+的值为 ( ) A.7 B.2131+ C.2137+ D.5 13、方程1)1(32=-++x x x 的所有整数解的个数是 ( )A.2B.3C.4D.5 三、解答题:(共48分)- 2 -14、某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答下列问题: ⑴当销售单价定为每千克55元时,计算月销售量和月销售利润;⑵设销售单价为每千克x 元,月销售利润为y 元,求y 与x 的函数关系式(不必写出x 的取值范围);⑶商店想在月销售成本不超过10000元时,使得月销售利润达到8000元,销售单价应定为多少?⑷商店想使得月销售利润达到最大,销售单价应定为多少? 15、如图,在矩形ABCD 中,BC=20cm ,P 、Q 、M 、N 分别从A 、B 、C 、D 出发沿AD 、BC 、CB 、DA 方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同的时间内,若BQ=xcm(x ≠0),则AP=2xcm,CM=3xcm,DN=2x cm.⑴当x 为何值时,以PQ 、MN 为两边,以矩形的边(AD 或BC )的一部分为第三边构成一个三角形;⑵当x 为何值时,以P 、Q 、M 、N 为顶点的四边形是平行四边形;⑶以P 、Q 、M 、N 为顶点的四边形能否为等腰梯形?如果能,求出x 的值;如果不能,请说明理由.16、若a 是整数,且a a 20042+是一个正整数的平方,求a 的最大值.17、已知a 、b 、c 均为实数,且,10342,42-=-=+c ab c b a 求ab 的值.参考答案:一、1、-7或6 2、0.1 3、-8 4、(2,3),(1,6),(1,0),(0,3)5、32-6、157、-228、5或-1或3或-3.二、9、C 10、B 11、B 12、A 13、C三、14、①6750元;②400001400102-+-=x x y③x=60,x=80.当x=60时,月销售成本为:16000元;当x=80时,月销售成本为:8000元所以,应定为80元;④x=70元,有最大利润9000元. 15、N MQP DCA B。
专题01 一元二次方程解法之配方法题型汇总一、单选题1.(2021·长沙麓山国际实验学校九年级开学考试)用配方法解一元二次方程2241x x -=,配方后的结果是( ) A .23(1)2x -= B .2(21)0x -=C .()2211x -=D .()2322x +=【答案】A 【分析】将二次项系数化为1,两边都加上一次项系数一半的平方配成完全平方式后即可. 【详解】 解:∵2x 2-4x =1,∵2122x x -=, 则212112x x -+=+,即23(1)2x -=,故选:A . 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 2.(2020·珠海市九洲中学)用配方法解方程2220x x +-=,原方程应变形为( ) A .()213x += B .()2-13x =C .()211x +=D .()2-11x =【答案】A 【分析】把常数项-2移项后,应该在左右两边同时加上一次项系数2的一半的平方. 【详解】 解:由原方程,得 x 2+2x =2, x 2+2x +1=2+1, (x +1)2=3. 故选:A . 【点睛】本题考查了配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.(2021·安徽八年级期末)利用配方法解方程x2﹣23x﹣1=0时,应先将其变形为()A.(x+13)2=109B.(x﹣13)2=109C.(x﹣13)2=89D.(x+13)2=89【答案】B【分析】移项,配方,再变形即可得出选项.【详解】解:x2﹣23x﹣1=0,移项,得x2﹣23x=1,配方,得x2﹣23x+(13)2=1+(13)2,即(x﹣13)2=109,故选:B.【点睛】本题主要考查了利用配方法解方程,解题的关键是熟练掌握配方法的步骤,特别注意配方时是若二次项系数为1时方程两边直接同时加上一次项系数一半的平方,若二次项的系数不为1,应先把二次项系数化为1.4.(2021·江苏南通田家炳中学八年级期末)将方程x2﹣6x+6=0变形为(x+m)2=n的形式,结果正确的是()A.(x﹣3)2=15B.(x﹣3)2=﹣3C.(x﹣3)2=0D.(x﹣3)2=3【答案】D【分析】利用配方法求解即可.【详解】解:x2-6x+6=0,x2-6x+9-3=0,(x-3)2=3,故选:D . 【点睛】此题考查了解一元二次方程-配方法,利用此方法解方程时,首先将方程常数项移到右边,二次项系数化为1,然后两边加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负数,开方即可求出解.5.(2021·全国九年级课时练习)利用配方法解方程242203x x --=时,应先将其变形为( ) A .21839x ⎛⎫+= ⎪⎝⎭B .211039x ⎛⎫-= ⎪⎝⎭C .21839x ⎛⎫-= ⎪⎝⎭D .21839x ⎛⎫+= ⎪⎝⎭【答案】B 【分析】先把方程两边都除以2,再配方即可. 【详解】原方程可化为:22103x x --=配方得:211103992x x -+--=即211039x ⎛⎫-= ⎪⎝⎭故选:B 【点睛】本题考查了配方法,一般配方的步骤是:先化成一般式,把二次项系数化为1;加上一次项系数一半的平方,并减去这个数.6.(2021·广西八年级期中)如果用配方法解方程2250x x --=,则配方后方程可化为( ) A .2(1)6x -= B .2(1)6x +=C .2(1)5x -=D .2(1)5x +=【答案】A 【分析】把常数项移到右边,两边加上一次项系数一半的平方,把方程变化为左边是完全平方的形式. 【详解】解:x 2﹣2x ﹣5=0, x 2﹣2x =5, x 2﹣2x +1=5+1,(x ﹣1)2=6. 故选:A . 【点睛】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.7.(2021·全国九年级课时练习)若1x =-是关于x 的一元二次方程2220x kx k -+=的一个根,则k 的值为( ) A .1- B .0 C .1 D .2【答案】A 【分析】把x =-1代入已知方程可得关于k 的方程,解方程即可求出k ,进而可得答案. 【详解】解:∵方程2220x kx k -+=的一根为-1, ∵2120k k ++=,解得121k k ==-,当k =﹣1时,原方程为2210x x -+=,有实数根x =-1. 故选A . 【点睛】本题考查了一元二次方程的解和解一元二次方程,属于基本题型,熟练掌握基本知识是解题的关键.8.(2021·浙江八年级期末)用配方法解方程2x 2﹣4x ﹣1=0时,需要先将此方程化成形如(x +m )2=n (n ≥0)的形式,则下列配方正确的是( ) A .(x ﹣2)2=5 B .(x ﹣1)2=32C .(x ﹣1)2=2D .(x ﹣1)2=114【答案】B 【分析】利用配方法解一元二次方程的方法配方即可. 【详解】解:∵2x 2﹣4x ﹣1=0, ∵2x 2﹣4x =1, ∵x 2﹣2x =12, 则x 2﹣2x+1=12+1,即(x ﹣1)2=32,故选:B . 【点睛】此题考查配方法解一元二次方程的方法,按照移项,二次项系数化为1,方程两边同时加上一次项系数一半的平方的方法配方即可.9.(2021·浙江八年级期中)已知实数,x y 满足()()22222248x y x y +-+=,且2xy =,则下列结论正确的是( ).A .228x y +=或226x y +=-B .2x y -=C .23x y +=D .23x y +=±【答案】D 【分析】根据()()22222248x y x y +-+=,利用完全平方公式把式子变形,然后进行判断即可.【详解】解:∵()()22222248x y x y +-+=∵()()222222149x y x y +-++=()222149xy -=+∵2217x y -=±+∵228x y +=或226x y +=-(舍去) ∵228x y +=,2xy = ∵()222212x y x y xy =+=++ ∵23x y +=±∵()22224x y x y xy =-+-= ∵2x y -=± 故选D. 【点睛】本题主要考查了完全平方公式和平方的非负性,解题的关键在于会利用完全平方公式进行变形判断求解. 10.(2021·潍坊市寒亭区教学研究室九年级一模)已知2732,55M t N t t =-=-(t 为任意实数),则,M N 的大小关系为( ) A .M N > B .M N < C .M N D .不能确定【答案】B 【分析】利用作差法比较即可. 【详解】 根据题意,得237255N M t t t -=--+=2222(1)1t t t -+=-+, ∵2(1)0t -≥ ∵2(1)110t -+≥> ∵M N <, 故选B . 【点睛】本题考查了代数式的大小比较,熟练作差法,灵活运用完全平方公式,配方法的应用,使用实数的非负性是解题的关键.11.(2021·四川凉山·)已知x 是方程2220x x +-=的根,那么代数式253222x x x x x -⎛⎫--÷ ⎪--⎝⎭的值是( ) A .31- B .31+ C .31-或31-+ D .31-或31--【答案】D 【分析】先解方程2220x x +-=,得出31x =±-,再根据分式加减乘除的法则进行化简,再代入x 即可 【详解】解:由题意知,222x x +=,解得31x =()()22225322254(2)23(3)(3)(2)2332(2)x x x x x x x x x x x x x x x x x x x x x x -⎛⎫∴--÷⎪--⎝⎭-+-=⨯--+--=⨯--=-+=-++=-+ 当31x =±-时,原式(231)=-±- ∵原式31=-或31--. 故选D . 【点睛】本题考查了分式的化简求值以及解一元二次方程,熟练掌握法则是解题的关键12.(2021·安庆市石化第一中学八年级期中)用配方法解下列方程时,配方有错误的是( ) A .22990x x --=化为()21100x -= B .2890x x +-=化为2(4)25x += C .2240t t --=化为2781()416t -=D .23420x x --=化为2210()39x -=【答案】C 【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.据此进行判断即可. 【详解】解:A 、由原方程,得x 2-2x =99,等式的两边同时加上一次项系数-2的一半的平方1,得 (x -1)2=100;故本选项正确,不符合题意; B 、由原方程,得x 2+8x =9,等式的两边同时加上一次项系数8的一半的平方16,得 2(+4)25m =;故本选项正确,不符合题意;C 、由原方程,得 2122t t -=,等式的两边同时加上一次项系数12-的一半的平方116 ,得2133()416t -=;故本选项错误,符合题意; D 、由原方程,得 3x 2-4x =2,化二次项系数为1,得24233x x -= 等式的两边同时加上一次项系数-43的一半的平方49,得2210()39x -=;故本选项正确,不符合题意. 故选:C . 【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2021·北京八年级期中)方程x 2﹣2x ﹣5=0配方后可化为___. 【答案】(x -1)2=6 【分析】根据配方法即可求出答案. 【详解】 解:∵x 2-2x -5=0, ∵x 2-2x +1=6, ∵(x -1)2=6, 故答案为:(x -1)2=6.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型. 14.(2021·浙江八年级期中)用配方法解方程2610x x -+=,则方程可配方为__________. 【答案】(x -3)2=8 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案. 【详解】 解:∵x 2-6x +1=0, ∵x 2-6x =-1,则x 2-6x +9=-1+9,即(x -3)2=8, 故答案为:(x -3)2=8. 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.15.(2020·江苏九年级月考)设A =a+3,B =a 2﹣a+5,则A 与B 的大小关系是A_____B (填“>,=,<”之一) 【答案】< 【分析】通过作差法和配方法比较A 与B 的大小. 【详解】解:∵A =a+3,B =a 2﹣a+5,∵B ﹣A =a 2﹣a+5﹣a ﹣3=a 2﹣2a+2=(a ﹣1)2+1 ∵(a ﹣1)2≥0. ∵(a ﹣1)2+1>0. ∵B >A ,即A <B . 故答案是:<. 【点睛】考查了配方法的应用,非负数的性质以及整式的加减,配方法的理论依据是公式a 2±2ab+b 2=(a±b )2. 16.(2020·上海市静安区实验中学八年级课时练习)已知24410xx -+=,则2x=___.【分析】利用直接开方法即可得. 【详解】24410x x -+=,即22(1)0x-=, 直接开方法得:210x-=, 解得21=x, 故答案为:1. 【点睛】本题考查了利用直接开方法解方程,将2x作为一个整体,看成未知数是解题关键.17.(2021·安庆市第四中学九年级二模)实数a ,b 满足a 2+b 2﹣2a =0,则4a +b 2的最大值________. 【答案】9 【分析】根据条件变形为222=-b a a ,将4a +b 2转化为()239a --+即可. 【详解】解:∵a 2+b 2﹣2a =0, ∵222=-b a a ,∵4a +b 2=()()22242639a a a a a a +-=--=--+,∵当3a =时,4a +b 2的最大值为9. 故答案为9. 【点睛】本题考查代数式的最值问题,将代数式变形,利用完全平方公式配方,利用非负性性质是解题关键. 18.(2021·全国九年级专题练习)当x =_________时,代数式22x x --有最大值,其最大值为_________. 【答案】1- 1 【分析】根据配方法的步骤把代数式22x x --通过配方变形为2(1)1x -++,即可得出答案. 【详解】解:22222(2)(211)(1)1x x x x x x x --=-+=-++-=-++,1x ∴=-时,代数式22x x --有最大值,其最大值为1;故答案为:1-,1. 【点睛】 此题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.19.(2021·全国九年级专题练习)若2310a a -+=,则221+=a a ________. 【答案】7 【分析】 将221a a+配方为完全平方公式,再通分,然后将2310a a -+=变形为213a a +=,再代入完全平方公式求值; 【详解】解:222222211112222a a a a a a a a ⎫⎛+⎫⎫⎛⎛+=++-=+-=-⎪ ⎪ ⎪⎝⎝⎭⎭⎝⎭①; 又2310a a -+=,于是213a a +=②,将②代入①得,原式232927a a ⎛⎫=-=-= ⎪⎝⎭. 故答案为:7.【点睛】此题将配方法和代数式求值结合起来,同时需要利用整体思想简化计算;20.(2021·全国九年级专题练习)将一元二次方程2850x x --=化成2()x a b +=(a 、b 为常数)的形式,则a 、b 的值分别是_______.【答案】-4,21【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:∵x 2-8x -5=0,∵x 2-8x=5,则x 2-8x+16=5+16,即(x -4)2=21,∵a=-4,b=21,故答案为:-4,21. 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.(2020·浙江七年级期中)当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.【答案】4 3 15 【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答. 【详解】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++=2222(1)(1)(3)15a a b b b -++-+++=22(1)(3)15a b b --+-+∵当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15.故答案为:4,3,15. 【点睛】 此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.22.(2021·江阴市华士实验中学七年级期中)已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.【答案】3 【分析】题中三个等式左右两边分别相加后再移项,可以通过配方法得到三个平方数的和为0.然后根据非负数的性质可以得到a 、b 、c 的值,从而求得a+b+c 的值. 【详解】 解:题中三个等式左右两边分别相加可得:2222267117a b b c c a ++-+-=--,即222226110a b b c c a ++-+-+=,∵()()()2223110a b c -+++-=,∵a=3,b=-1,c=1,∵a+b+c=3-1+1=3,故答案为3. 【点睛】 本题考查配方法的应用,熟练掌握配方法的方法和步骤并灵活运用是解题关键. 三、解答题23.(2021·四川八年级期中)解下列方程.(1)21221x x =+; (2)3123x x x +=+-. 【答案】(1)1226,26,x x =+=-(2)12x =-【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)去分母得:()2221x x =+,去括号得:242x x =+,242x x ∴-=2446,x x ∴-+=()226,x ∴-=26,26,x x ∴-=-=- 解得:1226,26,x x =+=-检验:1226,26x x =+=-都是原方程的根,∵分式方程的解是1226,26x x =+=-.(2)去分母得:()()()()33223x x x x x -++=+-,整理得:223366x x x x x -++=--,解得:12x =-,检验:把12x =-代入得:()()()2310151500x x +-=-⨯-=≠,∵12x =-是分式方程的解. 【点睛】 本题考查了,分式方程的求解,去分母是解题的关键,注意分式方程要检验.24.(2020·浙江杭州·七年级期中)用配方法求2361x x --+的最大值.【答案】4 【分析】将代数式前两项提取-3变形后,配方化为完全平方式,根据完全平方式的最小值为0,即可得到代数式有最大值,求出即可. 【详解】解:2361x x --+=()2321x x -++=()232111x x -++-+=()2314x -++∵()2310x -+≤,∵()23441x +-+≤,∵2361x x --+的最大值为4. 【点睛】本题考查了配方法的应用,难度不大,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.25.(2021·山东八年级期中)试用配方的方法说明:代数式2610x x -+的值恒大于0.【答案】见解析 【分析】 将代数式用配方法配方,利用平方的非负性即可证明.【详解】解:()22261069910=31x x x x x -+=-+-+-+.无论x 取何值,总有()230x -≥,()2310x ∴-+>.即代数式2610x x -+的值恒大于0. 【点睛】 本题考查了配方法的应用,掌握配方法是解题的关键.26.(2021·黑龙江九年级期末)(1)用配方法解方程: x 2+4x ﹣3=0(2)先化简,再求值:22424422x x x x x -⎛⎫-÷ ⎪-+-⎝⎭,其中x 2+2x ﹣8=0 【答案】(1)1x =﹣2+7,2x =﹣2﹣7;(2)﹣222x x+,14- 【分析】(1)依题意,用配方法解方程即可; (2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,由方程变形求出x 2+2x 的值,代入计算即可求出值.【详解】(1)x 2+4x ﹣3=0,2447x x ++=,2(2)7x +=,27x +=±,∴1x =﹣2+7,2x =﹣2﹣7;(2)22424422x x x x x -⎛⎫-÷ ⎪-+-⎝⎭ 42(2)2(2)(2)(4)x x x x x x ---=⨯+-- 2(2)x x =-+ 222x x=-+, x 2+2x ﹣8=0,228x x ∴+=,∴原式2184=-=-. 【点睛】本题考查了用配方法解一元二次方程,分式的化简求值,正确的计算是解题的关键.27.(2021·福建三明市·八年级期中)阅读下面的材料:若22228160m mn n n -+-+=,求m ,n 的值.解:22228160m mn n n -+-+=.()()22228160m mn n n n ∴-++-+=.22()(4)0m n n ∴-+-=. 2()0m n ∴-=,2(4)0n -=.4n ∴=,4m =.根据你的观察,探究下列问题:(1)已知等腰三角形ABC 的两边长a ,b ,都是正整数,且满足221012610a b a b +--+=,求ABC 的周长;(2)已知6a b -=,216730ab c c +-+=,求a b c ++的值.【答案】(1)ABC 的周长为16或17;(2)8a b c ++=【分析】(1)根据题中所给方法把221012610a b a b +--+=进行配方求解a 、b 的值,然后根据等腰三角形的定义及三角形三边关系进行分类求解即可;(2)由6a b -=可知6b a =-,然后代入等式可得()2616730a a c c -+-+=,进而根据配方即可求解.【详解】解:(1)∵221012610a b a b +--+=,∵22102512360a a b b -++-+=,∵()()22560a b -+-=,∵50,60a b -=-=,∵5,6a b ==,∵等腰三角形ABC 的两边长a ,b ,都是正整数,∵当5a =为腰,则6b =为底,满足三角形三边关系,故ABC 的周长为5+5+6=16; 当6b =为腰,则5a =为底,满足三角形三边关系,故ABC 的周长为5+6+6=17;(2)∵6a b -=,∵6b a =-,∵()221673616730ab c c a a c c +-+=-+-+=,226916640a a c c -++-+=,()()22380a c -+-=,∵30,80a c -=-=,∵3,8a c ==,∵363b =-=-,∵8a b c ++=. 【点睛】 本题主要考查配方法的应用,熟练掌握完全平方公式是解题的关键.28.(2021·全国)已知△ABC 中,AB =c ,BC =a ,AC =b ,x 为实数,且6a b +=,29x ab =-. (1)求x 的值;(2)若△ABC 的周长为10,求△ABC 的面积ABC S ∆.【答案】(1)0x =;(2)25ABC S ∆=【分析】 (1)6a b =-代入29x ab =-,根据非负数之和为0,求得x 的值; (2)由(1)的结论结合已知三角形的周长求得第三边c 的值,再根据勾股定理求得三角形的高,进而求得面积.【详解】解:(1)6a b =-代入29x ab =-中得22(3)0x b +-=,∵ 20x ≥,2(3)0b -≥,∵ 0x =,3b =.(2)由(1)知3a b ==,∵ 1064c =-=,ABC∴是等腰三角形过点C作AB边上的高CD则AD BD=2222325 CD AC AD=-=-=∴11452522ABCS AB AD=⨯=⨯⨯=.【点睛】本题考查了配方法的应用,将6a b=-代入29x ab=-凑出完全平方公式是解题的关键.29.(2021·山东八年级期末)先阅读下面的内容,再解决问题:问题:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式,但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax 成为一个完全平方式,再减去a2,整个式子的值不变,于是有x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a);像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”利用“配方法”,解决下列问题(1)分解因式:a2-8a+15.(2)若△ABC的三边长是a,b,c,且满足a2+b2-14a-8b+65=0,c边的长为奇数,求△ABC的周长的最小值.【答案】(1)(a-3)(a-5);(2)∵ABC的周长最小值是16.【分析】(1)根据题目中的例子,可以对题目中的式子配方后分解因式;(2)根据题目中的式子,利用配方法可以求得a、b的值,根据三角形三边关系确定c的值,由三角形周长可得结论;【详解】解:(1)a2-8a+15=(a2-8a+16)-1=(a-4)2-1=(a-3)(a-5);(2)∵a2+b2-14a-8b+65=0,∵(a 2-14a +49)+(b 2-8b +16)=0(a -7)2+(b -4)2=0,a -7=0,b -4=0,解得:a =7,b =4,∵∵ABC 的三边长是a ,b ,c ,∵3<c <11又∵c 边的长为奇数∵c =5,7,9当a =7,b =4,c =5时,∵ABC 的周长最小,最小值是:7+4+5=16. 【点睛】本题考查配方法,三角形三边关系,解题的关键是正确理解题意给出的方法,解决问题,本题属于基础题型.30.(2021·浙江七年级期末)在学了乘法公式“222()2a b a ab b ±=±+”的应用后,王老师提出问题:求代数式245x x ++的最小值.要求同学们运用所学知识进行解答. 同学们经过探索、交流和讨论,最后总结出如下解答方法:解:22222454225(2)1x x x x x ++=++-+=++,△()220x +≥,△()2211x ++≥.当()220x +=时,()221x ++的值最小,最小值是1.△245x x ++的最小值是1. 请你根据上述方法,解答下列各题:(1)直接写出()213x -+的最小值为__________.(2)求代数式21032x x ++的最小值.(3)若27110x x y -+-=,求x y +的最小值.【答案】(1)3;(2)7;(3)2 【分析】(1)根据偶次方的非负性解答即可;(2)利用配方法把原式变形,根据偶次方的非负性解答即可;(3)利用配方法把一般式化为顶点式,根据二次函数的性质解答. 【详解】解:(1)()213x -+,当1x =时,2(1)3x -+有最小值,是3,故答案是:3.(2)()22222103210553257x x x x x ++=++-+=++.∵()250x +≥,∵()2577x ++≥.当()250x +=时,()257x ++的值最小,最小值是7.∵21032x x ++的最小值是7.(3)∵27110x x y -+-=,∵2711y x x =-++.∵22222271161163311(3)2x y x x x x x x x x +=-++=-+=-+-+=-+.∵()230x -≥,∵()2322x -+≥.当()230x -=时,()232x -+的值最小,最小值是2.∵x y +的最小值是2. 【点睛】 本题考查的是代数式最值的确定,掌握配方法的一般步骤和偶次方的非负性是解题的关键.。
新人教版九年级数学上册专题提优1 配方法的“妙用”———专题讲解———把一个式子或一个式子的部分改写成一个完全平方式,或者几个完全平方式的和的形式,这种解题方法叫做配方法.这种变化的手段在解决初中数学问题时有着广泛的应用.配方法的作用在于揭示式子的非负性,是挖掘隐含条件的有力工具;配方法的实质在于改变式子的原有结构,是变形求解的一种手段.运用配方法解题的关键在于“配凑”,“拆项”和“添项”是配方中常用的技巧.一般常用的基本等式: 1.a 2±2ab +b 2=(a ±b )2;2.a 2+b 2+c 2+2ab +2bc +2ac =(a +b +c )2; 3.a 2+b 2+c 2±2ab ±2bc ±2ac =12[(a ±b )2+(b ±c )2+(c ±a )2];4.ax 2+bx +c =a (x +2b a )+244ac ba-.———提优范例———【例1】已知a ,b ,c 满足a 2+2b =7,b 2-2c =-1,c 2-6a =-17,则a +b +c 的值等于( ) A .2 B .3 C .4 D .5【提示】根据已知等式左端的特点,将其配成完全平方式的和,然后利用非负数的性质:几个非负数的和为零,那么每一个加数也必为零.例如:若|a |+b +c2=0,则a =b =c =0.【感悟】特别地,对于形如用配方法来化简,因为只要适当变形常可使被开方数成为一个完全平方式.是算术根,防止出错.【例2】(江苏泰州中考)已知7115P m =-,2815Q m m =-(m 为任意实数),则P 、Q 的大小关系为( ) A .Q P> B . Q P =C .Q P < D .不能确定【提示】运用差值法、配方法比较.【感悟】用配方法证明不等关系的主要方法是通过配方产生非负数,然后利用非负数的性质,或者由平方式的非负性导出不等关系.【例3】先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y 2+4y +8的最小值. 解:y 2+4y +8=y 2+4y +4+4=(y +2)2+4, ∵(y +2)2≥0,∴(y +2)2+4≥4, ∴y 2+4y +8的最小值是4.(1)求代数式m 2+m +4的最小值; (2)求代数式4−x 2+2x 的最大值;(3)某居民小区要在一块一边靠墙(墙长15m )的空地上建一个长方形花园ABCD ,花园一边靠墙,另三边用总长为20m 的栅栏围成.如图,设AB =x (m ),请问:当x 取何值时,花园的面积最大?最大面积是多少?【提示】阅读→理解→解答.【感悟】用配方法确定代数式的最值:将二次三项式ax 2+bx +c 配方成a (x +2b a )+244ac b a-,由的符号决定其最大(小)值244ac b a-,此时x =−2b a.———小试身手———1.(☆)若△ABC 的边长为a 、b 、c ,且满足等式a 2+b 2+c 2=ab +bc +ca , 则△ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .钝角三角形 D .等边三角形.2.(☆☆☆2011·天津市)若实数x 、y 、z 满足(x -z )2-4(x -y )(y -z )=0.则下列式子一定成立的是( ) A .0x y z ++= B .20x y z +-=C .20y z x +-= D .20z x y +-=A .-1B .0C .1D .24.(☆☆☆2011·呼和浩特)若x 2-3x +1=0,则1242++x x x 的值为 .5.(☆2013•全国初中数学联赛预赛)若04122=---x x,(2b -5)m ,则这段铁丝的总长是8.(☆☆☆☆2011·四川成都)设S 1=1+211+221,S 2=1+221+231,S 3=1+231+241,…,S n =1+21n +2)1(1+n ,设S =1S +2S +…+nS ,则S =(用含n 的代数式表示,其中n 为正整数).9.(☆☆2014•怀化模拟)若实数x 、y 、z 满足x =4-y ,z 2=xy -4,求证:x =y .10.(☆☆☆2013•全国初中数学竞赛九年级预赛)已知:))(())(())((a x c x c x b x b x a x ++++++++是完全平方式.求证: c b a ==.11.(☆☆☆☆)已知:α,β(α>β)是一元二次方程x 2-x -1=0的两个实数根,设s 1=α+β,s 2=α2+β2,…,s n =αn+βn.根据根的定义,有α2-α-1=0,β2-β-1=0,将两式相加,得(α2+β2)-(α+β)-2=0,于是,得s 2-s 1-2=0.根据以上信息,解答下列问题:(1)利用配方法求α,β的值,并直接写出s 1,s 2的值; (2)猜想:当n ≥3时,s n ,s n -1,s n -2之间满足的数量关系,并证明你的猜想的正确性;(3)根据(2)中的猜想,直接写出的值.12.(☆☆☆☆2014•贵州毕节)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x 档次的产品一天的总利润为y 元(其中x 为正整数,且1≤x ≤10),求y 的最大值; (2)若生产第x 档次的产品一天的总利润为1120元,求该产品的质量档次.———参考答案———例1.【答案】B【解析】由a 2+2b =7,b 2-2c =-1,c 2-6a =-17得a 2+2b +b 2-2c +c 2-6a +11=0,∴(a -3)2+(b +1)2+(c -1)2边三角形. 2.【答案】D【解析】∵(x -z )2-4(x -y )(y -z )=0,∴x 2-2xz +z 2-4xy +4xz +4y 2-4yz =0,x 2+2xz +z 2-4xy -4yz +4y 2=0,(x +z )2-4y (y +z )+4y 2=0,(x +z -2y )2=0,∴x +z -2y =0. 3.【答案】B【解析】将m 2+n 2+mn +m -n +1=0变形,得2m 2+2n 2+2mn +2m -2n +2=0,即(m +1)2+(n -1)2+(m +n )2=0,∴m +1=0,n -1=0,解得m =-1,n =1.∴1m +1n=-1+1=0.【解析】由已知x 2-3x+1=0,得x 2=3x-1.将x 2=3x-1代入1242++x x x =222(31)1x x x -++=221062x x x -+=210(31)62x x x --+=31248x x --=318(31)x x --=18.5.【答案】2【解析】设此三位数为:100x +10y +z ,根据题意得:x 2+y 2+z 2=2xy 或x 2+y 2+z 2=2xz 或x 2+y 2+z 2=2yz ,即x 2+y 2-2xy =-z 2或x 2-2xz +z 2=-y 2或y 2+z 2-2yz =-x 2,则(x -y )2=-z 2或(x -z )2=-y 2或(y -z )2=-x 2,故x -y =z 或x -z =y 或y -z =x ,故此题答案不唯一,如101,110,202,220等,只要是两个相同的数学和0构成的三位数就行.【解析】 ∵S n =1+21n +2)1(1+n =22)]1([]1)1([+++n n n n ,∴n S =)1(1)1(+++n n n n =1+n 1-11+n ,∴S =1+1-21+1+21-31+…+1+n1-11+n =n +1-11+n =122++n nn . 9.【解析】∵x =4-y ,∴z 2=xy -4=(4-y )y -4=-y 2+4y -4=-(y -2)2≥0,所以y =2,x =2. 10.【解析】证明:把已知代数式整理成关于x 的二次三项式,得原式=3x 2+2(a +b +c )x +ab +ac +bc ∵它是完全平方式, ∴△=0. 即4(a +b +c )2-12(ab +ac +bc )=0. ∴ 2a 2+2b 2+2c 2-2ab -2bc -2ca =0,(a -b )2+(b -c )2+(c -a )2=0.要使等式成立,必须且只需:0,0,0,a b b c c a -=⎧⎪-=⎨⎪-=⎩解这个方程组,得c b a ==. 11.【解析】(1)移项,得x 2-x =1, 配方,得,即,开平方,得,即,所以,,.于是,s 1=1,s 2=3;(2)猜想:s n =s n -1+s n -2. 证明:根据根的定义,α2-α-1=0, 两边都乘以αn -2,得 αn -αn -1-αn -2=0,①同理,βn -βn -1-βn -2=0,②①+②,得(αn +βn )-(αn -1+βn -1)-(αn -2+βn -2)=0,因为s n=αn+βn,s n-1=αn-1+βn-1,s n-2=αn-2+βn-2,所以s n-s n-1-s n-2=0,即s n=s n-1+s n-2.(3)47.理由:由(1)知,s1=1,s2=3,由(2)中的关系式可得:s3=s2+s1=4,s4=s3+s2=7,s5=7+4=11,s6=11+7=18,s7=18+11=29,s8=29+18=47.即.12.【解析】(1)∵第一档次的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润加2元,但一天生产量减少5件,∴第x档次,提高的档次是x-1档.∴y=[6+2(x-1)][95-5(x-1)],即y=-10x2+180x+400(其中x是正整数,且1≤x≤10).∵-10x2+180x+400=-10(x−9)2+1210,-10(x−9)2≤0,∴y=-10x2+180x+400的最大值为1210元;(2)由题意可得-10x2+180x+400=1120,整理,得x2-18x+72=0,解得x1=6,x2=12(舍去).答:该产品的质量档次为第6档.。
类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1- 2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=109 3.利用配方法解下列方程:(1)(2016·淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二 配方法求最值或证明4.代数式x 2-4x +5的最小值是( )A .-1B .1C .2D .55.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C.有最大值37 D.有最小值16.(2016-2017·夏津县月考)求证:代数式3x2-6x+9的值恒为正数.7.若M=10a2+2b2-7a+6,N=a2+2b2+5a+1,试说明无论a,b为何值,总有M >N.◆类型三完全平方式中的配方8.如果多项式x2-2mx+1是完全平方式,则m的值为()A.-1 B.1 C.±1 D.±29.若方程25x2-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为()A.-9或11 B.-7或8C.-8或9 D.-6或7◆类型四利用配方构成非负数求值10.已知m2+n2+2m-6n+10=0,则m+n的值为()A.3 B.-1 C.2 D.-211.已知x2+y2-4x+6y+13=0,求(x+y)2016的值.答案:数学选择题解题技巧1、排除法。
配方法的题及其答案(精选3篇)以下是网友分享的关于配方法的题及其答案的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。
篇一配方法及其应用初一()班学号:_______ 姓名:____________一、配方法:将一个式子变为完全平方式,称为配方,它是完全平方公式的逆用。
配方法是一种重要的数学方法,它是恒等变形的重要手段,又是求最大最小值的常用方法,在数学中有广泛的应用。
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简,何时配方需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方,有时也将其称为“凑配法”.配方法使用的最基本的配方依据是二项完全平方公式(a +b ) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如:222a 2+b 2=(a +b ) 2-2ab =(a -b ) 2+2ab ;b 2⎛3⎫2⎛a +ab +b =(a +b ) -ab =(a -b ) +3ab =a ++ b ⎪;⎝2⎭⎝2⎭2222a 2+b 2+c 2+ab +bc +ca =[(a +b ) 2+(b +c ) 2+(c +a ) 2].下面举例说明配方法的应用:一、求字母的值【例1】已知a ,b 满足a +2b -2ab -2b +1=0,求a +2b 的值.分析:可将含x,y 的方程化为两个非负数和为0的形式, 从而求出两个未知数的值. 解:∵a +2b -2ab -2b +1=0,∴a +b -2ab +b -2b +1=0,∴(a -b ) +(b -1) =0.∵(a -b ) ≥0,(b -1) ≥0,∴a -b =0,b -1=0,∴a =1,b =1,∴a +2b =1+2×1=3,∴a +2b 的值是3.变式练习:1、已知x 2y 2+x 2+4xy +13=6x , 则x,y 的值分别为[1**********]122、已知a +b +4a -2b +5=0,则3a +5b -4的值为___ ___.4. 已知x 2+2xy +y 2-6x -6y +9=0,则x +y 的值为5、若a 、b 为有理数,且2a 2-2ab +b 2+4a +4=0,则a 2b +ab 2的值为___ ___.6、已知a 、b 、c 满足a 2+2b =7,b 2-2c =-1,c 2-6a =-17,则a +b +c 的值为______.7、已知a 2+2b 2+2c 2-2ab -2bc -6c +9=0,则abc 的值为___ ___.228. 已知a +b +1=ab +a +b ,则3a -4b 的值为___ ___. 2222二、证明字母相等【例2】已知a 、b 、c 是△ABC 的三边,且满足a 2+b 2+c 2-ab -bc -ac =0, ,判断这个三角形的形状.分析:等式两边乘以2, 得2a 2+2b 2+2c 2-2ab -2bc -2ac =0, 配方,得(a 2-2ab +b 2)+(b 2-2bc +c 2)+(c 2-2ca +a 2)=0,即(a -b )+(b -c )+(c -a )=0. 222由非负数的性质得a-b=0,b-c=0,c-a=0,a=b,b=c,c=a,即a=b=c.故△ABC 是等边三角形.变式练习:1、已知3a 2+b 2+c 2=(a +b +c ),求证:a =b =c 2()44442、已知:a +b +c +d =4abcd ,其中a ,b ,c ,d 是正数,求证:a=b=c=d。
解题方法及提分突破训练:配方法专题把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法. 配方法的作用在于改变代数式的原有结构,是求解变形的一种手段;配方法的实质在于改变式子的非负性,是挖掘隐含条件的有力工具,配方法在代数式的化简求值、解方程、解最值问题、讨论不等关系等方面有广泛的应用. 运用配方法解题的关键是恰当的“凑配”,应具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式.一 真题链接1. (2011湖北荆州,3,3分)将代数式x 2+4x-1化成(x+p )2+q 的形式( )A 、(x-2)2+3B 、(x+2)2-4C 、(x+2)2-5D 、(x+2)2+42.(2011辽宁本溪,4,3分)一元二次方程2104x x -+=的根( ) A .1211,22x x ==- B .122,2x x ==-C .1212x x ==-D .1212x x ==3. (2011甘肃兰州,10,4分)用配方法解方程2250x x --=时,原方程应变形为( ) A .2(1)6x +=B .2(2)9x +=C .2(1)6x -=D .2(2)9x -=4. (2011江苏南京,19,6分)解方程x 2﹣4x +1=0. 二名词释义把一个式子或一个式子的某一部分化成完全平方式或几个完全平方式的和、差形式,这种方法叫“配方法”.“直接开平方法”告诉我们根据完全平方公式2222()a ab b a b ±+=±可以将一元二次方程化为形如2()(0)ax b c c +=≥的形式后求解,这就自然而然地导出了另一种解一元二次方程的解法——“配方法”.它的理论依据是完全平方公式2222()a ab b a b ±+=±.例 解方程2210x x +-=. 解:方程两边都除以2,得21022x x +-=,移项,得2122x x +=, 配方,得2111216216x x ++=+,即219416x ⎛⎫+= ⎪⎝⎭.开方,得12112x x ==-,.通过本例可以归纳出用“配方法”解一元二次方程的一般步骤:1.方程两边同除以二次项系数,化二次项系数为1;2.移项,使方程左边为二次项和一次项,右边为常数项;3.配方,方程两边都加上一次项系数一半的平方,把原方程化为2()ax b c +=的形式; 4.若0c ≥,用“直接开平方法”解出;若0c <,则原方程无实数根即原方程无解. “配方法”是一种重要的数学方法,它不仅可应用于解一元二次方程,而且在数学的其它领域中也有着广泛的应用.三 典题示例1.配方法在确定二次根式中字母的取值范围的应用 在求二次根式中的字母的取值范围时,经常可以借助配方法,通过平方项是非负数的性质而求解。
解一元二次方程21.2.1 配方法第1课时 用直接开平方法解一元二次方程 [见B 本P2]1.一元二次方程x 2-25=0的解是( D ) A .x 1=5,x 2=0 B .x =-5 C .x =5 D .x 1=5,x 2=-52.一元二次方程(x +6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( D ) A .x -6=-4 B .x -6=4 C .x +6=4 D .x +6=-43.若a 为一元二次方程(x -17)2=100的一个根,b 为一元二次方程(y -4)2=17的一个根,且a ,b 都是正数,则a -b 等于( B ) A .5 B .6C.83 D .10-17【解析】 (x -17)2=100的根为x 1=-10+17,x 2=10+17,因为a 为正数,所以a =10+17.(y -4)2=17的根为y 1=4+17,y 2=4-17,因为b 为正数,所以b =4+17,所以a -b =10+17-(4+17)=6.4.解关于x 的方程(x +m )2=n ,正确的结论是( B ) A .有两个解x =±nB .当n ≥0时,有两个解x =±n -mC .当n ≥0时,有两个解x =±n -mD .当n ≤0时,无实数解 5.若关于x 的方程(3x -c )2-60=0的两根均为正数,其中c 为整数,则c 的最小值为( B ) A .1 B .8 C .16 D .61【解析】 原方程可化为(3x -c )2=60,3x -c =±60,3x =c ±60,x =c ±603.因为两根均为正数,所以c >60>7,所以整数c 的最小值为8.故选B. 6.一元二次方程x 2-4=0的解是__x =±2__.7.当x =__-7或-1__时,代数式(x -2)2与(2x +5)2的值相等. 【解析】 由(x -2)2=(2x +5)2,得x -2=±(2x +5),即x -2=2x +5或x -2=-2x -5,所以x 1=-7,x 2=-1.8.若x =2是关于x 的方程x 2-x -a 2+5=0的一个根,则a 的值为__±7__.【解析】 把x =2代入方程x 2-x -a 2+5=0得22-2-a 2+5=0,即a 2=7,所以a =±7. 9.在实数范围内定义运算“☆”,其规则为:a ☆b =a 2-b 2,则方程(4☆3)☆x =13的解为x =__±6__.【解析】 4☆3=42-32=16-9=7,7☆x =72-x 2, ∴72-x 2=13.∴x 2=36.∴x =±6. 10.如果分式x 2-4x -2的值为零,那么x =__-2__.【解析】 由题意得x 2-4=0且x -2≠0,∴x =-2.11.求下列各式中的x . (1)x 2=36;(2)x 2+1=1.01; (3)(4x -1)2=225; (4)2(x 2+1)=10.解:(1)x 1=6,x 2=-6; (2)x 1=0.1,x 2=-0.1; (3)x 1=4,x 2=-72;(4)x 1=2,x 2=-2.12.已知关于x 的一元二次方程(x +1)2-m =0有两个实数根.则m 的取值范围是( B ) A .m ≥-34B .m ≥0C .m ≥-1D .m ≥2【解析】 (x +1)2-m =0,(x +1)2=m ,∵一元二次方程(x +1)2-m =0有两个实数根, ∴m ≥0.13.已知等腰三角形的两边长分别是(x -3)2=1的两个解,则这个三角形的周长是( C ) A .2或4 B .8 C .10 D .8或10【解析】 开方得x -3=±1,即x =4或2,则等腰三角形的三边长只能为4,4,2,则周长为10.故选C.14.解下列方程:(1)[2012·永州](x -3)2-9=0; (2)(2x -3)(2x -3)=x 2-6x +9;(3)(2x +3)2-(1-2)2=0. 解:(1)(x -3)2=9,x -3=±3,∴x 1=0,x 2=6; (2)原方程可化为(2x -3)2=(x -3)2, 两边开平方得2x -3=±(x -3),即2x -3=x -3或2x -3=-(x -3), ∴x 1=0,x 2=2;(3)原方程可化为(2x +3)2=(1-2)2, ∴2x +3=±(1-2).∴2x +3=1-2或2x +3=-(1-2). ∴x 1=-1-22,x 2=-2+22. 15.以大约与水平线成45°角的方向,向斜上方抛出标枪,抛出距离s (单位:米)与标枪出手的速度v (单位:米/秒)之间根据物理公式大致有如下关系:s =v 29.8+2,如果抛出48米,试求标枪出手时的速度(精确到0.1米/秒). 解:把s =48代入s =v 29.8+2,得48=v 29.8+2,v 2=46×9.8,∴v 1≈21.2,v 2≈-21.2(舍去).答:标枪出手时的速度约为21.2米/秒.16.已知2m -1=3m ,求关于x 的方程x 2-3m =0的解.解:2m -1=3m ,方程两边同时乘m (m -1),得2m =3(m -1),解得m =3, 经检验m =3是原方程的解. 将m =3代入方程x 2-3m =0, 则x 2-9=0,解得x =±3,即关于x 的方程x 2-3m =0的解为x 1=3, x 2=-3.17.已知a +b =4n +2,ab =1,若19a 2+150ab +19b 2的值为2 012,求n .解:∵19a 2+150ab +19b 2=19(a +b )2-38ab +150ab =19(a +b )2+112ab ,且a +b =4n +2,ab =1,又19a 2+150ab +19b 2的值为2 012, ∴19×(4n +2)2+112×1=2 012, 即(4n +2)2=100,∴4n +2=±10, 当4n +2=10时,解得n =2;当4n +2=-10时,解得n =-3.故n 为2或-3.第2课时 用配方法解一元二次方程 [见A 本P4]1.用配方法解方程x 2-2x -1=0时,配方后所得的方程为( D ) A .(x +1)2=0 B .(x -1)2=0 C .(x +1)2=2 D .(x -1)2=22.用配方法解方程13x 2-x -4=0时,配方后得( C )A.⎝⎛⎭⎫x -322=394 B.⎝⎛⎭⎫x -322=-394 C.⎝⎛⎭⎫x -322=574D .以上答案都不对 【解析】 先把方程化为x 2-3x -12=0,再移项得x 2-3x =12,配方得⎝⎛⎭⎫x -322=574. 3.若一元二次方程式x 2-2x -3 599=0的两根为a ,b ,且a >b ,则2a -b 之值为( D )A .-57B .63C .179D .181 【解析】 x 2-2x -3 599=0,移项得x 2-2x =3 599,x 2-2x +1=3 599+1,即(x -1)2=3 600,x -1=60,x -1=-60,解得x =61或x =-59.∵一元二次方程式x 2-2x -3 599=0的两根为a ,b ,且a >b ,∴a =61,b =-59,∴2a -b =2×61-(-59)=181.4.关于x 的一元二次方程x 2-5x +p 2-2p +5=0的一个根为1,则实数p 的值是( C ) A .4 B .0或2 C .1 D .-1【解析】 把x =1代入原方程有1-5+p 2-2p +5=0,即p 2-2p +1=0,∴(p -1)2=0,∴p =1.5.把下列各式配成完全平方式: (1)x 2+6x +__9__=(x +__3__)2;(2)x 2±__x __+14=⎝⎛⎭⎫x ± 12 2.6.若方程x 2+6x =7可化为(x +m )2=16,则m =__3__. 7.当m =__±12__时,x 2+mx +36是完全平方式.【解析】 ∵x 2+mx +36=x 2+mx +62是完全平方式,∴m =±2×1×6,∴m =±12. 8.用配方法解一元二次方程: (1)x 2-2x =5;(2)2x 2+1=3x ;(3)2t 2-6t +3=0;(4)6x 2-x -12=0; (5)2y 2-4y =4;(6)x 2+3=23x ; (7)x 2-2x =2x +1.解:(1)配方,得(x -1)2=6, ∴x -1=±6,∴x 1=1+6,x 2=1-6; (2)移项得2x 2-3x =-1,二次项系数化为1得x 2-32x =-12,配方得x 2-32x +⎝⎛⎭⎫342=-12+⎝⎛⎭⎫342,即⎝⎛⎭⎫x -342=116,∴x -34=±14,解得x 1=1,x 2=12;(3)移项、系数化为1得t 2-3t =-32,配方得t 2-3t +94=-32+94,即⎝⎛⎭⎫t -322=34, 开方得t -32=±32,∴t 1=3+32,t 2=3-32.(4)移项,得6x 2-x =12, 二次项系数化为1,得x 2-x6=2,配方,得x 2-x 6+⎝⎛⎭⎫1122=2+⎝⎛⎭⎫1122,即⎝⎛⎭⎫x -1122=289144, ∴x -112=±1712,∴x 1=32,x 2=-43;(5)系数化为1,得y 2-2y =2,配方,得y 2-2y +1=2+1,即(y -1)2=3, ∴y -1=±3;∴y 1=1+3,y 2=1-3; (6)移项,得x 2-23x =-3,配方,得x 2-23x +(3)2=-3+(3)2, 即(x -3)2=0, ∴x 1=x 2=3;(7)移项得x 2-4x =1,配方得x 2-4x +22=1+22, 即(x -2)2=5,∴x -2=±5,∴x 1=2+5,x 2=2- 5.9.当x 满足条件⎩⎪⎨⎪⎧x +1<3x -312(x -4)<13(x -4)时,求出方程x 2-2x -4=0的根.解:由⎩⎪⎨⎪⎧x +1<3x -312(x -4)<13(x -4)求得⎩⎨⎧2<xx <4, 则2<x <4,解方程x 2-2x -4=0可得x 1=1+5,x 2=1- 52<5<3,而2<x <4, 所以x =1+ 5.10.已知方程x 2-6x +q =0可以配方成(x -p )2=7的形式,那么x 2-6x +q =2可以配方成下列的( B )A .(x -p )2=5B .(x -p )2=9C .(x -p +2)2=9D .(x -p +2)2=5【解析】 由x 2-6x +q =0,得x 2-6x +9-9+q =0,即(x -3)2-9+q =0,∴(x -3)2=9-q .∴q =2,p =3.∴x 2-6x +q =2即为x 2-6x +2=2,x 2-6x =0,x 2-6x +9=9,(x -3)2=9,即(x -p )2=9.故选B. 11.用配方法解方程: (1)(2x -1)2=x (3x +2)-7. (2)5(x 2+17)=6(x 2+2x ).解:(1)(2x -1)2=x (3x +2)-7,4x 2-4x +1=3x 2+2x -7,x 2-6x =-8, (x -3)2=1,x -3=±1, x 1=2,x 2=4.(2)5(x 2+17)=6(x 2+2x ),整理得:5x 2+85=6x 2+12x ,x 2+12x -85=0, x 2+12x =85,x 2+12x +36=85+36, (x +6)2=121, x +6=±11, x 1=5,x 2=-17.12.利用配方法比较代数式3x 2+4与代数式2x 2+4x 值的大小. 解:∵(3x 2+4)-(2x 2+4x ) =3x 2+4-2x 2-4x =x 2-4x +4 =(x -2)2≥0, ∴3x 2+4≥2x 2+4x .13.阅读材料:对于任何实数,我们规定符号⎪⎪⎪a c ⎪⎪⎪b d 的意义是⎪⎪⎪a c⎪⎪⎪b d =ad -bc .例如:⎪⎪⎪13⎪⎪⎪24=1×4-2×3=-2,⎪⎪⎪-23⎪⎪⎪45=(-2)×5-4×3=-22. (1)按照这个规定请你计算⎪⎪⎪57⎪⎪⎪68的值;(2)按照这个规定请你计算当x 2-4x +4=0时,⎪⎪⎪x +1x -1⎪⎪⎪2x2x -3的值.解:(1)⎪⎪⎪57⎪⎪⎪68=5×8-7×6=-2;(2)由x 2-4x +4=0得x =2, ⎪⎪⎪x +1x -1⎪⎪⎪2x2x -3=⎪⎪⎪31⎪⎪⎪41=3×1-4×1=-1. 14.已知关于x 的方程a (x +m )2+b =0的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),求关于x 的方程a (x +m +2)2+b =0的解. 解:x 1=-4,x 2=-1.15.选取二次三项式ax 2+bx +c (a ≠0)中的两项,配成完全平方式的过程叫配方.例如 ①选取二次项和一次项配方:x 2-4x +2=(x -2)2-2;②选取二次项和常数项配方:x 2-4x +2=(x -2)2+(22-4)x ,或x 2-4x +2=(x +2)2-(4+22)x ;③选取一次项和常数项配方:x 2-4x +2=(2x -2)2-x 2. 根据上述材料,解决下面问题:(1)写出x 2-8x +4的两种不同形式的配方; (2)已知x 2+y 2+xy -3y +3=0,求x y 的值. 解:(1)x 2-8x +4 =x 2-8x +16-16+4 =(x -4)2-12; x 2-8x +4=(x -2)2+4x -8x =(x -2)2-4x ;(2)x 2+y 2+xy -3y +3=0, (x +y 2)2+34(y -2)2=0,x +y2=0,y -2=0, x =-1,y =2, 则x y =(-1)2=1.数学选择题解题技巧1、排除法。
专题训练(一) 配方法的四种应用► 应用一 利用配方法解一元二次方程1.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116 D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=109 2.用配方法解一元二次方程x 2-22x +1=0,所得结果是x 1=________,x 2=________.(x 1<x 2)► 应用二 利用配方法求最值3.代数式x 2-4x +5的最小值是( ) A .-1 B .1 C .2 D .54.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值15.已知M =29a -1,N =a 2-79a(a 为任意实数),则M ,N 的大小关系为( ) A .M <N B .M =NC .M >ND .不能确定6.证明:(1)无论x 取何实数,代数式-x 2+2x -3的值一定是负数;(2)无论x 取何实数,代数式x 2+2x +5的值一定是正数.► 应用三 利用配方法和非负数的性质求值7.已知x 2+y 2+4x -6y +13=0,则代数式x +y 的值为( )A .1B .-1C .25D .368.若a 2-6ab +10b 2+b +14=0,则a =________,b =________. 9.已知a ,b ,c 是△ABC 的三边长,且满足a 2+b 2+c 2-ab -bc -ac =0,请你根据此条件判断这个三角形的形状,并说明理由.► 应用四 利用配方法求代数式的值10.已知x +y =3,xy =-7,求下列各式的值:(1)x 2+y 2;(2)x 2-xy +y 2;(3)(x -y)2.11.已知x 2-3x +1=0,求下列各式的值:(1)x 2+1x 2; (2)(x -1x)2.详解详析1.B [解析] B 项,x 2+8x +9=0化为(x +4)2=7,故本选项错误,其他选项均正确.2.[答案] 2-12+13.B4.A5.A [解析] ∵M =29a -1,N =a 2-79a (a 为任意实数),∴N -M =a 2-a +1=(a -12)2+34>0,∴N >M ,即M <N .故选A.6.证明:(1)-x 2+2x -3=-(x 2-2x )-3=-(x 2-2x +1)+1-3=-(x -1)2-2. ∵-(x -1)2≤0,∴-(x -1)2-2<0.因此,无论x 取何实数,代数式-x 2+2x -3的值一定是负数.(2)x 2+2x +5=(x 2+2x +1)+4=(x +1)2+4.∵(x +1)2≥0,∴(x +1)2+4>0.因此,无论x 取何实数,代数式x 2+2x +5的值一定是正数.7.A [解析] ∵x 2+y 2+4x -6y +13=0,∴x 2+4x +4+y 2-6y +9=0,∴(x +2)2+(y -3)2=0,∴x +2=0,y -3=0,∴x =-2,y =3,∴x +y =1.故选A .8.[答案] -32 -12[解析] 将已知等式变形,得(a -3b)2+(b +12)2=0.由非负数的性质,得a -3b =0,b +12=0.所以a =-32,b =-12. 9.解:△ABC 为等边三角形.理由如下:∵a 2+b 2+c 2-ab -bc -ac =0,∴2a 2+2b 2+2c 2-2ab -2bc -2ac =0.∴a 2+b 2-2ab +b 2+c 2-2bc +a 2+c 2-2ac =0,即(a -b)2+(b -c)2+(c -a)2=0. ∴a -b =0,b -c =0,c -a =0.∴a =b =c.∴△ABC 为等边三角形.10.解:(1)x 2+y 2=x 2+2xy +y 2-2xy =(x +y)2-2xy =32-2×(-7)=23.(2)x 2-xy +y 2=x 2+2xy +y 2-3xy =(x +y)2-3xy =32-3×(-7)=30.(3)(x -y)2=x 2-2xy +y 2=x 2+2xy +y 2-4xy =(x +y)2-4xy =32-4×(-7)=37.11.解:(1)方程x 2-3x +1=0的两边同除以x 并移项,得x +1x=3, ∴x 2+1x 2=(x +1x )2-2x·1x=9-2=7. (2)(x -1x )2=(x +1x )2-4x·1x=9-4=5.。
配方法的应用(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.57一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2022秋•铜梁区校级期末)已知多项式A=x2+7x+10,B=x+1,其中x为实数:①若A﹣5B=5,则x1=0,x2=2;②当x=﹣2时,A﹣3B有最小值,最小值为3;③无论x取任何实数,A>B恒成立;以上结论正确的个数有()个.A.0 B.1 C.2 D.3解:∵A=x2+7x+10,B=x+1,∴A﹣5B=x2+7x+10﹣5(x+1)=5,即x2+2x=0,解得x1=0,x2=﹣2,故①错误;∵A=x2+7x+10,B=x+1,∴A﹣3B=x2+7x+10﹣3(x+12+4x+7=(x+2)2+3,∴当x=﹣2时,A﹣3B有最小值,最小值为3,故②正确;∵A﹣B=x2+7x+10﹣(x+1)=x2+6x+9=(x+3)2≥0,∴A≥B,故③错误.故正确的有1个.故选:B.2.(2分)(2022秋•江北区校级期末)已知a、b满足等式,x=a2﹣6ab+9b2.y=4a﹣12b﹣4,则x,y 的大小关系是()A.x=y B.x>y C.x<y D.x≥y解:∵x﹣y=a2﹣6ab+9b2﹣(4a﹣12b﹣4)=(a﹣3b)2﹣4(a﹣3b)+4=[(a﹣3b)﹣2]2,∴[(a﹣3b)﹣2]2≥0,∴x≥y.故选:D.3.(2分)(2022秋•内江期末)将代数式x2﹣10x+5配方后,发现它的最小值为()A.﹣20 B.﹣10 C.﹣5 D.0解:x2﹣10x+5=x2﹣10x+25﹣20=(x﹣5)2﹣20,当x=5时,代数式的最小值为﹣20,故选:A.4.(2分)(2022•顺德区校级三模)已知a、b满足等式x=a2+b2+5,y=2(2b﹣a),则x、y的大小关系是()A.x<y B.x>y C.x≤y D.x≥y解:∵x﹣y=a2+b2+5﹣2(2b﹣a)=a2+b2+5﹣4b+2a=(a+1)2+(b﹣2)2≥0,∴x≥y.故选:D.5.(2分)(2022春•栖霞市期中)不论x、y为什么实数,代数式x2+y2+2x﹣4y+9的值()A.总不小于4 B.总不小于9C.可为任何实数D.可能为负数解:x2+y2+2x﹣4y+9=(x2+2x+1)+(y2﹣4y+4)=(x+1)2+(y﹣2)2+4∵(x+1)2≥0,(y﹣2)2≥0,∴x2+y2+2x﹣4y+9≥4,即不论x、y为什么实数,代数式x2+y2+2x﹣4y+9的值总不小于4.故选:A.6.(2分)(2023•桥西区模拟)已知A=x2+6x+n2,B=2x2+4x+n2,下列结论正确的是()A.B﹣A的最大值是0 B.B﹣A的最小值是﹣1C.当B=2A时,x为正数D.当B=2A时,x为负数解:∵B﹣A=(2x2+4x+n2)﹣(x2+6x+n2)=x2﹣2x=(x﹣1)2﹣1,∴B﹣A的最小值为:﹣1,当B=2A时,2x2+4x+n2=2(x2+6x+n2),解得:x=﹣,∵n2≥0,∴x≤0,故选:B.7.(2分)(2022秋•郸城县期中)已知三角形的三条边为a,b,c,且满足a2﹣10a+b2﹣16b+89=0,则这个三角形的最大边c的取值范围是()A.c>8 B.5<c<8 C.8≤c<13 D.5<c<13解:∵a2﹣10a+b2﹣16b+89=0,∴(a2﹣10a+25)+(b2﹣16b+64)=0,∴(a﹣5)2+(b﹣8)2=0,∵(a﹣5)2≥0,(b﹣8)2≥0,∴a﹣5=0,b﹣8=0,∴a=5,b=8.∵三角形的三条边为a,b,c,∴b﹣a<c<b+a,∴3<c<13.又∵这个三角形的最大边为c∴8≤c<13.故选:C.8.(2分)(2022秋•桐柏县期中)已知A=x2+6x+n2,B=2x2+4x+2n2+3,下列结论正确的个数为()①若A=x2+6x+n2是完全平方式,则n=±3;②B﹣A的最小值是2;③若n是A+B=0的一个根,则;④若(2022﹣A)(A﹣2019)=0,则(2022﹣A)2+(A﹣2019)2=4.A.1个B.2个C.3个D.4个解:①∵A=x2+6x+n2是完全平方式,∴n2=9,即n=±3,故①正确;②∵B﹣A=2x2+4x+2n2+3﹣(x2+6x+n2)=x2﹣2x+n2+3=(x﹣1)2+n2+2,∵(x﹣1)2+n2≥0,∴B﹣A≥2,∴B﹣A的最小值是2,故②正确;③根据题意知,A+B=x2+6x+n2+2x2+4x+2n2+3=3x2+10x+3n2+3,∵n是A+B=0的一个根∴把x=n代入3x2+10x+3n2+3=0可得:3n2+10n+3n2+3=0,即6n2+10n+3=0,解得:n=,当n=时,则2n+==,∴4n2+=(2n+)2﹣4=,当n=时,2n+==,∴4n2+=(2n+)2﹣4=,故③错误,④令M=2022﹣A,N=A﹣2019,则M•N=0,M+N=3,∴(M+N)2=9,即M2+2MN+N2=9,∴M2+N2=9,即(2022﹣A)(A﹣2019)=9,故④错误;综上所述,正确的个数有2个;故答案选:B.9.(2分)(2022秋•龙泉驿区期中)将x2﹣6x﹣4=0进行配方变形,下列正确的是()A.(x﹣6)2=13 B.(x﹣6)2=9 C.(x﹣3)2=13 D.(x﹣3)2=9解:∵x2﹣6x﹣4=(x﹣3)2﹣9﹣4=(x﹣3)2﹣13,∴x2﹣6x﹣4=0进行配方变形为(x﹣3)2=13.故选:C.10.(2分)(2022秋•龙岩期中)已知实数m,n满足m2+n2=2+3mn,则(2m﹣3n)2+(m+2n)(m﹣2n)的最小值为()A.B.C.D.解:∵m2+n2=2+3mn,∴(2m﹣3n)2+(m+2n)(m﹣2n)=4m2+9n2﹣12mn+m2﹣4n2=5m2+5n2﹣12mn=5(2+3mn)﹣12mn=10+3mn,∵m2+n2=2+3mn,∴(m+n)2=2+5mn≥0(当m+n=0时,取等号),∴mn≥﹣,∴(m﹣n)2=2+mn≥0(当m﹣n=0时,取等号),∴mn≥﹣2,∴mn≥﹣,∴3mn≥﹣,∴10+3mn≥,即(2m﹣3n)2+(m+2n)(m﹣2n)的最小值为.故选:A.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2022秋•小店区校级月考)若把代数式x2﹣2x﹣3化为(x+m)2+k的形式,其中m,k为常数,则k=.解:x2﹣2x﹣3=(x2﹣2x+1)﹣4=(x﹣1)2﹣4,故k=﹣4.故答案为:﹣4.12.(2分)(2021秋•丰县期中)把二次三项式x2﹣6x+8化成(x+p)2+q的形式应为.解:x2﹣6x+8=(x2﹣6x+9)﹣1=(x﹣3)2﹣1.故答案为:(x﹣3)2﹣1.13.(2分)(2021•织金县模拟)已知a,b是一个等腰三角形的两边长,且满足a2+b2﹣6a﹣8b+25=0,则这个等腰三角形的周长为.解:a2+b2﹣6a﹣8b+25=0,a2﹣6a+9+b2﹣8b+16=0,(a﹣3)2+(b﹣4)2=0,解得,a=3,b=4,当a是腰长时,等腰三角形的周长=3+3+4=10,当b是腰长时,等腰三角形的周长=3+4+4=11,故答案为:10或11.14.(2分)(2023•连云港)若W=5x2﹣4xy+y2﹣2y+8x+3(x、y为实数),则W的最小值为.解:W=5x2﹣4xy+y2﹣2y+8x+3=x2+4x2﹣4xy+y2﹣2y+8x+3=4x2﹣4xy+y2﹣2y+x2+8x+3=(4x2﹣4xy+y2)﹣2y+x2+8x+3=(2x﹣y)2﹣2y+x2+4x+4x+3=(2x﹣y)2+4x﹣2y+x2+4x+3=(2x﹣y)2+2(2x﹣y)+1﹣1+x2+4x+4﹣4+3=[(2x﹣y)2+2(2x﹣y)+1]+(x2+4x+4)﹣2=(2x﹣y+1)2+(x+2)2﹣2,∵x,y均为实数,∴(2x﹣y+1)2≥0,(x+2)2≥0,∴原式W≥﹣2,即原式的W的最小值为:﹣2,解法二:由题意5x2+(8﹣4y)x+(y2﹣2y+3﹣W)=0,∵x为实数,∴(8﹣4y)2﹣20(y2﹣2y+3﹣W)≥0,即5W≥(y+3)2﹣10≥﹣10,∴W≥﹣2,∴W的最小值为:﹣2,故答案为:﹣2.15.(2分)(2022•乐山)已知m2+n2+10=6m﹣2n,则m﹣n=.解:∵m2+n2+10=6m﹣2n,∴m2﹣6m+9+n2+2n+1=0,即(m﹣3)2+(n+1)2=0,∴m=3,n=﹣1,∴m﹣n=4,故答案为:4.16.(2分)(2022秋•工业园区校级期中)已知实数x、y、z满足x2﹣4x+y2+4y﹣2xy+z=2018,则实数z 的最大值为.解:∵x2﹣4x+y2+4y﹣2xy+z=2018,∴x2﹣2xy+y2﹣4x+4y+z=2018,∴(x﹣y)2﹣4(x﹣y)+z=2018,(x﹣y)2﹣4(x﹣y)+4﹣4+z=2018,(x﹣y﹣2)2+z﹣4=2018,∵(x﹣y﹣2)2≥0,∴当(x﹣y﹣2)2=0时,z﹣4的值最大,∴z﹣4=2018,∴z=2022,∴实数z的最大值为2022,故答案为:2022.17.(2分)(2022秋•辉县市校级月考)代数式2x2+8x﹣3的最小值是.解:2x2+8x﹣3=2(x2+4x+4)﹣11=2(x+2)2﹣11,∵(x+2)2≥0,∴代数式2x2+8x﹣3的最小值是﹣11.故答案为:﹣11.18.(2分)(2022秋•怀宁县月考)已知a+b=6,ab﹣c2=9.则a+b+c=.解:∵a+b=6,∴a=6﹣b,∵ab﹣c2=9,∴b(6﹣b)﹣c2=9,∴(b2﹣6b+9)+c2=0,∴(b﹣3)2+c2=0,∴b﹣3=0,c=0,∴a+b+c=6+0=6.故答案为:6.19.(2分)(2022•襄阳自主招生)可以用配方法化简二重根式,例如:==,请化简式子:++=.解:原式=++=﹣+2﹣+=﹣+2+=2.20.(2分)(2022秋•句容市月考)若a,b都是有理数,且满足a2+b2+5=4a﹣2b,则(a+b)2022=.解:∵a2+b2+5=4a﹣2b,∴a2+b2+5﹣4a+2b=0.∴a24a+4+b2+2b+1=0.∴(a﹣2)2+(b+1)2=0.∵(a﹣2)2≥0,(b+1)2≥0,∴(a﹣2)2=0,(b+1)2=0.∴a=2,b=﹣1.∴(a+b)2022=(2﹣1)2022=12022=1.故答案为:1.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2022秋•凤凰县期末)阅读下列材料:利用完全平方公式,可以将多项式ax2+bx+c(a≠0)变形为a(x+m)2+n的形式,我们把这样的式子变形叫做多项式ax2+bx+c(a≠0)的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:x2+11x+24=x2+11x+()2﹣()2+24根据以上材料,解答下列问题:(1)用多项式的配方法将x2+8x﹣1变形为(x+m)2+n的形式;(2)下面是某位同学用配方法及平方差公式把多项式x2﹣3x﹣40进行分解因式的解答过程:x2﹣3x﹣40=x2﹣3x+32﹣32﹣40=(x﹣3)2﹣49=(x﹣3+7)(x﹣3﹣7)=(x+4)(x﹣10)老师说,这位同学的解答过程中有错误,请你找出该同学解答中开始出现错误的地方,然后再写出完整的、正确的解答过程.正确的解答过程:====.(3)求证:x,y取任何实数时,多项式x2+y2﹣2x﹣4y+16的值总为正数.(1)解:x2+8x﹣1=x2+8x+42﹣42﹣1=(x+4)2﹣17;(2)解:正确的解答过程:x2﹣3x﹣40=x2﹣3x+()2﹣()2﹣40=(x﹣)2﹣=(x﹣+)(x﹣﹣)=(x+5)(x﹣8),故答案为:(x+5)(x﹣8);(3)证明:x2+y2﹣2x﹣4y+16=x2﹣2x+1+y2﹣4y+4+11=(x﹣1)2+(y﹣2)2+11,∵(x﹣1)2≥0,(y﹣2)2≥0,∴(x﹣1)2+(y﹣2)2+11>0,∴x,y取任何实数时,多项式x2+y2﹣2x﹣4y+16的值总为正数.22.(6分)(2022春•南关区校级期中)我们知道,对于任意一个实数a,a2具有非负性,即“a2≥0”.这a2≥0”来解决问题.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1∵(x+2)2≥0∴(x+2)2+1≥1∴x2+4x+5≥1(1)填空:x2﹣4x+6=(x)2+ ;(2)请用作差法比较x2﹣1与6x﹣12的大小,并写出解答过程;(3)填空:﹣x2+2x+3的最大值为.解:(1)x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2故答案为:﹣2,2(2)x2﹣1﹣6x+12=x2﹣6x+11=x2﹣6x+9+2=(x﹣3)2+2,∵(x﹣3)≥0,∴(x﹣3)2+2≥2>0,∴x2﹣1>6x﹣12.(3)﹣x2+2x+3=﹣(x2﹣2x)+3=﹣(x2﹣2x+1﹣1)+3=﹣(x﹣1)2+4,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+4≤4,∴﹣x2+2x+3的最大值为4.故答案为:4.23.(8分)(2022秋•浚县期中)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m,n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+4ab+5b2+6b+9=0,则a=,b=;(2)已知△ABC的三边长a,b,c都是正整数,且满足a2﹣4a+2b2﹣4b+6=0,求c的值;(3)若A=4a2+3a﹣5,B=3a2﹣7,试比较A与B的大小关系,并说明理由.解:(1)a2+4ab+5b2+6b+9=a2+4ab+4b2+b2+6b+9=(a+2b)2+(b+3)2=0,∴a+2b=0,b+3=0,解得a=6,b=﹣3.故答案为:6,﹣3;(2)a2﹣4a+2b2﹣4b+6=a2﹣4a+4+2b2﹣4b+2=(a﹣2)2+2(b﹣1)2=0,∴a﹣2=0,b﹣1=0,解得a=2,b=1,∵a、b、c是△ABC的三边长,∴1<c<3,∵c是正整数,∴c=2;(3)A>B,理由如下:∵A=4a2+3a﹣5,B=3a2+4a﹣7,A﹣B=4a2+3a﹣5﹣(3a2+4a﹣7)=4a2+3a﹣5﹣3a2﹣4a+7=a2﹣a+2=(a﹣)2+,∵(a﹣)2≥0,∴(a﹣)2+>0,∴A>B.24.(8分)(2023•桐乡市一模)设x,y都是实数,请探究下列问题,(1)尝试:①当x=﹣2,y=1时,∵x2+y2=5,2xy=﹣4,∴x2+y2>2xy.②当x=1,y=2时,∵x2+y2=5,2xy=4,∴x2+y2>2xy.③当x=2,y=2.5时,∵x2+y2=10.25,2xy=10,∴x2+y2>2xy.④当x=3,y=3时,∵x2+y2=18,2xy=18,∴x2+y22xy.(2)归纳:x2+y2与2xy有怎样的大小关系?试说明理由.(3)运用:求代数式的最小值.解:(1)当x=3,y=3时,∵x2+y2=18,2xy=18,∴x2+y2=2xy,故答案为:=;(2)x2+y2≥2xy,理由如下,∵x2﹣2xy+y2=(x﹣y)2≥0,∴x2+y2≥2xy;(3)∵x2+y2≥2xy,x2+=(x﹣)2+4,∵(x﹣)2≥0,∴代数式的最小值为4.25.(8分)(2022秋•离石区期末)阅读材料:2021年7月24日,中共中央办公厅、国务院办公厅印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,要求义务教育阶段学生要逐步养成自主学习习惯,提高自主学习能力.请自主研读下列例题,理解例题中解决问题的思想、方法,然后学习、借鉴这些思想、方法解答下列三个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0,∴,解得.问题解决:(1)若x2+2xy+2y2﹣6y+9=0,求x和y的值;(2)在(1)的条件下,求y x的值;(3)若a,b,c是△ABC的边长,满足a2﹣10a+b2﹣8b+41=0,c是△ABC的最长边,且c为奇数,则c 可能是哪几个数?解:(1)由题意得:(x2+2xy+y2)+(y2﹣6y+9)=0,∴(x+y)2+(y﹣3)2=0,∴,解得:.(2)由(1)可得:.(3)由题意得:(a2﹣10a+25)+(b2﹣8b+16)=0,∴(a﹣5)2+(b﹣4)2=0,∴,解得,又∵a,b,c是△ABC的边长,且c为最长边,∴5≤c<9,又∵c为奇数,∴c=5或7.26.(8分)(2022春•亭湖区校级期中)阅读材料:若m2﹣2mn+2n2﹣4n+4=0,求m,n的值.解:∵m2﹣2mn+2n2﹣4n+4=0,∴(m2﹣2mn+n2)+(n2﹣4n+4)=0∴(m﹣n)2+(n﹣2)2=0,∴(m﹣n)2=0,(n﹣2)2=0,∴n=2,m=2.根据你的观察,探究下面的问题:(1)a2+b2﹣6a+9=0,则a=,b=.(2)已知x2+2y2﹣2xy﹣8y+16=0,求x•y的值.(3)已知△ABC的三边长a,b,c都是正整数,且满足a+b=8,ab﹣c2+10c=41,求△ABC的周长.解(1)由:a2+b2﹣6a+9=0,得(a﹣3)2+b2=0,∵(a﹣3)2≥0,b2≥0,∴a﹣3=0,b=0,∴a=3,b=0.故答案为:3;0.(2)由x2+2y2﹣2xy﹣8y+16=0得(x﹣y)2+(y﹣4)2=0,∴x﹣y=0,y﹣4=0,∴x=y=4,∴x•y=16;(3)∵a+b=8,∴b=8﹣a,∵ab﹣c2+10c=41,∴a2﹣8a+16+c2﹣10c+25=0,∴(a﹣4)2+(c﹣5)2=0,∴a﹣4=0,c﹣5=0,∴a=4,c=5,∴b=4,∴△ABC的周长为a+b+c=4+4+5=13.27.(8分)(2022要应用.例:已知x可取任何实数,试求二次三项式x2+6x﹣1最小值.解:x2+6x﹣1=x2+2×3•x+32﹣32﹣1=(x+3)2﹣10∵无论x取何实数,总有(x+3)2≥0.∴(x+3)2﹣10≥﹣10,即x2+6x﹣1的最小值是﹣10.即无论x取何实数,x2+6x﹣1的值总是不小于﹣10的实数.问题:(1)已知y=x2﹣4x+7,求证y是正数;(2)知识迁移:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=4cm,点P在边AC上,从点A向点C 以2cm/s的速度移动,点Q在CB边上以cm/s的速度从点C向点B移动若点P,Q同时出发,且当一点移动到终点时,另一点也随之停止,设△PCQ的面积为Scm2,运动时间为t秒时S最大,请求出t和S 的值,证明:(1)y=x2﹣4x+7=x2﹣4x+4+3=(x﹣2)2+3.∵(x﹣2)2≥0.∴y≥0+3=3.∴y>0.∴y是正数.(2)∵AP=2t,CQ=t,PC=6﹣2t.(0≤t≤)∴S=PC•CQ.=(6﹣2t)•t=﹣t2+3t=﹣(t2﹣3t)=﹣(t﹣)2+.∵(t﹣)2≥0.∴t=S最大值=.28.(8分)(2023春•广信区期末)【说读材料】我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a>0,b>0时:∵(﹣)2≥0,∴a﹣2+b≥0.∴a+b≥2,当且仅当a=b时取等号,即当a=b时,a+b有最小值为2.【学以致用】根据上面材料回答下列问题:(1)已知x>0,则当x=时,式子x取到最小值,最小值为;(2)已知x≥0,求当x值为多少时,分式取到最小值,最小值是多少?(3)用篱笆围一个面积为100m2的长方形花园,问这个长方形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?解:(1)当x>0时,x+≥2=2,∴当x>0时,x+的最小值是2;即当x=1时,x+的最小值是2;故答案为:1;2;(2)令==x+﹣2≥4,当且仅当x=时,取最小值为4,∴当x=3时,y最大=.(3)设这个矩形的长为x米,则宽为米,所用的篱笆总长为y米,根据题意得:y=2x+,由上述性质知:∵x>0∴2x+≥2=40,此时,2x=,∴x=10.答:当这个长方形的长、宽各为10米时,所用的篱笆最短,最短的篱笆是40米.。
21.2.1 配方法一、选择题1.用配方法解一元二次方程x 2﹣4x ﹣6=0,变形正确的是( ) A .(x ﹣2)2=0 B .(x ﹣4)2=22C .(x ﹣2)2=10D .(x ﹣2)2=82.若2x+1与2x-1互为倒数,则实数x 为( ) A .x=12±B .x =±1C .±D .3.将一元二次方程x 2+6x+7=0进行配方正确的结果应为( ) A .(x+3)2+2=0 B .(x ﹣3)2+2=0C .(x+3)2﹣2=0D .(x ﹣3)2﹣2=04.用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为( ) A .(x+3)2=1 B .(x ﹣3)2=1 C .(x+3)2=19 D .(x ﹣3)2=195.如果二次三项式4x 2+mx+1/9是一个完全平方式,那么m 的值是( ) A .34 B .34- C .34± D .±436.用配方法解方程2520x x ++=时,四个学生在变形时,得到四种不同的结果,其中配方正确的是( ) A .2517()24x += B .2521()24x += C .2525()24x +=D .2533()24x +=7.新定义,若关于x 的一元二次方程:21()0a x m n -+=与22()0a x m n -+=,称为“同族二次方程”.如22(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程:22(1)10x -+=与2(2)(4)80a xb x ++-+=是“同族二次方程”.那么代数式22018ax bx ++能取的最小值是( ) A .2011 B .2013C .2018D .20238.下列各命题中正确的是( )①方程x 2=-4的根为x 1=2,x 2=-2②∵(x-3)2=2,∴x-3=,即③∵x 2,∴x=±4 ④在方程ax 2+c=0中,当a >0,c >0时,一定无实根 A .①② B .②③C .③④D .②④9.已知下面三个关于x 的一元二次方程2ax bx c 0++=,2bx cx a 0++=,2cx ax b 0++=恰好有一个相同的实数根a ,则a b c ++的值为( )A .0B .1C .3D .不确定10.方程2410x x ++=的解是( )A .1222x x ==B .1222x x ==-C .1222x x =-+=-D .1222x x =-=二、填空题11.解方程:9x 2﹣6x+1=0, 解:9x 2﹣6x+1=0,所以(3x ﹣1)2=0, 即3x ﹣1=0,解得x 1=x 2= .12.已知a 、b 、c 为△ABC 的三边长,且a 、b 满足2264130a a b b -+-+=,c 为奇数,则△ABC 的周长为______.13.用配方法解方程23650x x +-=,则配方后的方程是________14.用配方法解下列方程:(1)x 2+4x ﹣5=0,解:移项,得x 2+4x = ,方程两边同时加上4,得x 2+4x+4= ,即(x+2)2= ,所以x+2= 或x+2= ,所以x 1= ,x 2= .(2)2y 2﹣5y+2=0,解:方程两边同除以2,得y 2﹣y = ,方程两边同加上()2,得y 2﹣y+()2= ,所以( )2= ,解得y 1= ,y 2= .15.对于有理数,a b ,定义min{,}a b 的含义为:当a b ≥时,}{min ,a b b =;当a b ≤时,}{min ,a b a =.若}{22min 13,6413m n m n---=,则nm的值等于____.三、解答题16.用配方法解下列方程: (1)225x x -=; (2)22103x x -+=;(3)22360x x --=; (4)2212033x x +-=;(5))3x x =; (6)(23)(6)16x x +-=.17.解方程:2232mx x -=+()1m ≠18.若代数式233x x -的值与2(1)x -的值互为相反数,求x 的值?19.已知一元二次方程ax 2+bx +c =0(a ≠0)的一个根是1,且a ,b 满足b =+﹣3,求关于y 的方程y 2﹣c =0的根.20.已知:x 2+4x+y 2-6y+13=0,求222x y x y -+的值.21.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现: 当a >0,b >0时:∵)2=a ﹣b ≥0∴a +b a =b 时取等号. 请利用上述结论解决以下问题: (1)请直接写出答案:当x >0时,x +1x的最小值为 .当x <0时,x +1x的最大值为 ; (2)若y =27101x x x +++,(x >﹣1),求y 的最小值;(3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.22.实际问题:某商场为鼓励消费,设计了投资活动.方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额? 问题建模:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有多少种不同的结果? 模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法. 探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表②如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有______种不同的结果. 探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有______种不同的结果. 探究三:从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有______种不同的结果. 归纳结论:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有______种不同的结果. 问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额. 拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有______种不同的结果.答案一、选择题1. C 2. C 3. C 4. D 5. C 6. A 7. B 8. D 9. A 10. C 二、填空题 11.12. 8 13. 28(1)3x +=14. (1)x 2+4x ﹣5=0,解:移项,得x 2+4x = 5 ,方程两边同时加上4,得x 2+4x+4= 9 ,即(x+2)2= 9 ,所以x+2= 3 或x+2= ﹣3 ,所以x 1= 1 ,x 2= ﹣5 .(2)2y 2﹣5y+2=0,解:方程两边同除以2,得y 2﹣y = ﹣1 , 方程两边同加上()2,得y 2﹣y+()2=,所以( y ﹣ )2= ,解得y 1= 2 ,y 2=.15.19三、解答题16. (1)1211x x ==(2)原方程无实数根;(3)123344x x +-==(4)123,22x x ==-;(5)12x x =;(6)129944-==x x .17. 当1m 时,原方程的解是x =,当1m <时,原方程无实数解18. 解:因为代数式233x x -的值与2(1)x -的值互为相反数所以233x x -+2(1)x -=0,整理的2125=636x -(),解得1221,3x x ==- 19. y =±2. 20. 813-21. (1)2;﹣2.(2)y 的最小值为9;(3)四边形ABCD 面积的最小值为25.22. 探究一:(3)7;(4)23n -(3n ≥,n 为整数);探究二:(1)4,(2)38n - ;探究三:415,n -归纳结论:21an a -+ (n 为整数,且3n ≥,1<a <n );问题解决:476;拓展延伸:(1)29个或7个;(2)()211a n a +-+.。
人教版数学九年级上册同步课时训练第二十一章一元二次方程21.2解一元二次方程21.2.1配方法第2课时配方法自主预习基础达标要点配方法解一元二次方程通过配成形式来解一元二次方程的方法,叫做配方法.用配方法解一元二次方程的一般步骤:1. 把含的项移到方程的左边,常数项移到方程的右边;2. 如果一元二次方程的不是1,就先将方程的两边同时除以二次项系数,把二次项系数化为1;3. 在方程的左右两边同时加上一次项系数一半的平方,这样使方程的左边配成一个完全平方式,右边是一个非负数的形式;4. 用的方法解这个一元二次方程.课后集训巩固提升1. 用配方法解一元二次方程x2+4x-3=0时,原方程可变形为()A. (x+2)2=1B. (x+2)2=7C. (x+2)2=13D. (x+2)2=192. 若方程4x2-(m-2)x+1=0的左边是一个完全平方式,则m等于()A. -2B. -2或6C. -2或-6D. 2或-63. 已知等腰三角形的腰和底的长分别是一元二次方程x2-6x+8=0的根,则该三角形的周长为()A. 8B. 10C. 8或10D. 124. 已知一元二次方程x2+mx+3=0配方转化为(x+n)2=22,那么一元二次方程x2-mx-3=0配方后为()A. (x+5)2=28B. (x+5)2=19或(x-5)2=19C. (x-5)2=19D. (x+5)2=28或(x-5)2=285. 用配方法将下列各式化为a(x+m)2+n的形式:(1)x2-8x-3=(x-)2-;(2)2x2+5x+4=2(x+)2+.6. 解方程x2-10x=24时,方程两边需加上,配方后方程转化为,解得方程的根为.7. 已知方程x2+6x+n=0可以配方成(x+m)2=5,则以m,n为两边长的直角三角形的第三边的长为.8. 用配方法解下列方程.(1)x2+4x-1=0;(2)2t2-7t-4=0;(3)2x2-4x-8=0.9. 用配方法证明:不论x,y取何实数时,代数式x2+y2+2x-4y+7的值总不小于常数2.10. 若要用一根长20厘米的铁丝,折成一个面积为16平方厘米的矩形方框,则应该怎样折呢?11. 已知三角形两边长分别是8和6,第三边长是一元二次方程x 2-16x +60=0的一个根.请用配方法解此方程,并计算出三角形的面积.参考答案自主预习 基础达标要点 完全平方 1. 未知数 2. 二次项系数 4. 直接降次(或开平方求根)课后集训 巩固提升1. B2. B3. B4. D5. (1)4 19 (2)54 786. 25 (x -5)2=49 x 1=-2,x 2=127. 5或78. 解:(1)配方得,(x +2)2=5,解得x 1=-2+5,x 2=-2- 5.(2)方程两边同时除以2,得:t 2-72t -2=0,配方为(t -74)2=8116,解得t 1=4,t 2=-12. (3)方程两边同时除以2,得x 2-2x -4=0,配方为(x -1)2=5,解得x 1=1+5,x 2=1- 5.9. 证明:∵x 2+y 2+2x -4y +7=(x +1)2+(y -2)2+2,又∵(x +1)2≥0,(y -2)2≥0,∴不论x ,y 取何实数时,x 2+y 2+2x -4y +7≥2.10.解:设折成的矩形方框的长为x 厘米,则宽为(10+x )厘米,由题意,得x (10-x )=16,解得x 1=2(不符合题意舍去),x 2=8,∴10-x=2,∴矩形方框的长为8厘米,宽为2厘米.11. 解:解方程x 2-16x +60=0,x 2-16x =-60,x 2-16x +64=-60+64,(x -8)2=4,x -8=±2,解得x 1=6,x 2=10. 如图①,当第三边长为10时,不妨设AC =6,BC =8,则AC 2+BC 2=AB 2,根据勾股定理的逆定理可知,△ABC为直角三角形,S△ABC=12×6×8=24.如图②,当第三边长为6时,不妨设AB=AC=6,BC=8,过点A作AD⊥BC于点D,则BD=DC=4.在Rt△ABD中,AD=62-42=25,S△ABC=12×8×25=8 5.。
配方法的应用精选题43道参考答案与试题解析一.选择题(共19小题)1.【分析】由(3x﹣)2+m=9x2﹣2x++m可知a=9,m=【解答】解:由ax2=(3x﹣)2+m=9x2﹣2x++m得:a=9,+m=1所以:m=故选:B.【点评】本题主要考查完全平方公式在配方法中的应用.2.【分析】此题考查了配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.【解答】解:∵x2﹣4x+5=x2﹣4x+4﹣4+5=(x﹣2)2+1∵(x﹣2)2≥0,∴(x﹣2)2+1≥1,∴当x=2时,代数式x2﹣4x+5的最小值为1.故选:B.【点评】此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.3.【分析】先用配方法对b2+c2=2b+4c﹣5变形配方,从而求得b,c的值,再将其代入a2=b2+c2﹣bc,求出a,再由勾股定理的判定定理得出△ABC为直角三角形,从而其面积易得.【解答】解:∵b2+c2=2b+4c﹣5∴(b2﹣2b+1)+(c2﹣4c+4)=0∴(b﹣1)2+(c﹣2)2=0,∴b﹣1=0,c﹣2=0,∴b=1,c=2.又∵a2=b2+c2﹣bc,∴a2=1+4﹣2=3,∴a=或a=﹣(舍)∵,∴△ABC是以1和为直角边的直角三角形,∴△ABC的面积为:=,故选:B.【点评】本题考查了应用配方法进行变形,以及偶次方的非负性,勾股定理的逆定理,三角形的面积计算等基础内容,本题难度中等.4.【分析】根据完全平方公式把原式的右边变形,根据题意列出方程,求出m、n,计算即可.【解答】解:(x﹣5)2﹣n=x2﹣10x+25﹣n,∴x2+mx+19=x2﹣10x+25﹣n,∴m=﹣10,25﹣n=19,解得,m=﹣10,n=6,∴m+n=﹣10+6=﹣4,故选:C.【点评】本题考查的是配方法的应用,掌握完全平方公式是解题的关键.5.【分析】通过配方法配出平方根,从而判断M值的大小.【解答】解:M=5x2﹣12xy+10y2﹣6x﹣4y+13=4x2﹣12xy+9y2+y2﹣4y+4+x2﹣6x+9=(2x ﹣3y)2+(y﹣2)2+(x﹣3)2≥0,故M一定是非负数.故选:A.【点评】本题考查了配方法的应用,熟练配方法的应用是解答此题的关键.6.【分析】把Q﹣P利用完全平方公式进行变形,根据偶次方的非负性解答.【解答】解:Q﹣P=m2﹣1﹣(2m﹣3)=m2﹣1﹣2m+3=m2﹣2m+2=m2﹣2m+1+1=(m﹣1)2+1,∵(m﹣1)2≥0,∴,(m﹣1)2+1>0,∴Q﹣P>0,∴P<Q,故选:C.【点评】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.7.【分析】先利用配方法将代数式﹣x2+4x﹣2转化为完全平方与常数的和的形式,然后根据非负数的性质进行解答.【解答】解:∵﹣x2+4x﹣2=﹣(x2﹣4x+4)+4﹣2=﹣(x﹣2)2+2,又∵(x﹣2)2≥0,∴(x﹣2)2≤0,∴﹣(x﹣2)2+2≤2,∴代数式﹣x2+4x﹣2有最大值2.故选:B.【点评】本题考查配方法的应用,解题的关键是利用完全平方公式,根据非负数的性质解决问题,属于中考常考题型.8.【分析】配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.【解答】解:x2+6x+m=(x+3)2﹣9+m═(x+n)2﹣1,∴﹣9+m=﹣1,m=8.故选:C.【点评】本题考查了配方法的应用,熟练掌握完全平方公式是解题写关键.9.【分析】已知等式变形配方后,利用非负数的性质求出a与b的值,代入原式计算即可求出值.【解答】解:已知等式变形得:(a2+6a+9)+(b2﹣4b+4)=0,即(a+3)2+(b﹣2)2=0,可得a+3=0,b﹣2=0,解得:a=﹣3,b=2,则原式=(﹣3)2=9.故选:C.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.10.【分析】原式配方后,利用非负数的性质确定出m的值即可.【解答】解:原式=﹣(x2﹣mx)+9=﹣(x﹣)2+9+,当x﹣=0,即x=时,原式取得最大值9+=10,整理得:m2=4,解得:m=±2,则m的值可能为2,故选:B.【点评】此题考查了配方法的应用,以及非负数的性质:偶次方,熟练掌握完全平方公式是解本题的关键.11.【分析】先将多项式2x2﹣2xy+5y2+12x﹣24y+51分组配方,根据偶次方的非负性可得答案.【解答】解:2x2﹣2xy+5y2+12x﹣24y+51=x2﹣4xy+4y2+12x﹣24y+36+x2+2xy+y2+15=(x﹣2y)2+12(x﹣2y)+36+(x+y)2+15=(x﹣2y+6)2+(x+y)2+15∵(x﹣2y+6)2≥0,(x+y)2≥0∴(x﹣2y+6)2+(x+y)2+15≥15故选:C.【点评】本题考查了配方法在多项式最值中的应用,熟练掌握配方法并灵活运用及恰当分组,是解题的关键.12.【分析】先配成非负数的和为0,各项为0,求出a,b代入即可.【解答】解:(1)∵a2+2a+b2﹣6b+10=0,∴(a+1)2+(b﹣3)2=0,∴a=﹣1,b=3,∴b a=3﹣1=,故选:D.【点评】此题是配方法的应用,主要考查了非负数的性质,解本题的关键是求出a,b的值.13.【分析】用配方法把多项式配方,再利用非负数的性质判断多项式的值的范围.【解答】解:∵x2﹣6x+10=x2﹣6x+9+1=(x﹣3)2+1而(x﹣3)2≥0,∴(x﹣3)2+1>0,故选C.【点评】利用非负数的性质可以判断多项式的取值范围,而非负数往往需要用配方法才能得到.14.【分析】把等式左边配成完全平方加或减常数的形式,再与等式右边比较对应位置的字母与数字即可得答案.【解答】解:∵3x2+6x+2=a(x+k)2+h,等式左边3x2+6x+2=3(x2+2x+1)﹣1=3(x+1)2﹣1把上式与a(x+k)2+h比较得k=1,h=﹣1.故选:B.【点评】本题考查配方法的应用,需要先把等式左边变形,然后与右边比较对应位置的数字与字母即可,本题属于中档题.15.【分析】利用完全平方公式把原式变形,根据偶次方的非负性解答即可.【解答】解:x2﹣4x+7=x2﹣4x+4+3=(x﹣2)2+3,∵(x﹣2)2≥0,∴(x﹣2)2+3≥3,∴代数式x2﹣4x+7有最小值3,故选:C.【点评】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.16.【分析】首先把x2+y2+2x﹣4y+9化成(x+1)2+(y﹣2)2+4;然后根据偶次方的非负性质,判断出代数式x2+y2+2x﹣4y+9的值总不小于4即可.【解答】解:x2+y2+2x﹣4y+9=(x2+2x+1)+(y2﹣4y+4)+4=(x+1)2+(y﹣2)2+4∵(x+1)2≥0,(y﹣2)2≥0,∴x2+y2+2x﹣4y+9≥4,即不论x、y为什么实数,代数式x2+y2+2x﹣4y+9的值总不小于4.故选:A.【点评】此题主要考查了配方法的应用,以及偶次方的非负性质的应用,要熟练掌握.17.【分析】利用完全平方公式把原式变形,根据偶次方的非负性解答即可.【解答】解:x2﹣4xy+5y2+8y+15=x2﹣4xy+4y2+y2+8y+16﹣1=(x﹣2y)2+(y+4)2﹣1,∵(x﹣2y)2≥0,(y+4)2≥0,∴(x﹣2y)2+(y+4)2﹣1≥﹣1,∴多项式x2﹣4xy+5y2+8y+15的最小值为﹣1,故选:A.【点评】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.18.【分析】利用配方法得到a2﹣4a+5=(a﹣2)2+1,然后根据非负数的性质易得(a﹣2)2+1>0.【解答】解:a2﹣4a+5=(a﹣2)2+1,∵(a﹣2)2≥0,∴(a﹣2)2+1>0,即数式a2﹣4a+5的值一定是正数.故选:A.【点评】本题考查了配方法的应用:用配方法解一元二次方程;利用配方法求二次三项式是一个完全平方式时所含字母系数的值.也考查了非负数的性质.19.【分析】通过配方法将代数式变形,由此求得其最小值.【解答】解:由配方法得,x2﹣4x+5=(x﹣2)2+1.因为(x﹣2)2≥0,所以(x﹣2)2+1≥1,所以代数式x2﹣4x+5的最小值是1.故选:B.【点评】此题考查了配方法的应用和非负数的性质,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.二.填空题(共17小题)20.【分析】题中有﹣8xy,2x应为完全平方式子的第二项,把所给代数式整理为两个完全平方式子与一个常数的和,最小值应为那个常数.【解答】解:原式=(x2+2x+1)+(4x2﹣8xy+4y2)+3=4(x﹣y)2+(x+1)2+3,∵4(x﹣y)2和(x+1)2的最小值是0,即原式=0+0+3=3,∴5x2+4y2﹣8xy+2x+4的最小值为3.故答案为:3.【点评】考查配方法的应用;根据﹣8xy,2x把所给代数式整理为两个完全平方式子的和是解决本题的关键.21.【分析】首先把所求的式子利用配方法转化为a(x+b)2+c的形式,根据一个式子的平方是非负数,即可确定.【解答】解:∵x2+8x+5=(x2+16x)+5=(x2+16x+64﹣64)+5,⇒x2+8x+5=[(x+8)2﹣64]+5=(x+8)2﹣27,∵(x+8)2≥0,∴代数式x2+8x+5的最小值是﹣27.【点评】此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.22.【分析】已知等式左边配方得到结果,即可确定出m的值.【解答】解:已知等式变形得:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1=(x﹣2)2+m,则m=1,故答案为:1【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.23.【分析】原式利用完全平方公式化简即可得到结果.【解答】解:x2﹣4x+3=(x﹣2)2﹣1.故答案为:2.【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.24.【分析】根据配方法的步骤先把x2﹣4x﹣5的形式,求出m,k的值,再代入进行计算即可.【解答】解:x2﹣4x﹣5=(x﹣2)2﹣9,所以m=2,k=﹣9,所以m+k=2﹣9=﹣7.故答案是:﹣7.【点评】此题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.25.【分析】由a﹣b=2,得出a=b+2,进一步代入ab+2b﹣c2+2c=0,进一步利用完全平方公式得到(b+2)2﹣(c﹣1)2﹣3=0,再根据已知条件得到b的值,进一步求得整数a的值即可.【解答】解:∵a﹣b=2,∴a=b+2,∴ab+2b﹣c2+2c=b(b+2)+2b﹣c2+2c=b2+4b﹣(c2﹣2c)=(b+2)2﹣(c﹣1)2﹣3=0,∵b≥0,﹣2≤c<1,∴4≤(b+2)2≤12,∵a是整数,∴b=0或1,∴a=2或3.故答案为:2或3.【点评】此题考查配方法的运用,非负数的性质,掌握完全平方公式是解决问题的关键.26.【分析】利用配方法把原式化为平方和的形式,根据偶次方的非负性解答.【解答】解:x2+y2+2x﹣4y+7=x2+2x+1+y2﹣4y+4+2=(x+1)2+(y﹣2)2+2,∵(x+1)2≥0,(y﹣2)2≥0,∴(x+1)2+(y﹣2)2+2的最小值是2,即代数式x2+y2+2x﹣4y+7的最小值是2,故答案为:2.【点评】本题考查的是配方法的应用、非负数的性质,掌握配方法的一般步骤、偶次方的非负性是解题的关键.27.【分析】利用完全平方公式把原式变形,根据非负数的性质分别求出a、b,根据负整数指数幂的运算法则计算.【解答】解:a2+b2+4a﹣8b+20=0,a2+4a+4+b2﹣8b+16=0,(a+2)2+(b﹣4)2=0,则a+2=0,b﹣4=0,解得,a=﹣2,b=4,则b a=4﹣2=,故答案为:.【点评】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.28.【分析】将等式右边的部分移到左边,然后配方,利用偶次方的非负性,可得a,b,c 的值,从而可求得2b+c的值.【解答】解:∵a+b+c=2+4+6﹣14∴a+1+b+1+c﹣2﹣2﹣4﹣6+14=0∴[﹣2+1]+[﹣4+4]+[﹣6+9]=0∴++=0∴﹣1=0,﹣2=0,﹣3=0∴=1,=2,=3∴a+1=1,b+1=4,c﹣2=9∴a=0,b=3,c=11∴2b+c=2×3+11=17故答案为:17.【点评】本题考查了配方法在二次根式中应用,熟练掌握配方法并明确偶次方的非负性,是解题的关键.29.【分析】本题可以用配方法来做,当二次项系数不是1时,可以先把二次项系数提到括号外面,再凑常数项,常数项等于一次项系数一半的平方,由此可解.【解答】解:2a2﹣a+10=2+10=2()+10=2+10﹣=2+∵2≥0,∴2+≥.∴代数式2a2﹣a+10的最小值是.【点评】本题可以用配方法来求最小值.配方法是一种重要的计算化简方法,需要扎实掌握.30.【分析】把原式根据配方法化成x2+10y2+6xy﹣4y+4=(x+3y)2+(y﹣2)2,即可得出最小值.【解答】解:x2+10y2+6xy﹣4y+4=x2+6xy+9y2+y2﹣4y+4=(x+3y)2+(y﹣2)2,∵(x+3y)2+(y﹣2)2≥0,∴x2+10y2+6xy﹣4y+4的最小值是0.故答案为0.【点评】本题考查了配方法的应用,难度不大,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.31.【分析】应用配方法求出a,b,c之间的关系,然后直接计算即可.【解答】解:∵a2+b2+c2﹣ab﹣bc﹣ac=0,∴2(a2+b2+c2﹣ab﹣bc﹣ac)=0,∴(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a=b=c又∵a+3b+4c=16,∴a=b=c=2,∴a+b+c=6.故答案为:6【点评】本题考查了配方法的应用,熟练掌握配方法是解答此题的关键.32.【分析】根据完全平方公式把原式变形即可.【解答】解:x2﹣4x+1=x2﹣4x+4﹣3=(x﹣2)2﹣3,故答案为:(x﹣2)2﹣3.【点评】本题考查的是配方法的应用,掌握完全平方公式是解题的关键.33.【分析】先求出A﹣B的值,再判断即可.【解答】解:∵A=2a2﹣a+3,B=a2+a,∴A﹣B=(2a2﹣a+3)﹣(a2+a)=a2﹣2a+3=(a﹣1)2+2≥0,∴A>B,故答案为:A>B.【点评】本题考查了整式的混合运算和配方法的应用,能选择适当的方法求解是解此题的关键.34.【分析】先利用配方法将代数式2x2﹣4x+1转化为完全平方与常数的和的形式,然后根据非负数的性质进行解答.【解答】解:2x2﹣4x+1=2(x2﹣2x+1)﹣2+1=2(x﹣1)2﹣1,∵2(x﹣1)2≥0,∴2x2﹣4x+1的最小值是﹣1,故答案为:﹣1.【点评】本题考查配方法的应用,解题的关键是利用配方法,根据非负数的性质解决问题,属于中考常考题型.35.【分析】仿照题中的方法将原式配方后,利用非负数的性质确定出最小值即可.【解答】解:y2﹣y+5=y2﹣y++=(y﹣)2+≥,则代数式y2﹣y+5的最小值是.故答案为:.【点评】此题考查了配方法的应用,以及非负数的性质:偶次方,熟练掌握完全平方公式是解本题的关键.36.【分析】已知等式左边配方后,利用非负数的性质求出x与y的值,即可求出代数式的值.【解答】解:∵4x2+9y2+12x﹣6y+10=(4x2+12x+9)+(9y2﹣6y+1)=(2x+3)2+(3y ﹣1)2=0,可得2x+3=0,3y﹣1=0,解得:x=﹣,y=,则8x﹣9y=8×(﹣)﹣9×=﹣15,故答案为:﹣15.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.三.解答题(共7小题)37.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x的值即可.【解答】解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50∵﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.38.【分析】(1)首先把x2﹣2xy+2y2﹣2y+1=0利用完全平方公式因式分解,利用非负数的性质求得x、y代入求得数值;(2)、(3)仿照例题和(1)的解法,利用配方法计算即可.【解答】解:(1)∵x2﹣2xy+2y2﹣2y+1=0∴x2﹣2xy+y2+y2﹣2y+1=0∴(x﹣y)2+(y﹣1)2=0∴x﹣y=0,y﹣1=0,∴x=1,y=1,∴x+2y=3;(2)∵a2+5b2﹣4ab﹣2b+1=0∴a2+4b2﹣4ab+b2﹣2b+1=0∴(a﹣2b)2+(b﹣1)2=0∴a﹣2b=0,b﹣1=0∴a=2,b=1;(3))∵m=n+4,∴n(n+4)+t2﹣8t+20=0∴n2+4n+4+t2﹣8t+16=0∴(n+2)2+(t﹣4)2=0∴n+2=0,t﹣4=0∴n=﹣2,t=4∴m=n+4=2∴n2m﹣t=(﹣2)0=1.【点评】本题考查的是配方法的应用,掌握配方法的一般步骤和完全平方公式是解题的关键.39.【分析】(1)已知等式利用完全平方公式配方后,利用非负数的性质求出a,b,c的值即可;(2)把a,b,c的值代入已知等式求出++的值,原式变形后代入计算即可求出值.【解答】解:(1)已知等式整理得:(a﹣b)2+(b﹣4)2+(c﹣5)2=0,∴a﹣b=0,b﹣4=0,c﹣5=0,解得:a=b=4,c=5;(2)把a=b=4,c=5代入已知等式得:=﹣4,即+=﹣;=,即+=;=﹣,即+=﹣,∴++=﹣,则原式==﹣8.【点评】此题考查了配方法的应用,非负数的性质,以及分式的值,熟练掌握完全平方公式是解本题的关键.40.【分析】(1)根据理解材料一的内容进行解答,比对这题很容易解决.(2)①中把根式下的式子转化成平方+平方的形式,转化成点到点的距离问题,根据两点之间距离最短,所以当三个点共线时距离最短,可以求出最小值和函数关系式②中也根据材料二的内容来解答求出x的值.【解答】解:(1)根据材料一;∵(﹣)×(+)=(20﹣x)﹣(4﹣x)=16∵﹣=2,∴+=8,∴=5=3∴解得:x=﹣5∴y=2x+6(﹣2≤x≤1)(2)①解:由材料二知:=====.∴可将的值看作点(x,y)到点(1,8)的距离的值看作点(x,y)到点(﹣2,2)的距离∴=+.∴当代数式取最小值即点(x,y)与点(1,8),(﹣2,2)在同一条直线上,并且点(x,y)位点(1,8)(﹣2,2)的中间∴的最小值===3且﹣2≤x≤1设过(x,y),(1,8),(﹣2,2)的直线解析式为:y=kx+b∴解得:∴y=2x+6(﹣2≤x≤1)②:∵y=+中∵y=2x+6∴+=2x+6 ①又∵(+)(﹣)=2x2+5x+12﹣(2x2+3x+6)=2x+6∴﹣=1 ②由①+②式得:=x+解得:x1=>1(舍)x2=∴x的值为1﹣【点评】本题属于新定义题,理解新定义的内容完成题目要求.41.【分析】1、根据阅读材料内容解决问题即可;2、根据矩形的性质和阅读材料内容进行计算即可求解;3、先将代数式变形,再根据阅读内容即可求解;4、根据立方体的体积公式和已知条件表示出长方体的宽,运用阅读内容即可求解.【解答】解:1、由阅读1结论可知:把a﹣1看成一个整体,当a=4时,函数y=a﹣1++1(a>1)的最小值为7.故答案为4、7.2、设矩形周长为y,由题意,得y=2(x+),∵x+≥2∴x≥4,当x=即x==2时,函数y=2(x)的最小值为2×2=8.故答案为2、8.3、设y=(m>﹣1),=(m+1)+,当m+1=即m=1时,y=4.答:代数式(m>﹣1)的最小值为4.4、根据题意,得长方体的宽为米,∴y=x•×120+×2×2×80+80×2×2x=480+320(x+)当x=即x=2时,函数y=480+320(x+)的最小值为1760,答:当x为2时,水池总造价y最低,最低是1760元.【点评】本题考查了配方法的应用、矩形的性质、长方体体积,解决本题的关键是理解并运用阅读材料内容.42.【分析】(1)当x>0时,按照公式(当且仅当a=b时取等号)来计算即可;x<0时,由于﹣x>0,﹣>0,则也可以按照公式(当且仅当a=b 时取等号)来计算;(2)将的分子分别除以分母,展开,将含x的项用题中所给公式求得最小值,再加上常数即可;(3)设S△BOC=x,已知S△AOB=4,S△COD=9,则由等高三角形可知:S△BOC:S△COD =S△AOB:S△AOD,用含x的式子表示出S△AOD,四边形ABCD的面积用含x的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【解答】解:(1)当x>0时,≥2=2;当x<0时,=﹣(﹣x﹣)∵﹣x﹣≥2=2∴﹣(﹣x﹣)≤﹣2∴当x>0时,的最小值为2;当x<0时,的最大值为﹣2.故答案为:2;﹣2;(2)由,∵x>0,∴,当时,最小值为11.(3)设S△BOC=x,已知S△AOB=4,S△COD=9则由等高三角形可知:S△BOC:S△COD=S△AOB:S△AOD∴x:9=4:S△AOD∴:S△AOD=∴四边形ABCD面积=4+9+x+≥13+2=25当且仅当x=6时取等号,即四边形ABCD面积的最小值为25.【点评】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大,属于中档题.43.【分析】(1)仿照阅读材料、利用配方法把原式化为完全平方式与一个数的和的形式,根据偶次方的非负性解答;(2)利用配方法把原式进行变形,根据偶次方的非负性解答即可【解答】解:(1)∵x2+10x+7=x2+10x+25﹣18=(x+5)2﹣18,由(x+5)2≥0,得(x+5)2﹣18≥﹣18;∴代数式x2+10x+7的最小值是﹣18;(2)﹣a2﹣8a+16=﹣a2﹣8a﹣16+32=﹣(a+4)2+32,∵﹣(a+4)2≤0,∴﹣(a+4)2+32≤32,∴代数式﹣a2﹣8a+16有最大值,最大值为32.【点评】本题考查的是配方法的应用和偶次方的非负性,掌握配方法的一般步骤、偶次方的非负性是解题的关键.。
人教版九年级数学上册《配方法的应用》专项练习题-附带答案类型一 配方法求字母的值1.如果221016890x y x y +--+= 求x y的值. 【答案】58 【解析】【分析】先将89拆成64+25 然后配成两个完全平方式相加 再根据非负数的性质“两个非负数相加和为0 这两个非负数的值都为0” 解出x 、y 的值即可求解.【详解】解:由已知221016890x y x y +--+=得()()22580x y -+-=()()225=080x y ∴--=, 5,8x y ∴==58x y ∴=. 【点睛】本题考查了配方法的应用和非负数的性质 解题关键是掌握两个非负数相加和为0 这两个非负数的值都为0.2.阅读下列材料:对于某些二次三项式可以采用“配方法”来分解因式 例如:把x 2 + 6x ﹣16分解因式 我们可以这样进行:x 2 + 6x ﹣16=x 2 +2·x ·3+32-32﹣16(加上32 再减去32)=(x +3)2-52(运用完全平方公式)=(x +3+5)(x +3﹣5) (运用平方差公式)=(x +8)(x ﹣2)(化简)运用此方法解决下列问题:(1)把x 2﹣8x ﹣9分解因式.(2)已知:a 2+b 2﹣6a +10b +34=0 求多项式4a 2 +12ab +9b 2的值.【答案】(1)()()19x x +-;(2)81【解析】【分析】(1)按照阅读材料的方法进行因式分解即可;(2)利用配方法把原式变形得()()22350a b -++= 从而可得3a =5b =- 再由()222412923a ab b a b ++=+ 进行求解即可. 【详解】解:(1)289x x --22224449x x =-⋅⋅+--()2245x =--()()4545x x =-+--()()19x x =+-;(2)∵22610340a b a b +-++=∵226910250a a b b -++++=∵()()22350a b -++=∵3a = 5b =-∵()()222241292361581a ab b a b ++=+=-=.【点睛】本题考查的是配方法的应用 掌握完全平方公式和平方差公式、偶次方的非负性是解题的关键.3.已知a -b =2 ab +2b -c 2+2c =0 当b ≥0 -2≤c <1时 整数a 的值是_____.【答案】2或3【解析】【分析】由a −b =2 得出a =b +2 进一步代入2220ab b c c +-+= 利用完全平方公式得到()()222130b c +---= 再根据已知条件求出b 的值 进一步求得a 的值即可. 【详解】解:∵a −b =2∵a =b +2∵222ab b c c +-+()2222b b b c c =++-+()2242b b c c =+--()()22213b c =+---=0∵()()22213b c +=-+∵b ≥0 −2≤c <1∵310c -≤-<∵()2019c <-≤∵()231312c <-+≤∵3<()22b +≤12∵a 是整数∵b 是整数∵b =0或1∵a =2或3故答案为:2或3.【点睛】此题考查配方法的运用 掌握完全平方公式是解决问题的关键.4.若a =x +19 b =x +20 c =x +21 则a 2+b 2+c 2-ab -bc -ac =___________.【答案】3【解析】【分析】先利用已知条件求解,,,a b b c a c 再把原式化为()()()22212a b b c a c ⎡⎤-+-+-⎣⎦ 再整体代入求值即可. 【详解】 解: a =x +19 b =x +20 c =x +211,1,2,a b b c a c∴ a 2+b 2+c 2-ab -bc -ac =()22222221222a b c ab bc ac ++--- 22222212222a ab b b bc c a ac c 22212a b b c a c 222111126322故答案为:3【点睛】本题考查的是利用完全平方式的特点求解代数式的值 因式分解的应用 掌握“完全平方式的特点”是解题的关键.5.阅读材料:若m 2+2mn +2n 2﹣6n +9=0 求m 和n 的值.解:∵m 2+2mn +2n 2﹣6n +9=0∵m 2+2mn +n 2+n 2﹣6n +9=0∵(m +n )2+(n ﹣3)2=0∵m +n =0且n ﹣3=0∵m =﹣3 n =3根据你的观察 探究下面的问题:(1)若x 2+2xy +2y 2﹣2y +1=0 求x 、y 的值;(2)已知a b c 是∵ABC 的三边长 满足a 2+b 2=10a +12b ﹣61 且∵ABC 是等腰三角形 求c 的值.【答案】(1)x =-1 y =1;(2)5或6【解析】【分析】(1)仿照材料的过程进行凑成两个非负数的和为0 即可求得结果;(2)仿照材料的过程进行凑成两个非负数的和为0 即可分别求得a和b的值再根据等腰三角形的性质可求得c的值.【详解】(1)∵x2+2xy+2y2﹣2y+1=0∵x2+2xy+y2+y2﹣2y+1=0∵(x+y)2+(y﹣1)2=0∵x+y=0且y﹣1=0∵x=﹣1 y=1(2)∵a2+b2=10a+12b﹣61∵a2+b2-10a-12b+61=0∵(a-5)2+(b﹣6)2=0∵a-5=0且b﹣6=0∵a=5 b=6∵∵ABC是等腰三角形∵c=a=5或c=b=6即c的值为5或6.【点睛】本题是材料问题考查了配方法的应用平方非负性的性质等腰三角形的性质等知识关键是读懂材料中提供的解题过程和方法.6.在平面直角坐标系xOy中满足不等式x2+y2≤2x+2y的整数点坐标(x y)的个数为_____.【答案】9【解析】【分析】由已知不等式变形后利用完全平方公式化简根据x与y均为整数确定出x与y的值即可得到结果.【详解】解:由题设x2+y2≤2x+2y得0≤(x﹣1)2+(y﹣1)2≤2因为x y 均为整数 所以有或22(1)0(1)1x y ⎧-=⎨-=⎩或22(1)1(1)1x y ⎧-=⎨-=⎩或22(1)1(1)0x y ⎧-=⎨-=⎩ 解得:11x y =⎧⎨=⎩ 或12x y =⎧⎨=⎩或10x y =⎧⎨=⎩或01x y =⎧⎨=⎩或00x y =⎧⎨=⎩或02x y =⎧⎨=⎩或21x y =⎧⎨=⎩或20x y =⎧⎨=⎩或22x y =⎧⎨=⎩ 以上共计9对(x y ).故答案为:9.【点睛】本题考查坐标与图形的性质、配方法的应用、非负数的性质等知识 是重要考点 掌握相关知识是解题关键.7.阅读下面的材料:若22228160m mn n n -+-+= 求m n 的值.解:22228160m mn n n -+-+=.()()22228160m mn n n n ∴-++-+=.22()(4)0m n n ∴-+-=. 2()0m n ∴-= 2(4)0n -=.4n ∴= 4m =.根据你的观察 探究下列问题:(1)已知等腰三角形ABC 的两边长a b 都是正整数 且满足221012610a b a b +--+= 求ABC 的周长;(2)已知6a b -= 216730ab c c +-+= 求a b c ++的值.【答案】(1)ABC 的周长为16或17;(2)8a b c ++=【解析】【分析】(1)根据题中所给方法把221012610a b a b +--+=进行配方求解a 、b 的值 然后根据等腰三角形的定义及三角形三边关系进行分类求解即可;(2)由6a b -=可知6b a =- 然后代入等式可得()2616730a a c c -+-+= 进而根据配方即可求解.【详解】解:(1)∵221012610a b a b +--+=∵22102512360a a b b -++-+=∵()()22560a b -+-=∵50,60a b -=-=∵5,6a b ==∵等腰三角形ABC 的两边长a b 都是正整数∵当5a =为腰 则6b =为底 满足三角形三边关系 故ABC 的周长为5+5+6=16;当6b =为腰 则5a =为底 满足三角形三边关系 故ABC 的周长为5+6+6=17;(2)∵6a b -=∵6b a =-∵()221673616730ab c c a a c c +-+=-+-+=226916640a a c c -++-+=()()22380a c -+-=∵30,80a c -=-=∵3,8a c ==∵363b =-=-∵8a b c ++=.【点睛】本题主要考查配方法的应用 熟练掌握完全平方公式是解题的关键.类型二 配方法求最值8.已知y =x y 均为实数) 则y 的最大值是______.【答案】【解析】【分析】将根据题意0y ≥ 14x ≤≤ 原式y = 可得248y ≤≤故2y ≤≤进而即可求得最大值.【详解】解:0y ≥ 15x ≤≤ 244y =+=+248y ∴≤≤.0y ≥2y ∴≤≤∴y的最大值为故答案为:【点睛】本题考查了二次根式的求值问题 配方法的应用 解本题的关键是通过y 2为媒介求得y 的取值范围从而找出最大最小值.9.已知实数m n 满足21m n -= 则代数式22242m n m ++-的最小值等于___________.【答案】3【解析】【分析】由21m n -=可得21,n m 再代入22242m n m ++- 再利用配方法配方 从而可得答案.【详解】 解: 21m n -=21,n m ()222242=2142m n m m m m ∴++-+-+-264m m()23133,m =+-≥ 所以22242m n m ++-的最小值是3故答案为:3【点睛】本题考查的是代数式的最值 配方法的应用 熟练的运用配方法求解代数式的最值是解本题的关键. 10.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式 此公式与古希腊几何学家海伦提出的公式如出一辙 即三角形的三边长分别为a b c 记2a b c p ++= 则其面积S =这个公式也被称为海伦—秦九韶公式.若3p = 2c = 则此三角形面积的最大值是_________.【解析】【分析】根据公式算出a +b 的值 代入公式 根据完全平方公式的变形即可求出解.【详解】解:∵2a b c p ++=p =3 c =2 ∵232a b ++= ∵a +b =4∵a =4−b∵S∵当b =2时 S【点睛】本题考查了二次根式与完全平方公式的应用 解答本题的关键是明确题意 表示出相应的三角形的面积.二、解答题(共0分)11.【阅读材料】把代数式通过配凑等手段 得到局部完全平方式 再进行有关运算和解题 这种解题方法叫做配方法.如:对于268a a ++.(1)用配方法因式分解:223x x +-;(2)对于代数式2128x x - 有最大值还是最小值?并求出2128x x-的最大值或最小值.【答案】(1)()()31x x +-(2)代数式2128x x -有最大值 最大值为18- 【解析】【分析】(1)先用配方法 再用平方差公式分解即可;(2)先利用配方法变形 根据偶次方的非负性可知最小值 继而即可求得2128x x-的最大值. (1)223x x +-2214x x =++- ()214x =+- ()()1212x x =+++-()()31x x =+-;(2)∵228x x -()224x x =-()22444x x =-+-()2224x ⎡⎤=--⎣⎦()2228x =--∵当2x =时 ()2228x --即228x x -有最小值-8∵代数式2128x x -有最大值 最大值为18-. 【点睛】本题考查配方法在因式分解中的应用及代数式求值 解题的关键是熟练掌握配方法. 12.阅读下面的解答过程 求y 2+4y +5的最小值.解:y 2+4y +5=y 2+4y +4+1=(y +2)2+1∵(y +2)2≥0 即(y +2)2的最小值为0∵y2+4y+5=(y+2)2+1≥1∵y2+4y+5的最小值为1仿照上面的解答过程求:(1)m2﹣2m+2的最小值;(2)3﹣x2+2x的最大值.【答案】(1)1;(2)4【解析】【分析】(1)利用完全平方公式把原式变形根据偶次方的非负性解答即可.(2)利用完全平方公式把原式变形根据偶次方的非负性解答即可.【详解】解:(1)m2﹣2m+2=m2-2m+1+1=(m-1)2+1∵(m-1)2≥0∵(m-1)2+1≥1 即m2﹣2m+2的最小值为1;(2)3-x2+2x=-x2+2x+3=-(x2-2x+1)+4=-(x-1)2+4∵(x-1)2≥0∵-(x-1)2≤0∵-(x-1)2+4≤4 即3-x2+2x的最大值为4.【点睛】本题考查的是配方法的应用掌握完全平方公式、偶次方的非负性是解题的关键.13.配方法可以用来解一元二次方程还可以用它来解决很多问题.例如:求﹣3(a+1)2+6的最值.解:∵﹣3(a+1)2≤0 ∵﹣3(a+1)2+6≤6 ∵﹣3(a+1)2+6有最大值6 此时a=﹣1.(1)当x=时代数式2(x﹣1)2+3有最(填写大或小)值为.(2)当x=时代数式﹣x2+4x+3有最(填写大或小)值为.(3)如图矩形花园的一面靠墙另外三面的栅栏所围成的总长度是16m 当垂直于墙的一边长为多少时花园的面积最大?最大面积是多少?【答案】(1)1 小3(2)2 大7(3)当垂直于墙的一边长为4米时花园有最大面积为32【解析】【分析】(1)先根据平方的性质求出代数式的取值范围再进行分析计算即可;(2)先配方把多项式变成完全平方形式再进行分析计算;(3)根据总长为16m 构造方程求解即可.(1)解:∵2(x﹣1)2≥0∵2(x﹣1)2+3≥3∵当x=1时代数式有最小值为3.故答案为:1 小3.(2)解:﹣x2+4x+3=﹣(x2﹣4x)+3=﹣(x2﹣4x+4﹣4)+3=﹣(x﹣2)2+7∵﹣(x﹣2)2≤0∵﹣(x﹣2)2+7≤7∵当x=2时代数式有最大值为7.故答案为:2 大7.(3)解:设垂直于墙的一边长为x m 则平行于墙的一边长为(16﹣2x)m花园的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x2﹣8x)=﹣2(x2﹣8x+16﹣16)=﹣2(x﹣4)2+32∵﹣2(x﹣4)2≤0∵﹣2(x﹣4)2+32≤32∵当x=4时代数式有最大值为32即当垂直于墙的一边长为4米时花园有最大面积为32.【点睛】本题主要考查配方法的实际运用解题的关键在于通过配方法把代数式化成完全平方式再进行分析.类型三配方法在几何图形中的应用14.如图∵ABC=90° AC=6 以AB为边长向外作等边∵ABM连CM则CM的最大值为________________.【答案】3##3+【解析】【分析】过点M作MD∵BC交BC的延长线于点D设AB=x利用勾股定理表示出BC利用解直角三角形表示出MD BD再利用勾股定理求得CM的长根据配方法利用非负数的性质即可得到CM的最大值.【详解】如图 过点M 作MD ∵BC 交BC 的延长线于点D设AB =x 则BC∵∵ABM 是等边三角形∵BM =AB =x ∵ABM =60°∵∵ABC =90°∵∵MBD =30°∵MD ∵BC1122MD BM x ∴==BD x ==在Rt∵MDC 中CM =∵当x 2=18时 CM369723+∵CM 的最大值为:3.故答案为:3.【点睛】本题考查勾股定理以及配方法 掌握配方法求出最值是解题的关键.15.已知点P 的坐标为(2 3) A 、B 分别是x 轴、y 轴上的动点 且90APB ∠=︒C 为AB 的中点 当OC 最小时则点B 的坐标为____.【答案】(0,3)【解析】【分析】利用中点坐标公式将C 点坐标表示出来后 运用勾股定理222AP PB AB +=得到y 与x 的关系式再将OC 的长度用含有y 的式子表示出来 利用配方法即可求出当OC 最小时点B 的坐标.【详解】解:设A 点坐标为(,0)x B 点坐标为(0,)y 则中点C 点坐标为(,)22x y;∵90APB ∠=︒∵222AP PB AB +=∵2222(2)94(3)x y x y -+++-=+化简得:2313x y +=1332yx -=∵12OC ==将1332yx -=代入上式得:12OC =变形得:OC∵当3y =时 OC 最小 此时B 点坐标为(0,3).故答案为(0,3).【点睛】本题主要考查运用配方法求解动点问题 正确理解题意、熟练掌握相关知识、灵活应用数形结合思想是解题的关键 属于综合类问题.16.已知:如图 在Rt ABC 中 90B ∠=︒ 8cm AB BC ==.点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动 同时点Q 从点B 开始沿BC 边向点C 以1cm/s 的速度移动.(1)求几秒后 PBQ △的面积等于26cm(2)求几秒后 PQ 的长度等于?(3)求几秒后 PQ 的长度能取得最小值 其最小值为多少cm ?【答案】(1)2秒或6秒;(2)1秒或7秒;(3)4 【解析】【分析】(1)设运动时间为x 秒 则8PB x =- PQ x = 根据三角形面积公式列出方程即可;(2)设运动时间为y 秒 则8PB y =- PQ y = 根据勾股定理列出方程即可;(3)设运动时间为t 秒 则8PB t =- PQ t = 根据勾股定理列出2PQ 的式子 根据配方法即可求得最小值;【详解】(1)设运动时间为x 秒 则8PB x =- PQ x = 根据题意得:()1862x x -= 解得122,6x x ==答:2秒或6秒后 PBQ △的面积等于26cm(2)设运动时间为y 秒 则8PB y =- PQ y =90B ∠=︒在Rt PQC 中222PQ PB BQ =+(()2228y y =-+ 解得121,7y y ==答:1秒或7秒后 PQ 的长度等于(3)设运动时间为t 秒 则8PB t =- PQ t =90B ∠=︒在Rt PQC 中222PQ PB BQ =+22(8)t t =-+221664t t =-+22(816)32t t =-++22(4)32t =-+32≥∴当4t =时 取得最小值为PQ ==即4秒后 PQ 取得最小值 最小值为【点睛】本题考查了一元二次方程的应用 配方法的应用 根据题意列出方程是解题的关键.17.配方法在初中数学中运用非常广泛 可以求值 因式分解 求最值等.如:求代数式的最值:2222(1)1x x x 在1x =-时 取最小值1(1)求代数式24x x -的最小值.(2)2245x x --+有最大还最小值 求出其最值.(3)求221x x +的最小值.(4)22614a b ab b ++-+的最小值.(5)三角ABE 和三角形DEC 的面积分别为4和9 求四边形ABCD 的面积最小值.【答案】(1)-4;(2)有最大值 且为7;(3)2;(4)2;(5)25【解析】【分析】(1)(2)(3)(4)利用配方法变形 可得最值;(5)设S △BEC =x 由等高三角形可知:S △BEC :S △CED =S △AEB :S △AED从而可得S △AED =36x再将四边形ABCD 的面积变形得到21312++ 可得结果.【详解】解:(1)()222444424x x x x x -=-+-=--∵在x =2时 有最小值-4;(2)2245x x --+=()2225x x -++=()222115x x -++-+=()2217x -++∵当x =-1时 有最大值 且为7;(3)221x x +=2221x x ⎛⎫⎪⎭+-≥⎝∵当x =1时 221x x +的最小值为2;(4)22614a b ab b ++-+ =22213612244a ab b b b +++-++ =()22134224a b b ⎛⎫++-+ ⎪⎝⎭当a =-2 b =4时 代数式有最小值2;(5)设S △BEC =x 已知S △AEB =4 S △CED =9则由等高三角形可知:S △BEC :S △CED =S △AEB :S △AED∵x :9=4:S △AED∵S△AED=36 x∵四边形ABCD面积=4+9+x+36x=21312++∵当x=36时四边形ABCD面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的需要正确变形才可以应用本题中等难度略大.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题03 《配方法解一元二次方程》重难点题型分类专题简介:本份资料专攻《配方法解一元二次方程》中“用配方法解二次项系数为1的一元二次方程”、“用配方法解二次项系数不为1的一元二次方程”、“利用一元二次方程的配方求字母的值”、“利用一元二次方程的配方法解新定义问题”、“配方法的应用”、“一元二次方程的几何解法”、重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。
考点1:用配方法解二次项系数为1的一元二次方程方法点拨:二次项系数为1时配方法的步骤:(1)找出一次项系数;(2)加一次项系数一半的平方,减一次项系数一半的平方,常数项不管(加了就要减,不改变原式的大小);(3)配方处理,合并常数项,写成完全平方的形式。
《配方法》典型例题及解析31.以配方法解3x2+4x+1 = 0时,我们可得出下列哪一个方程式( )A.(x+2) 2= 3 B.(3x+)2 =C.(x+)2 =D.(x+)2 =答案:D说明:先将方程3x2+4x+1 = 0的二次项系数化为1,即得x2+x+= 0,再变形得x2+x+()2= ()2−,即(x+)2 =,答案为D.2.某商场第一季度的利润是82.75万元,其中一月份的利润是25万元,若利润平均月增长率为x,则依据题意列方程为( )A.25(1+x)2 = 82.75 B.25+50x = 82.75C.25+75x = 82.75 D.25[1+(1+x)+(1+x)2] = 82.75答案:D说明:因为平均月增长率为x,根据题意可知二月份的利润为25(1+x),三月份的利润则是25(1+x)(1+x),即25(1+x)2,因此有25+25(1+x)+25(1+x)2 = 82.75,所以正确答案为D.3.用配方法解下列方程(1)x2+5x-1=0(2)2x2-4x-1=0(3) x2-6x+3=0解:(1)x2+5x=1x2+5x+(x+)2=∴x+=±∴x1=(2)x2-2x-=0x2-2x=x2-2x+1=(x-1)2=x-1=±∴x1=,x2=(3)x2-24x+12=0x2-24x=-12x2-24x+144=132(x-12)2=132x-12=±2∴x1=2+12,x2=-2+12扩展资料方程的发展与代数的其它内容一样,方程的发展在很大程度上依赖于符号的创造,使用和推广.现在数学中使用的符号几乎都是十五世纪以后产生的.古代数学主要是由各地,各民族自己的文字语言直接描述客观现象中的数量关系,这样也就极大地阻碍了方程的发展。
一、符号化的尝试——天元术中国古代算学成就辉煌,而在符号方面则相对落后.但值得我们关注的是,中国古代"设末知数列方程"的思想方法,却是对代数方程理论发展的一大贡献,这个方法在中国被称为"天元术"。
初三数学期末复习专题提优《“配方法”的应用》
配方法就是把一个代数式配成正整数次幂的形式,初中阶段用得最多的是配平方,故该专题所讨论的是使数学式子出现完全平方式的恒等变形,即2222()a ab b a b ±+=±中,左端缺少某些项时需要配上缺项,使它成为一个完全平方式.主要有两种表现形式:配中项2ab 或配一个平方项2b (或2a ),配中项时要根据22,a b 找出,a b ,决定2ab ,配平方项2b ,则要从,2a ab 的具体表现形式分析出,a b ,添上 2b .
它的推广形式较多,如: 222a b c ab bc ca ++---=2221()()()2
a b b c c a ⎡⎤-+-+-⎣⎦ 一元二次三项式的配方:2
2
24()24b ac b ax bx c a x a a -++=++. 配方后如何使用配方结果,归纳起来有如下几种常见情况:
(1)在实数范围内产生非负数。
配方是一种出现平方式的恒等变形,因而具有在实数范围内产生非负数的特殊功能,这也是配方法最为基本的应用形式.
(2)配方后使用公式22
()()a b a b a b -=+-.
(3)配方后应用根与系数的关系或求对称多项式的值.
(4)配方后求函数的极值或完成对判别式的判断等.
1.关于多项式2285x x -++的说法正确的是( ) A.有最大值13 B.有最小值-3
C.有最大值37
D.有最小值1
2.已知2781,1515
P m Q m m =-=- (m 为任意实数),则P 、Q 的大小关系为( ) A. P Q > B. P Q = C. P Q < D. 不能确定
3.若实数m 、n 满足224122100m m n n ++-+=,则函数242m n y x n +=++是( )
A.正比例函数
B.一次函数
C.反比例函数
D.二次函数
4.将263x x ++配方成2()x m n ++的形式,则m = .
5.若代数式26x x b -+可化为2()1x a --,则a b +的值是 .
6.已知实数,m n 满足21m n -=,则代数式22241m n m ++-的最小值等于 .
7.已知2246130,,x y x y x y ++-+=均为实数,求y x 的值.
8.已知22124
x y x y xy +-+-=-,求y x -.
9.因式分解:
(1) 44x +;
(2) 22(1)(1)4m n mn --+.
10.当,a b 为何值时,方程2222(1)(3442)0x a x a ab b ++++++=有实根.
11.“20a ≥”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如: 22245441(2)1x x x x x ++=+++=++
222(2)0,(2)11,451x x x x +≥∴++≥++≥.
试利用“配方法”解决下列问题:
(1)已知224250x x y y -+++=,求x y +的值;
(2)比较代数式:21x -与23x -的大小.
12.设,,x y z 为实数,求证: 222x y z xy xz yz ++≥++.
13.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配
方法.配方法的基本形式是完全平方公式的逆写,即222a ab b ±+
2()a b =±.例如:2(1)3x -+、2(2)2x x -+、221
3(2)24
x x -+是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).
请根据阅读材料解决下列问题:
(1)比照上面的例子,写出249x x -+三种不同形式的配方;
(2)将22a ab b ++配方(至少两种不同形式);
(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.
14.已知x >0,证明: 642314x x x x +++≥ .
参考答案
1. A
2. C
3. B
4. 3
5. 11
6. 4
7.8y x =- 8.12
y x -=- 9.(1)4224(22)(22)x x x x x +=+++-
(2)22(1)(1)4(1)(1)m n mn mn n m mn n m --+=++-+-+ 10.11,2
a b ==- 11.(1)1x y +=
(2)2123x x ->-
12. 222()x y z xy xz yz ++-++222111()()()0222
x y x z y z =
-+-+-≥ 13.(1)2249(2)5x x x -+=-+,
2249(3)10x x x x -+=+-, 2222549(3)39
x x x x -+=-+ (2)222()a ab b a b ab ++=+-,
222()3a ab b a b ab ++=-+
(3)4a b c ++=
14.4220,120,120.x x x x x >∴+-≥+-≥
422(1)(1)22
x x x x ∴++≥⋅ 642314x x x x ∴+++≥。