多晶硅锭制备—铸锭多晶硅工艺-42页PPT资料
- 格式:ppt
- 大小:2.74 MB
- 文档页数:21
多晶硅⽣产⼯艺和反应原理讲解课件多晶硅⽣产⼯艺和反应原理第⼀节重要的半导体材料,化学元素符号Si,电⼦⼯业上使⽤的硅应具有⾼纯度和优良的电学和机械等性能。
硅是产量最⼤、应⽤最⼴的半导体材料,它的产量和⽤量标志着⼀个国家的电⼦⼯业⽔平。
在研究和⽣产中,硅材料与硅器件相互促进。
在第⼆次世界⼤战中,开始⽤硅制作雷达的⾼频晶体检波器。
所⽤的硅纯度很低⼜⾮单晶体。
1950年制出第⼀只硅晶体管,提⾼了⼈们制备优质硅单晶的兴趣。
1952年⽤直拉法(CZ)培育硅单晶成功。
1953年⼜研究出⽆坩埚区域熔化法(FZ),既可进⾏物理提纯⼜能拉制单晶。
1955年开始采⽤锌还原四氯化硅法⽣产纯硅,但不能满⾜制造晶体管的要求。
1956年研究成功氢还原三氯氢硅法。
对硅中微量杂质⼜经过⼀段时间的探索后,氢还原三氯氢硅法成为⼀种主要的⽅法。
到1960年,⽤这种⽅法进⾏⼯业⽣产已具规模。
硅整流器与硅闸流管的问世促使硅材料的⽣产⼀跃⽽居半导体材料的⾸位。
60年代硅外延⽣长单晶技术和硅平⾯⼯艺的出现,不但使硅晶体管制造技术趋于成熟,⽽且促使集成电路迅速发展。
80年代初全世界多晶硅产量已达2500吨。
硅还是有前途的太阳电池材料之⼀。
⽤多晶硅制造太阳电池的技术已经成熟;⽆定形⾮晶硅膜的研究进展迅速;⾮晶硅太阳电池开始进⼊市场。
化学成分硅是元素半导体。
电活性杂质磷和硼在合格半导体和多晶硅中应分别低于0.4ppb和0.1ppb。
拉制单晶时要掺⼊⼀定量的电活性杂质,以获得所要求的导电类型和电阻率。
重⾦属铜、⾦、铁等和⾮⾦属碳都是极有害的杂质,它们的存在会使PN结性能变坏。
硅中碳含量较⾼,低于1ppm者可认为是低碳单晶。
碳含量超过3ppm时其有害作⽤已较显著。
硅中氧含量甚⾼。
氧的存在有益也有害。
直拉硅单晶氧含量在5~40ppm范围内;区熔硅单晶氧含量可低于1ppm。
硅的性质硅具有优良的半导体电学性质。
禁带宽度适中,为1.21电⼦伏。
载流⼦迁移率较⾼,电⼦迁移率为1350厘⽶2/伏?秒,空⽳迁移率为480厘⽶2/伏?秒。
多晶硅锭的生产流程1.生产工艺流程(1)制造工艺流程图(2)工艺流程简述坩埚喷涂:其目的是为了在铸锭的过程中,防止坩埚的杂质混入硅料。
喷涂的Si3N4粉起到一个隔离杂质和防止粘埚的作用。
坩埚烧结:此过程是为了使喷涂在坩埚内表面的Si3N4粉牢固附着在坩埚上。
多晶炉铸锭:将盛好硅料的坩埚放入多晶炉中,经高温熔化定向凝固铸锭。
(3)反应副产物生产过程中产生含Si3N4粉尘的空气,过滤除尘后排放大气;铸锭过程中排放的少量氩气,直接排放入大气;铸锭后产生的石英坩埚碎片作为废物处理。
多晶铸锭操作流程1目的为了保证正确操作多晶硅铸锭炉,使铸锭过程规范、有效地进行,并确保铸锭成功。
2适用范围多晶铸锭车间3规范性引用文件无4职责生产部负责铸锭的整个过程。
工厂工程部负责整个外围设施条件,以保证多晶炉正常运行的环境条件要求。
5 术语和定义坩埚喷涂:在坩埚的内表面均匀喷涂Si3N4粉溶液,以防止在铸锭时坩埚和硅锭烧结在一起。
其目的是为了在铸锭过程中,防止坩埚内的杂质扩散入硅锭。
喷涂Si3N4粉起到了一个隔离杂质和防止粘埚的作用。
涂层烧结:此过程是为了使喷涂在坩埚内表面的Si3N4涂层牢固地附着在坩埚上。
多晶炉铸锭:将硅料放入坩埚,并一起放入多晶炉中,硅料经高温熔化、定向凝固成为硅锭。
定向凝固:在梯度热场中,液体朝一个方向凝固,固液界面近似于平面的凝固过程。
6 多晶炉工艺过程准备石英坩埚检查石英坩埚表面,不能有裂纹,内部不能有超过2mm的划痕、凹坑、突起。
6.1.1 用压缩空气和去离子水清洁坩埚的内表面。
6.1.2 坩埚喷涂:取250g的Si3N4粉末,用滤网筛滤。
然后取1000ml的去离子水,将Si3N4粉末溶解到去离子水中,用气动搅拌泵搅拌均匀。
喷涂时喷枪要距离坩埚内壁30cm左右,只喷涂坩埚底部和侧壁3/4的地方,要均匀不要使液体凝聚。
喷涂过程中要检测坩埚内表面的温度,应为80±5℃,不断用去油的压缩空气吹去掉落的颗粒。
多晶硅铸锭工艺流程首先是炉外气氛净化的工艺步骤。
炉外气氛净化是为了防止多晶硅制备过程中受到杂质的污染。
该步骤通常包括热氢气体的预净化、氢气和氩气混合气体的净化和净化后流经硅原料的高纯气流净化等过程,以确保多晶硅的高纯度。
接下来是硅熔炼的工艺步骤。
硅熔炼是将高纯度硅原料进行熔融,形成硅液的过程。
一般采用的炉型有电阻炉和感应炉。
原料硅经过预热后在熔炼炉中加热至熔点以上,形成熔融的硅液。
为了保证硅液的纯度,熔炼中要注意控制氧气含量以避免氧化,同时定期检测硅液中的杂质含量。
第三个步骤是硅液稀释。
硅液稀释是为了减少硅液的纯度,使其适用于铸锭成型。
主要通过向硅液中加入高纯度的硅原料稀释剂,将硅液的纯度降低到所需的水平。
稀释剂加入的量需要根据目标硅液纯度和成本来进行调整。
接下来是浇注成铸锭的工艺步骤。
稀释后的硅液通过铸锭机浇注进铸锭模具中,形成硅铸锭。
为了确保铸锭质量,需要控制浇注速度、温度和铸锭旋转速度等参数。
同时还要注意避免气泡和杂质的污染。
然后是退火的工艺步骤。
铸锭成型后需要进行退火处理,以消除内部应力和杂质的影响,提高硅材料的电学性能。
退火条件通常包括温度、气氛和时长的控制。
通过退火处理,硅铸锭的结晶结构得到优化,提高了电池和集成电路的性能。
最后是切割的工艺步骤。
硅铸锭经过退火处理后,需要进行切割成硅片。
切割通常采用线切割或磁力切割技术。
切割后的硅片可以用于制备太阳能电池或集成电路等应用。
综上所述,多晶硅铸锭工艺流程包括炉外气氛净化、硅熔炼、硅液稀释、浇注成铸锭、退火和切割等步骤。
每一步骤都需要严格控制工艺参数,以确保多晶硅的高纯度和铸锭的质量。
这些工艺步骤是制备高质量多晶硅铸锭的关键。
铸锭多晶硅的工艺流程铸锭多晶硅工艺和直拉单晶工艺都属于定向凝固过程,不过后者不需要籽晶。
当硅料完全融化后,缓慢下降坩埚,通过热交换台进行热量交换,使硅熔液形成垂直的,上高下低的温度梯度,保证垂直方向散热,此温度梯度会使硅在锅底产生很多自发晶核,自下而上的结晶,同时要求固液界面水平,这些自发晶核开始长大,由下而上地生长,直到整锅熔体结晶完毕,定向凝固就完成了,当所有的硅都固化之后,铸块再经过退火,冷却等步骤最终生产出高质量的铸锭。
冷却到规定温度后,开炉出锭。
铸锭多晶硅的优缺点相对于直拉单晶来说,铸锭多晶硅有如下优点1、备制造简单,容易实现全自动控制。
2、料比较广泛,可以利用直拉头尾料、集成电路的废片以及粒状硅料等,当然要将原工艺过程中的污染经过喷砂,腐蚀等手段清洗干净。
3、料量大,产量高,适合大规模生产。
4 、片大小可以随意选取i,例如690MM的方锭可以切成125MM 的方锭25个,也可切成156MM的方锭16个等。
铸锭溶晶生产大尺寸方片,但直拉法就难一些。
点晶体的熔无论融化了已经变成的熔体,或尚未融化的固体都在处在同一个温度值,尽管继续加热,温度却始终保持不变,这个温度就是晶体的熔点。
单晶硅的导热性与方向有关。
多晶硅片上有很多的晶粒,晶粒之间有明显的晶界,由于晶向各不相同,呈现出深浅不同的色差。
直拉单晶炉的热系统及热场1、热系统直拉单晶炉的热系统是指为了融化硅料,并保持在一定温度下进行单晶生长的整个系统,它包括加热器、保温罩、保温盖、托碗(石墨坩埚)、电极等部件,它们是由耐高温的高纯石墨和碳毡材料加工而成的。
加热系统长期使用在高温下,所以要求石墨材质结构均匀致密、坚固、耐用,变形小,无空洞,气孔率≤24%,无裂纹,弯曲强度40~60Mpa,颗粒度0.02~0.05mm,体积密度1.70~1.80g/310-cm,灰分≤1⨯4(100ppm),金属杂质含量少,一般检测值在410-%数量级。
10-%~6加热器是热系统中最重要的部件,是直接的发热体,温度最高时达到1600。
多晶硅铸锭切片项目工艺流程一、多晶硅锭的制备工艺根据生长方法的不同,多晶硅可分为等轴晶、柱状晶。
通常在热过冷及自由凝固的情况下会形成等轴晶,其特点是晶粒细,机械物理性能各向同性。
如果在凝固过程中控制液固界面的温度梯度,形成单方向热流,实行可控的定向凝固,则可形成物理机械性能各向异性的多晶柱状晶,太阳能电池多晶硅锭就是采用这种定向凝固的方法生产的。
在实际生产中,太阳能电池多晶硅锭的定向凝固生长方法主要有浇铸法、热交换法(H EM)、布里曼(B ridgem an)法、电磁铸锭法,其中热交换法与布里曼法通常结合在一起。
热交换法及布里曼法都是把熔化及凝固置于同一坩埚中(避免了二次污染),其中热交换法是将硅料在坩埚中熔化后,在坩埚底部通冷却水或冷气体,在底部进行热量交换,形成温度梯度,促使晶体定向生长。
布里曼法则是在硅料熔化后,将坩埚或加热元件移动使结晶好的晶体离开加热区,而液硅仍然处于加热区,这样在结晶过程中液固界面形成比较稳定的温度梯度,有利于晶体的生长。
其特点是液相温度梯度dT/dX 接近常数,生长速度受工作台下移速度及冷却水流量控制趋近于常数,生长速度可以调节。
本项目生产所用结晶炉是采用热交换与布里曼相结合的技术。
本项目采用中国电子科技集团公司第四十八研究所研发的拥有先进技术的R13450-1型多晶硅铸锭炉,它采用先进的多晶硅定向凝固技术,将硅料高温熔融后通过特殊工艺定向冷凝结晶,从而达到太阳能电池生产用多晶硅品质的要求,是一种适用于长时间连续工作,高精度、高可靠性、自动化程度高的智能化大生产设备。
工艺特点:工作台通冷却水,上置一个热开关,坩埚则位于热开关上。
硅料熔融时,热开关关闭,结晶时打开,将坩埚底部的热量通过工作台内的冷却水带走,形成温度梯度。
同时坩埚工作台缓慢下降,使凝固好的硅锭离开加热区,维持固液界面有一个比较稳定的温度梯度,在这个过程中,要求工作台下降非常平稳,以保证获得平面前沿定向凝固。
铸造多晶硅的具体工艺如下.1 装料将装有涂层的INNOCERAM陶瓷坩埚放置在热交换台(冷却板)上,放入适量的硅原料,然后安装加热设备、隔热设备和炉罩,将炉内抽真空,使炉内压力降至0.05-0.1mbar并保持真空。
通入氩气作为保护气,使炉内压力基本维持在400-600mbar左右。
2 加热利用石墨加热器给炉体加热,首先使石墨部件(包括加热器、坩埚板、热交换台等)、隔热层、硅原料等表面吸附的湿气蒸发,然后缓慢加温,使INNOCERAM陶瓷坩埚的温度达到1200-1300℃左右,该过程约需要4-5h.3 化料通入氩气作为保护气,使炉内压力基本维持在400-600mbar左右。
逐渐增加加热功率,使INNOCERAM陶瓷坩埚内的温度达到1500℃左右,硅原料开始熔化。
熔化过程中一直保持1500℃左右,直至化料结束。
该过程约需要9~11h.4 晶体生长硅原料熔化结束后,降低加热功率,使INNOCERAM陶瓷坩埚的温度降至1420~1440℃硅熔点左右。
然后INNOCERAM陶瓷坩埚逐渐向下移动,或者隔热装置逐渐上升,使得INNOCERAM 陶瓷坩埚慢慢脱离加热区,与周围形成热交换;同时,冷却板通水,使熔体的温度自底部开始降低,晶体硅首先在底部形成,并呈柱状向上生长,生长过程中固液界面始终保持与水面平行,直至晶体生长完成,该过程约需要20-22h.5 退火晶体生长完成后,由于晶体底部和上部存在较大的温度梯度,因此,晶锭中可能存在热应力,在硅片加工和电池制备过程中容易造成硅片碎裂。
所以,晶体生长完成后,晶锭保持在熔点附近2-4小时,使晶锭温度均匀,以减少热应力。
6 冷却晶锭在炉内退火后,关闭加热功率,提升隔热装置或者完全下降晶锭,炉内通入大流量氩气。
使晶体温度逐渐降低至室温附近;同时,炉内气压逐渐上升,直至达到大气压,最后去除晶锭,该过程约需要10h.对于重量为250-300kg的铸造多晶硅而言,一般晶体生长的速度约为0.1-0.2 mm/min,其晶体生长的时间约35-45h。
多晶硅的铸锭原理及工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!多晶硅的铸锭原理及工艺流程在太阳能电池的制造过程中,多晶硅铸锭是其中一个重要的环节。
铸锭多晶硅材料制备技术变革光伏产业概况图12000-2013年全球累积光伏发电装机容量(*来源EPIA)图22000-2013年中国累积光伏发电装机容量(*来源EPIA)从2010年开始,亚洲,尤其是中国光伏发电装机量发生了巨大的变化,开始爆发式的增长,由2010年的800MW增长至2013年的18600MW,四年时间增长近23倍,平均每年以2倍以上的速度发展,远远超过了欧洲国家。
光伏发电装机量的爆发式增长,带动了整条产业链的发展,中国的光伏产业正在进入高速发展的时期。
光伏行业爆发式发展,单晶与多晶硅片在太阳能电池应用在市场的推动下,不断的分歧化发展。
在2007年,单晶与多晶生产比例约为1:1,而到目前,这一比率已降至30:70。
单晶硅片电池效率较多晶硅片有2.0%的优势,然而标准单晶硅片通产售价较多晶硅片溢价30%,市场需求对比率的变化起到了主要作用。
图32010-2017年单晶与多晶市场份额(*来源solarbuzz)多晶硅材料制备技术的发展历史自1975年德国瓦克(Wacker)公司首次采用绕铸的方法制备多晶硅材料[1],几乎同时,其他科研小组也提出了利用不同的铸造技术来制备太阳能级多晶硅材料,例如热交换法(HEM)、布里奇曼(Bridgman)定向凝固法、浇铸法、电磁铸锭法等。
目前铸锭多晶硅技术,采用的生长方法主要为热交换法和布里曼法结合的方式,其晶体生长方向垂直向上,通过定向凝固(也称可控凝固、约束凝固)过程来实现的,即在结晶过程中,通过控制温度场的变化,形成单方向热流(生长方向与热流方向相反),并要求固液界面处的温度梯度大于0℃,横向则要求无温度梯度变化,从而形成定向生长的柱状晶。
铸造多晶硅虽然含有大量的缺陷杂质[2],但相对直拉单晶硅,其成本低、产能大、能耗少,在国内外工业生产上得到广泛应用。
在铸锭多晶硅技术发展至今,由最初的铸锭炉装料量200kg、铸锭耗时50H,发展至目前装料量达到1200kg、铸锭耗时90H、石英坩埚尺寸1200×1200mm,单位产能实现了由4kg/h提升至13.3kg/h,且多晶铸锭炉的连续加料技术已经提上日程。