振动与波习题及解答
- 格式:pdf
- 大小:166.33 KB
- 文档页数:16
第八章 振动和波下面重点要考试内容:1.掌握简谐振动的基本概念、简谐振动的余弦表达式2.掌握旋转矢量表示法、振幅、相位概念、掌握振动能量的公式3.掌握同方向同频率谐振动的合成4.掌握平面简谐波的表达式及其意义、掌握波的能流密度和波的干涉5.理解机械波的产生和传播、惠更斯原理、波的衰减;;理解拍、相互垂直谐振动的合成8-1 试解释下列名词:简谐振动、振幅、频谱分析、基频、频谱图、波动、横波、纵波、波阵面、波的强度。
答: ①简谐振动:质点在弹性力(或准弹性力)作用下所作的振动叫简谐振动,其加速度与离开平衡位置的位移成正比,且方向相反。
②振幅:振动物体离开平衡位置的最大距离称为振幅。
③频谱分析:将任一周期性振动分解为多个简谐振动之和的过程,称为频谱分析。
④基频:一个复杂的振动可以分解为若干个频率不同的简谐振动之和,这些分振动频率中最低的频率称为基频,它与原振动的频率相同。
⑤频谱图:将组成一个复杂振动的各分振动的频率和振幅找出来,按振幅与频率关系列出谱线,这种图称为频谱图。
⑥波动:振动在介质中的传播现象叫波动,它也是一种重要的能量传播过程。
其中简谐振动在介质中传播所形成的波叫简谐波。
⑦横波:波在介质中传播时,如果介质中各质点振动的方向与波的传播方向垂直,则该波叫做横波。
⑧纵波:如果介质中各质点振动的方向与波的传播方向相互平行,则这种波称为纵波。
⑨波阵面:在波传播的介质中,质点振动相位相同的各点连成的面称为波阵面。
⑩波的强度:单位时间内通过垂直于波的传播方向单位面积上的平均能量,称为波的强度。
8-2 有一质点作简谐振动,试分析它在下列位置时的位移、速度、加速度的大小和方向:①平衡位置,向正方向运动;②平衡位置,向负方向运动;③正方向的端点;④负方向的端点。
解: 设该质点的振动方程为:)cos(ϕω+=t A x将它对时间t 分别求一阶导数、二阶导数,可得到速度v 和加速度a 的表达式:)2cos()sin(πϕωωϕωω++=+-==t A t A dt dx v)cos()cos(2222πϕωωϕωω++=+-==t A t A dtxd a 由此可以看出,速度的相位超前位移2π,加速度与位移的相位相反。
第5章 振动和波动5-1 一个弹簧振子 m=:0.5kg , k=50N ;'m ,振幅 A = 0.04m ,求 (1) 振动的角频率、最大速度和最大加速度;(2) 振子对平衡位置的位移为 x = 0.02m 时的瞬时速度、加速度和回复力; (3) 以速度具有正的最大值的时刻为计时起点,写出振动方程。
频率、周期和初相。
A=0.04(m) 二 0.7(rad/s) 二-0.3(rad)⑷10.11(Hz) T 8.98(s)2 n、5-3证明:如图所示的振动系统的振动频率为1 R +k 2式中k 1,k 2分别为两个弹簧的劲度系数,m 为物体的质量V max 二 A =10 0.04 = 0.4(m/s) a max 二 2A =102 0.04 =4(m/s 2) ⑵设 x =Acos(,t :;;■『),贝Ud x vA sin(,t 「)dtd 2xa一 dt 2--2Acos(「t 亠 ^ ) - - 2x当 x=0.02m 时,COS (;:, t :忙)=1/ 2, sin( t 「)= _、一3/2,所以 v ==0.2、.3 ==0.346(m/s) 2a = -2(m/s )F 二 ma = -1(N)n(3)作旋转矢量图,可知:2x =0. 0 4 c o st(1 0)25-2弹簧振子的运动方程为 x =0.04cos(0.7t -0.3)(SI),写出此简谐振动的振幅、角频率、严...U ・」|1岛解:以平衡位置为坐标原点,水平向右为 x 轴正方向。
设物体处在平衡位置时,弹簧 1的伸长量为Xg ,弹簧2的伸长量为x 20,则应有_ k ] X ]0 ■木2乂20 = 0当物体运动到平衡位置的位移为 X 处时,弹簧1的伸长量就为x 10 X ,弹簧2的伸长量就为X 20 -X ,所以物体所受的合外力为F - -k i (X io X )k 2(X 20 -x)- -(匕 k 2)x2d x (k i k 2)dt 2 m上式表明此振动系统的振动为简谐振动,且振动的圆频率为5-4如图所示,U 形管直径为d ,管内水银质量为 m ,密度为p 现使水银面作无阻尼 自由振动,求振动周期。
振动与波练习题2005一、填空题1.一物体作简谐振动,振动方程为x = A cos (ωt +π/ 4 )。
在t =T / 4 (T 为周期)时刻,物体的加速度为 .2.一质点沿x 轴作简谐振动,振动方程为x = 4×10-2 cos (2πt + π31) (SI) 。
从t = 0 时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 0t =时,03πφ=;t 时刻,20x cm υ=->且43πφ所以=。
433t ππωπ∆=-=由可得0.5()2t s ππωπ∆===3.已知两个简谐振动曲线如图1所示。
x 1的位相比x 2的位相为 B 。
(A) 落后π/2 (B )超前π/2 (C) 落后π (D) 超前π4.一质点作简谐振动,周期为T 。
质点由平衡位置向X 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为2222sin(/4)sin(/4)2cos(/4)cos(/4)/4112,222dx A t A t dt T d a A t A t dt T t T A a A πυωωπωπυπωωπωπυωω=-+=-+=-+=-+====代入得=-解:由旋转矢量图可知6πϕ=∆,所以1226TTt==∆=∆ππωϕ5.一平面简谐波,沿x轴负方向传播。
圆频率为ω,波速为u 。
设t=T/4时刻的波形如图2所示,则该波的表达式为。
由t = 0的旋转矢量图可知:y0=-A,φπ=O点振动方程cos()y A tωπ=+波动方程:cos()xy A tuωπ⎡⎤=++⎢⎥⎣⎦6.当机械波在媒质中传播时,一媒质质元的最大变形量发生在位置处。
平衡位置处7.如图3所示两相干波源S1和S2相距λ/4,(λ为波长)S1的位相比S2的位相超前π/2,在S1,S2的连线上,S1外侧各点(例如P点)两波引起的两谐振动的位相差是.解:P点情况()21211222()2242r r S P S Pπππϕϕλλλπππλ---+=+=+=8.一质点作简谐振动。
振动、波动练习题及答案振动、波动练习题⼀.选择题1.⼀质点在X 轴上作简谐振动,振幅A=4cm。
周期T=2s。
其平衡位置取作坐标原点。
若t=0 时刻质点第⼀次通过x= -2cm 处,且向X 轴负⽅向运动,则质点第⼆次通过x= -2cm 处的时刻为()。
A 1sB 2sC 4sD 2s332.⼀圆频率为ω的简谐波沿X 轴的正⽅向传播,t=0 时刻的波形如图所⽰,则t=0 的波形t=0 时刻,X 轴上各点的振动速度υ与X轴上坐标的关系图应()3.图⽰⼀简谐波在 t=0 时刻的波形图,波速υ =200m/s ,则图中O 点的振动加速度的表达式为()2A a 0.4 2 cos( t ) 2 23B a 0.4 2 cos( t )22C a 0.4 2cos(2 t ) 4.频率为 100Hz ,传播速度为 300m/s 的平⾯简谐波,波线上两点振动的相位差为 3 ,则这两点相距()A 2mB 2.19mC 0.5mD 28.6m5.⼀平⾯简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最⼤位置处的过程中,()。
A 它的动能转换成势能它的势能转换成动C 它从相邻的⼀段质元获得能量其能量逐渐增⼤Da20.4 2 cos(2 t2)υ (m/s)Bυ (m/s)DX(m)D 它把⾃⼰的能量传给相邻的⼀段质元,其能量逐渐减⼩6.在下⾯⼏种说法中,正确的说法是:()。
A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相滞后D 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相超前7.⼀质点作简谐振动,周期为T,当它由平衡位置向X 轴正⽅向运动时,从⼆分之⼀最⼤位移处到最⼤位移处这段路程所需要的时间为()。
A TBTCTDT4 12 6 88.在波长为λ的驻波中两个相邻波节之间的距离为()。
A λB 3 λ/4C λ/2D λ /49.在同⼀媒质中两列相⼲的平⾯简谐波的强度之⽐I1I 4是,则两列波的振幅之⽐是:()A A1 4 B1 2 CA1 16 DA11A2 A2 A2 A2 410.有⼆个弹簧振⼦系统,都在作振幅相同的简谐振动,⼆个轻质弹簧的劲度系数K 相同,但振⼦的质量不同。
第七章 电磁感应本章提要1. 法拉第电磁感应定律· 当穿过闭合导体回路所包围面积的磁通量发生变化时,导体回路中就将产生电流,这种现象称为电磁感应现象,此时产生的电流称为感应电流。
· 法拉第电磁感应定律表述为:通过导体回路所包围面积的磁通量发生变化石,回路中产生地感应电动势i e 与磁通量m Φ变化率的关系为d d t=-F e其中Φ为磁链,负号表示感应电动势的方向。
对螺线管有N 匝线圈,可以有m N Φ=Φ。
2. 楞次定律· 楞次定律可直接判断感应电流方向,其表述为:闭合回路中感应电流的方向总是要用自己激发的磁场来阻碍引起感应电流的磁通量的变化。
3. 动生电动势· 磁感应强度不变,回路或回路的一部分相对于磁场运动,这样产生的电动势称为动生电动势。
动生电动势可以看成是洛仑兹力引起的。
· 由动生电动势的定义可得:()d bab ae 醋ò=v B l· 洛伦兹力不做功,但起能量转换的作用。
4. 感生电动势·当导体回路静止,而通过导体回路磁通量的变化仅由磁场的变化引起时,导体中产生的电动势称为感生电动势。
d dd d d d L S t te F =??蝌Ñ-=-i E r B S 其中E i 为感生电场强度。
5. 自感· 当回路中的电流发生变化,它所激发的磁场产生的通过自身回路的磁通量也会发生变化,此变化将在自身回路中产生感应电动势,这种现象称为自感现象,产生的电动势为自感电动势,其表达式为:d d L iL te =-(L 一定时)负号表明自感电动势阻碍回路中电流的变化,比例系数L 称为电感或自感系数。
· 自感系数表达式为:L iY =· 自感磁能212m W LI =6. 互感· 对于两个临近的载流回路,当其中一回路中的电流变化时,电流所激发的变化磁场在另一回路中产生感应电动势。
第九章振动复习题1. 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是:(A) 2max 2max /x m k v =. (B) x mg k /=.(C) 22/4T m k π=. (D) x ma k /=. [ B ] 2. 一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J =,此摆作微小振动的周期为 (A) gl π2. (B) g l 22π.(C) g l 322π. (D) gl3π. [ C ] 3. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) . (B) /2. (C) 0 . (D) . [ C ] 4. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(t + ).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [ B ] [ ]l6. 一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为 (A) /6. (B) 5/6. (C) -5/6.(D) -/6. (E) -2/3. [ ]7. 一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'. (C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ D ] 8. 一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为: (A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x(C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x(E) t m /k A x cos = [ B ] 9. 一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为(A) 1 s . (B) (2/3) s .(C) (4/3) s . (D) 2 s . [ B ]10.一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为 (A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA . [ B ] 11. 两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位(A) 落后/2. (B) 超前.(C) 落后. (D) 超前.[ B ]v (m/s)t (s)Omm v 21tOx 1 x 212. 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[ B ]13. 一简谐振动曲线如图所示.则振动周期是 (A) s . (B) s .(C) s . (D) s .[ B ]15. 用余弦函数描述一简谐振子的振动.若其速度~时间(v ~t )关系曲线如图所示,则振动的初相位为 (A) /6. (B) /3.(C) /2. (D) 2/3. (E) 5/6.[ A ]17. 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为x o A ϖ x A 21 ω A 21ωA 21-(D) oo o A 21 xx x A ϖA ϖxA ϖxω ωx (cm)t (s)O42 1A21-A21-A21 21A21 AA21- oo 2T2T A21- t21 xtx(A)(B)(C)(D)2T2Tottxxv (m/s)t (s)Om 21- -m(A) E 1/4. (B) E 1/2.(C) 2E 1. (D) 4 E 1 . [ D ]18 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为 (A) kA 2. (B)221kA . (C) (1/4)kA 2. (D) 0. [ D ]19. 一物体作简谐振动,振动方程为)21cos(π+=t A x ω.则该物体在t = 0时刻的动能与t = T /8(T 为振动周期)时刻的动能之比为:(A) 1:4. (B) 1:2. (C) 1:1.(D) 2:1. (E) 4:1. [ D ]20.动的初相为 (A) π23. (B) π.(C) π21. (D) 0. [ B ]二. 填空题21. 在t = 0时,周期为T 、振幅为A 的单摆分别处于图(a)、(b)、(c)三种状态.若选单摆的平衡位置为坐标的原点,坐标指向正右方,则单摆作小角度摆动的振动表达式(用余弦函数表示)分别为(a) ______________________________;(b) ______________________________;(c) ______________________________.23. 在两个相同的弹簧下各悬一物体,两物体的质量比为4∶1,则二者作简谐振(c)A/ -A 2cos()2x A t T ππ=+2cos()2x A t Tππ=+2cos()x A t T ππ=+动的周期之比为___2:1___.24. 一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有 正最大值的那一时刻为t = 0,则振动表达式为_____50.02cos()22x t π=-___.25. 一物体作余弦振动,振幅为15×10-2m ,角频率为6 s -1,初相为,则振动方程为 __0.15cos(6)2x t ππ=+(SI).27. 一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A = ,初相 =____3arcsin 5-____________.30. 已知两个简谐振动的振动曲线如图所示.两简谐振动的最大速率之比为_______1:1__________.31. 一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =; =_____/6rad s π_____;=_____3π__________. .34. 已知三个简谐振动曲线如图所示,则振动方程分别为: x 1 =10cos t π______________________,x 2 =10cos()2t ππ-_____________________,x 3 =10cos()t ππ+_______________________.x (cm)t (s)105-101471013Ox (cm)t (s)O x 1x 2x 3100-101234 32-1 1 to x 1 x 21 -2237.一简谐振动的旋转矢量图如图所示,振幅矢量长2cm ,则该简谐振动的初相为_____4π_______.振动方程为__0.02cos()4x t ππ=+____________.41. 一作简谐振动的振动系统,振子质量为2 kg ,系统振动频率为1000 Hz ,振 幅为0.5 cm ,则其振动能量为______1002πJ________.43. 一弹簧振子系统具有 J 的振动能量,0.10 m 的振幅和1.0 m/s 的最大速率, 则弹簧的劲度系数为____200N/m_______,振子的振动频率为_5πHZ________. 44.两个同方向的简谐振动曲线如图所示.合振动的振幅 为______21A A -___________,合振动的振动方程 为_____212()cos()2x A A t T ππ=-+______. 50. 一个质点同时参与两个在同一直线上的简谐振动,其表达式分别为)612cos(10421π+⨯=-t x , )652cos(10322π-⨯=-t x (SI)则其合成振动的振幅为,初相为____6π_____.第十章波复习题一、选择题1. 在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的. (B) 波源振动的速度与波速相同.t ·--(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于计)[ C ]2. 机械波的表达式为y =(t + ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31. (C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ B ] 3.一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = s 时刻的波形图是 [ A ]4. 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如图.则该时刻 [ D ](A) A 点振动速度大于零. (B) B 点静止不动. (C) C 点向下运动. (D) D 点振动速度小于零.5. 把一根十分长的绳子拉成水平,用手握其一端.维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则(A) 振动频率越高,波长越长. (B) 振动频率越低,波长越长.(C) 振动频率越高,波速越大. (D) 振动频率越低,波速越大.[ B ] 6. 一平面余弦波在t = 0时刻的波形曲线如图所示,则O 点的振动初相为:(A) 0. (B)π21x (m)O 20.10(A)x O 20.10y (m)(B)x (m)O 2-0.10y (m)(C)x O2y (m)(D)-0.10 xuA BC D OxyOu(C) (D)π23(或π-21) [ B ] 7. 如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为(A) ])/(cos[0φω+-=u x t A y .(B) )]/([cos u x t A y +=ω.(C) })]/([cos{0φω+-=u x t A y .(D)})]/([cos{0φω++=u x t A y . [ C ]8.如图所示为一平面简谐波在t = 0 时刻的波形图,该波的波速u = 200 m/s ,则P 处质点的振动曲线为[ C ]9. 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形图如图所示,则P处质点的振动在t = 0时刻的旋转矢量图是 [ A ]xy u BO |x|x (m)1000.1u OPy (m)t (s)(A)0.102t (s)(B)0.10.5P t (s)(C)0.10.5y P (m)t (s)(D)0.11y P (m)ωS A ϖO ′ωSA ϖO ′ωA ϖO ′ωSAϖO ′(A)(B)(C)(D) xS A uPO10. 一平面简谐波沿Ox 轴正方向传播,t = 0 时刻的波形图如图所示,则P 处介质质点的振动方程是(A) )314cos(10.0π+π=t y P (SI).(B) )314cos(10.0π-π=t y P (SI).(C))312cos(10.0π+π=t y P (SI).(D) )612cos(10.0π+π=t y P (SI). [ A ]11. 图示一简谐波在t = 0时刻的波形图,波速 u = 200 m/s ,则P 处质点的振动速度表达式为 [ C ] (A) )2cos(2.0π-ππ-=t v (SI). (B) )cos(2.0π-ππ-=t v (SI).(C) )2/2cos(2.0π-ππ=t v(SI). (D) )2/3cos(2.0π-ππ=t v(SI).12.在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是 (A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ C ] 13. 一列机械横波在t 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元的位置是:(A) o ',b ,d ,f . (B) a ,c ,e ,g .(C) o ',d . (D) b ,f . [ B ]14. 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是 (A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零. [C ]15. 一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中 (A) 它的势能转换成动能. (B) 它的动能转换成势能. (C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加.(D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小.[ C ] 16. 如图所示,S 1和S 2为两相干波源,它们的振动方向均垂直于图面,发出波长为的简谐波,P 点是两列波相遇区域中的一点,已知 λ21=PS ,λ2.22=P S ,两列波在P 点发生相消干涉.若S 1的振动方程为)212cos(1π+π=t A y ,则S 2的振动方程为(A))212cos(2π-π=t A y . (B) )2cos(2π-π=t A y .(C))212cos(2π+π=t A y . (D) )1.02cos(22π-π=t A y . [ D ]17. 两相干波源S 1和S 2相距 /4,(为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B)π21. (C) . (D)π23. [ C ] 18. S 1和S 2是波长均为 的两个相干波的波源,相距3/4,S 1的相位比S 2超前π21.若两波单独传播时,在过S 1和S 2的直线上各点的强度相同,不随距离变化,且两波的强度都是I 0,则在S 1、S 2连线上S 1外侧和S 2外侧各点,合成波的强度分别是(A) 4I 0,4I 0. (B) 0,0. (C) 0,4I 0 . (D) 4I 0,0. [ A ] 19 在驻波中,两个相邻波节间各质点的振动 (A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. [ B ] 20 在波长为 的驻波中,两个相邻波腹之间的距离为(A)/4. (B) /2.(C) 3/4. (D). [ B ]21.沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.在叠加后形成的驻波中,各处简谐振动的振幅是 (A) A . (B) 2A .(C) )/2cos(2λx A π. (D) |)/2cos(2|λx A π. [ D ]S 1S PS 1S 2Pλ/4二、填空题22.一个余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A _____________;B_____________ ;C ______________ . 23. 一平面简谐波的表达式为)37.0125cos(025.0x t y -= (SI),其角频率=__________________________,波速u =______________________,波 长= _________________.24. 频率为100 Hz 的波,其波速为250 m/s .在同一条波线上,相距为0.5 m 的两点的相位差为________________.25. 图为t = T / 4 时一平面简谐波的波形曲线,则其波的表达式为______________________________________________. 26、一平面简谐波沿Ox 轴正方向传播,波长为.若如图P 1点处质点的振动方程为)2cos(1φν+π=t A y ,则P 2点处质点的振动方程为_________________________________;与P 1点处质点振动状态相同的那些点的位置是___________________________. 27、一简谐波沿x 轴正方向传播.x 1和x 2两点处的振动曲线分别如图(a)和(b)所示.已知x 2 .> x 1且x 2 - x 1 < (为波长),则x 2点的相位比x 1点的相位滞后 ___________________.28、已知某平面简谐波的波源的振动方程为t y π=21sin 06.0(SI),波速为2 m/s .则在波传播前方离波源5 m 处质点的振动方程为_______________________.xy u OA B Cx (m)O -0.101u =330 m/sy (m)234xOP 1P 2L 1L 2ty 1ty 2(a)(b)29、(1)一列波长为的平面简谐波沿x 轴正方向传播.已知在λ21=x 处振动的方程为y = A cos t ,则该平面简谐波的表达式为______________________________________. (2) 如果在上述波的波线上x = L (λ21>L)处放一如图所示的反射面,且假设反射波的振幅为A ',则反射波的表达式为 _______________________________________ (x ≤L ).30、一平面简谐波沿x 轴负方向传播.已知 x = -1 m 处质点的振动方程为)cos(φω+=t A y ,若波速为u ,则此波的表达式为 _________________________________________________________. 31、一个波源位于O 点,以O 为圆心作两个同心球面,它们的半径分别为R 1和R 2,在两个球面上分别取相等的面积S 1和S 2,则通过它们的平均能流之比=21P /P ___________________.32、一点波源发出均匀球面波,发射功率为4 W .不计媒质对波的吸收,则距离 波源为2 m 处的强度是__________________.33、如图所示,波源S 1和S 2发出的波在P 点相遇,P 点距波源S 1和S 2的距离分别为 3和103 ,为两列波在介质中的波长,若P 点的合振幅总是极大值,则两波在P 点的振动频率___________,波源S 1的相位比S 2的相位领先_________________.34、如图所示,S 1和S 2为同相位的两相干波源,相距为L ,P 点距S 1为r ;波源S 1在P 点引起的振动振幅为A 1,波源S 2在P 点引起的振动振幅为A 2,两波波长都是,则P 点振幅A =_________________________________________________________. 35、两相干波源S 1和S 2的振动方程分别是t A y ωcos 1=和)21cos(2π+=t A y ω.S 1距P 点3个波长,S 2距P 点21/4个波长.两波在P 点引起的两个振动的相位差 是____________.xO 反射面波疏媒质波密媒质LPS 1S 3λ10λ/312Lr36、 S 1,S 2为振动频率、振动方向均相同的两个点波源,振动方向垂直纸面,两者相距λ23(为波长)如图.已知S 1的初相为π21. (1) 若使射线S 2C 上各点由两列波引起的振动均干涉相消,则S 2的初相应为________________________. (2) 若使S 1 S 2连线的中垂线MN 上各点由两列波引起的 振动均干涉相消,则S 2的初位相应为_______________________. 37、 两列波在一根很长的弦线上传播,其表达式为 y 1 = ×10-2cos (x - 40t ) /2 (SI) y 2 = ×10-2cos (x + 40t ) /2 (SI)则合成波的表达式为__________________________________________________; 在x = 0至x = 10.0 m 内波节的位置是_____________________________________ __________________________________;波腹的位置是________________________________________________________. 38、设入射波的表达式为)(2cos 1λνxt A y +π=.波在x = 0处发生反射,反射点为固定端,则形成的驻波表达式为____________________________________. 39、 一驻波表达式为t x A y ππ=100cos 2cos .位于x 1= 3 /8 m 的质元P 1与位于x 2= 5 /8 m 处的质元P 2的振动相位差为_____________________________. 40、 在弦线上有一驻波,其表达式为 )2cos()/2cos(2t x A y νλππ=, 两个相邻波节之间的距离是_______________.S 1S 2MNC。
振动和波一、选择题1.(3分,答D )已知一平面简谐波的表达式为cos()y A at bx =-(,a b 为正值常量),则 (A )波的频率为a (B )波的传播速度为/b a (C )波长为/b π (D )波的周期为2/a π2.(本题3分,答B )一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[]3. (3分,答B )一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点,若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为(A) 1s (B) (2/3)s (C)(4/3)s (D) 2s4. (3分,答D )一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1(C)T 12/ (D) T 1 /2 (E) T 1 /45.(本题3分,答A )轴一简谐波沿Ox 轴正方向传播,t = 0 时刻的波形曲线如图所示,已知周期为 2 s ,则 P 点处质点的振动速度v 与时间t 的关系曲线为:6.(3分,答B )一平面简谐波在弹性媒质时,某一时刻媒质中某质元在负最大位移处,则它的能量是(A ) 动能为零 势能最大 (B )动能为零 势能为零 (C ) 动能最大 势能最大 (D )动能最大 势能为零v (m/s)O 1 t (s)ωA(C)· v (m/s)O1 t (s)ω A(A)·1 v (m/s)t (s)(D)O-ω A1 v (m/s) t (s)-ωA(B) O ··x o A x A 21 ω(A)A 21ω(B) A 21-(C) (D)o oo A 21-xxxAxAxAxω ω2O 1 y (m)x (m)t =0 A u图17.(3分,答D )沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ)y 2=A cos2π (νt + x /λ) 叠加后形成的驻波中,波节的位置坐标为(A)x =±k λ.(B)x =±k λ/2 .(C)x =±(2k +1)λ/2 .(D)x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….8.(3分,答D )如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为y =A cos(ω t+φ0),则B 点的振动方程为 (A )y =A cos[ω t-(x/u )+φ0] (B )y =A cos ω[ t+(x/u )] (C )y =A cos{ω [t-(x/u ) ]+φ0} (D )y =A cos{ω[ t+(x/u ) ]+φ0}9.(3分,答D )一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A )它的动能转换成势能. (B )它的势能转换成动能. (C )它从相邻的一段质元获得能量,其能量逐渐增大. (D )它把自己的能量传给相邻的一段质元,其能量逐渐减小. 10.(3分,答B )在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4 (B )λ/2 (C )3λ/4 (D )λ11.(3分,答C )某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是 (A )0 (B )/2π (C )π (D )5/4π12.(本题3分,答B)在驻波中,两个相邻波节间各质点的振动(A )振幅相同,相位相同 (B )振幅不同,相位相同 (C )振幅相同,相位不同 (D )振幅不同,相位不同 二、填空题1. (3分)已知一个简谐振动的振幅A=2cm, 角频率14s ωπ-=,以余弦函数表达式运动规律时的A -Ayxλ λ/2O ··a b · · · · · · · · ··x 2A A/2x 1初相12φπ=,试画出位移和时间的关系曲线(振动图线) 2.(4分)两个简谐振动方程分别为x 1=Acos(ω t ) ;x 2=Acos(ω t +π/3) 在同一坐标上画出两者的x-t 曲线.3. (3分)有两相同的弹簧,其劲度系数均为k .(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为;(2)把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为.[答案:(1)22m k π,(2)22mkπ] 4.(4分)一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的劲度系数,振子的振动频率.[答案:2210N/m,1.6Hz ⨯]5.(3分)一平面机械波沿x =-1m 轴负方向传播,已知处质点的振动方程cos()y A t ωϕ=+,若波速为u ,求此波的波函数.[答案:cos{[(1)/]}y A t x u ωϕ=+++]6.(3分)一作简谐振动的振动系统,振子质量为2kg ,系统振动频率为1000Hz ,振幅为0.5cm ,则其振动能量为.(答案:29.9010J ⨯ )7.(3分)两个同方向同频率的简谐振动211310cos(),3x t ωπ-=⨯+221410cos()(SI)6x t ωπ-=⨯-,它们的合振幅是. (答案:2510m -⨯ )8.(3分)一平面简谐波沿Ox 轴正方向传播,波动表达式为cos[(/)/4]y A t x u ωπ=-+,则1x L =处质点的振动方程是;2x L =-处质点的振动和1x L =处质点的振动相位差为21φφ-=. (答案:1cos[(/)/4]y A t L u ωπ=-+,12()/L L u ω+)9.(5分)一余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A 向下 ,B 向上 ,C 向上.10. (本题4分)一平面简谐波的表达式cos (/)cos(/)y A t x u A t x u ωωω=-=-其中/x u 表示,/x u ω表示,y 表示.[答案:波从坐标原点传至x 处所需时间(2分),x 处质点此原点处质点滞后的相位(1分),t 时刻x 处质点的振动位移(1分)]11. (本题3分)如图所示,两相干波源S 1和S 2相距为3λ/4,λ为波长,设两波在S 1 S 2连O Cyxu · · · A B线上传播,它们的振幅都是A ,并且不随距离变化,已知在该直线上S 1左侧各点的合成波强度为其中一个波强度的4倍,则两波源应满足的相位条件是__π/2_ 12. (3分)一驻波的表达式为y =2A cos(2πx/λ) cos(2πνt ),两个相邻波 腹之间的距离是.(答案:λ/2) 三、计算题1. (5分)一质点作简谐运动,其振动方程为110.24cos()()23x t SI ππ=+,试用旋转矢量法求出质点由初始状态运动到x =-0.12 m ,v <0的状态所经过的最短时间. 解:旋转矢量如图所示.图3分 由振动方程可得π21=ω,π=∆31φ1分667.0/=∆=∆ωφt s 1分2(本题10分)一质量m =0.25kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点,弹簧的劲度系数k =25N/m.(1)求振动的周期T 和频率ω. (2)如果振幅A =15cm ,t =0时物体位于x =7.5cm 处,且物体沿x 轴反方向运动,求初速度v 0及初相φ.(3)写出振动的数值表达式. 解:(1)12/10k m s ωπ-== (2分)2/0.63T s πω== (1分)(2) A=15cm , 在t =0时,07.5cm x =,00v < 由2200(/)A x v ω=+得2200 1.3m/s v A x ω=--=- (2分)100(/)/3/3tg v x φωππ-=-=或400,/3x φπ>∴=(3分)(3)21510cos(10/3)(SI)x t π-=⨯+(2分)3.(10分)在一轻弹簧下端悬挂0100g m =砝码时,弹簧伸长8cm. 现在这根弹簧下端悬挂0250g m =物体,构成弹簧振子,将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程的数值式.解:k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/mx (m) ωωπ/3π/3t = 0t0.12 0.24 -0.12 -0.24 OAAO xS 1S 211s 7s 25.025.12/--===m k ω(2分) 5cm )721(4/2222020=+=+=ωv x A cm (2分) 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad (3分))64.07cos(05.0+=t x (SI) (1分)4.(8分)在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长0 1.2cm l =而平衡.再经拉动后,该小球在竖直方向作振幅为2cm A =的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数(图参考上题)0/k mg l = 选平衡位置为原点,向下为正方向. 小球在x 处时,根据牛顿第二定律得202()d x mg k l x m dt -+=将k 代入整理后得 220d x g x dt l =-所以振动为简谐振动,其角频率为0/28.589.1(rad/s)g l ωπ===(5分)设振动表达式为 c o s ()x A t ωφ=+ 由题意:t=0时,200210m0x A v -==⨯=解得:0φ=2210cos(9.1)x t π-∴=⨯m (3分)5.(10分)在一轻弹簧下端悬挂m 0=100g 的砝码时,弹簧伸长8cm,现在这根弹簧下端悬挂m =250g 的物体, 构成弹簧振子. 将物体从平衡位置向下拉动4cm,并给以向上的21cm/s 的初速度(这时t =0) ,选x 轴向下,求振动方程的数值式. 解:物体受向下的重力和向上的弹性力.k=m 0g/∆l , x 0=4×10-2m, v 0=-21×10-2m/sω=()m l g m m k Δ0==7s -1A=22020ω/v x +=5×10-2m因A cos ϕ=4×10-2m, A sin ϕ=-v 0/ω=3×10-2m,有 ϕ=0.64rad 所以x=5×10-2cos(7t +0.64) (SI)6.(本题5分)一质量为0.2kg 的质点作简谐振动,其振动方程为10.6cos(5)(SI)2x t π=-求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力.解:(1)003.0sin(5)()0, 3.0m/s 2dx v t SI t v dt π==--==(2分) (2)2F ma m x ==-ω12x A =时, 1.5N F =-(无负号扣1分) (3分) 7.(5分)一平面简谐波沿x 轴正方向传播,波速为1m/s ,在x 轴上某质点的振动频率为1Hz ,振幅为0.01m. t = 0时该质点恰好在正最大位移处,若以该质点的平衡位置为x 轴的原点. 求此一维简谐波的表达式.解. 0.01cos[2()](m)y t x =-π8.(本题10分)某质点作简谐振动,周期为2s ,振幅为0.06m ,t =0时刻,质点恰好处在负最大位移处,求(1)该质点的振动方程.(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长. 解:(1)振动方程 00.06cos(2/2)0.06cos()(SI)y t t ππππ=+=+3分 (2)0.06cos[((/))0.06cos[(/2))(SI)y t x u t x ππππ=-+=-+ 4分(3)波长4m uT λ==9.(10分)一列平面简谐波在以波速5m/s u =,沿x 轴正向传播,原点O 处质点的振动曲线如图所示.1)求解并画出25cm x =处质元的振动曲线 2)求解并画出3s t =时的波形曲线 解:1)原点O 处质元的振动方程为211210cos(),(SI)22y t ππ-=⨯-(2分)波的表达式 (2分)211210cos((/5)),(SI)22y t x ππ-=⨯--x =25m 处质元的振动方程21210cos(3),(SI)2y t ππ-=⨯-振动曲线如右y-t 图 (2分)2)t=3s 时的波形曲线方程2210cos(/10),(SI)y x ππ-=⨯-(2分)波形曲线见右y-x 图 (2分)10.(10分)某质点作简谐振动,周期为2s ,振幅为0.6m ,t =0时刻,质点恰好处在负最大4O2 y(cm)t (s)2位移处,求(1)该质点的振动方程;(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长.解:(1) 振动方程)22cos(06.00π+π=ty )cos(06.0π+π=t (SI) (3分) (2) 波动表达式])/(cos[06.0π+-π=u x t y (4分)])21(cos[06.0π+-π=x t (SI)(3) 波长4==uT λm (3分)11.(5分)如图所示,一简谐波向x 轴正向传播,波速0500/,1,u m s x m P ==点的振动方程为10.03cos(500)(SI)2y t ππ=-. (1) 按图所示坐标系,写出相应的波的表达式; (2) 在图上画出t=0时刻的波形曲线.解:(1) 2m )250/500(/===νλu m 波的表达式 ]/2)1(21500cos[03.0),(λπ--π-π=x t t x y110.03cos[500(1)2/2]0.03cos(500)(SI)22t x t x =π-π--π=π+π-π(3分)(2) t = 0时刻的波形曲线x x x y π=π-π=sin 03.0)21cos(03.0)0,( (SI) (2分)12.(10分)图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图(波向左传播).已知波速为u ,波的周期大于2 s ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =,φωsin 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为)24cos(2/ππ-=νA A 所以244πππ-=-ν,ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI)(2) 波速u = 20 /2 m/s = 10 m/s,波长λ = u /ν = 160 m 波动表达式]21)16016(2cos[π-+π=x t A y (SI) x (m)uP y (m)O-2-112-0.030.03x (m)O160A y (m)8020t =0t =2 s2A。
大学物理活页答案(振动和波部分)第一节 简谐振动1. D2.D3.B4.B5.B6.A7. X=0.02cos (52π−π2) 8. 2:1 9. 0.05m -37° 10. π or 3π 11. 012.解: 周期 3/2/2=ω=πT s , 振幅 A = 0.1 m , 初相 φ= 2π/3, v max = A = 0.3π m/s ,a max = 2A = 0.9π2 m/s 2 .13.提示:旋转矢量法(1)x =0.1cos (πt −π2)(2)x =0.1cos (πt +π3) (3)x =0.1cos (πt +π)14. (1)x =0.08cos (π2t +π3)t=1 x=-0.069m F=-kx=−m ω2x =2.7×10−4(2)π3=π2t t=0.67s第二节 振动能量和振动的合成1. D2.D3.D4.B5.B6. )(212121k k m k k +=νπ 提示:弹簧串联公式等效于电阻并联 7. 0.02m 8. π 0 提示:两个旋转矢量反向9. 402hz10. A=0.1m 位相等于113° 提示:两个旋转矢量垂直。
11. mv 0=(m +M)v ′ 12kA 2=1(m+M)v ′22 A=0.025m ω=√k m+M =40 x=0.025cos (40t −π/2)12. x=0.02cos (4t +π/3)x (m) ω π/3 π/3 t = 0 0.04 0.08 -0.04 -0.08 O A A机械波第一节 简谐波1. B2. A3.D4.C5.A (注意图缺:振幅A=0.01m )6.B7. 503.2 8. a 向下 b 向上 c 向上 d 向下 (追赶前方质元)9. π 10. 4π 或011.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) (2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T y m 1.0)818/1(4cos 1.0=-π= (3) 振速 )20/(4sin 4.0x t ty -ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)21sin(4.02-=π-ππ-=v m/s 12.λ=0.4m u =0.05 k =ωu =2πλ=5π ω=π4 ϕ0=π2−2πT ∙T 2=−π2 y (x,t )=0.06cos (π4t −5πx −π2) y (0.2,t )=0.06cos (π4t −3π2)13. 210)cos sin 3(21-⨯-=t t y P ωω 210)]cos()21cos(3(21-⨯π++π-=t t ωω )3/4cos(1012π+⨯=-t ω (SI). 波的表达式为:]2/234cos[1012λλω-π-π+⨯=-x t y )312cos(1012π+π-⨯=-λωx t (SI) 第二节 波的干涉 驻波 电磁波1.D2.C3. D4.B5.B6.A7.C8. y =−2Acos (ωt ) ðy ðt =2Aωsin (ωt)9. 2A (提示:两振动同相)10. 0.5m 11. Acos2π(t T −x λ) A12. > 70.8hz 13. 7.96×10-2 W/m 214.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ(2) 驻波的表达式是 21y y y += )21/2cos()21/2cos(2π-ππ+π=T t x A λ (3) 波腹位置: π=π+πn x 21/2λ, λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ λn x 21= , n = 1, 2, 3, 4,…15.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得: ν = 4 Hz , λ = 1.50 m , 波速 u = λν = 6.00 m/s(2) 节点位置 )21(3/4π+π±=πn x )21(3+±=n x m , n = 0,1,2,3, …(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, …。
振动与波动练习题应用波速和频率解决问题振动与波动是物理学中的重要概念,涉及到波速和频率等参数的计算。
在实际问题中,我们常常需要运用这些知识来解决一些实际问题。
本文将通过一些练习题,展示如何利用波速和频率解决振动与波动相关的问题。
1. 问题描述:一根长为2m的绳子固定在墙上,在绳子上制造一个频率为50Hz的波浪。
波浪在绳子上传播的速度为5m/s,求绳子上任意两个相邻波峰之间的距离。
解决方法:首先我们需要知道波速和频率之间的关系,即公式 v =fλ,其中v 表示波速,f 表示频率,λ 表示波长。
根据题目给出的条件,我们可以将已知数值代入公式中计算未知量。
根据公式v = fλ,将已知的波速和频率代入,得到波长λ = v/f。
然后再根据波长的定义,波长就是波峰之间的距离。
所以,我们可以得出任意两个相邻波峰之间的距离为λ = v/f = (5m/s)/(50Hz) = 0.1m。
2. 问题描述:一个波的频率为60Hz,波速是30m/s,求波长和振动周期。
解决方法:同样地,我们可以利用公式v = fλ 和 T = 1/f 来解决这个问题。
首先,根据公式v = fλ,我们可以将已知的波速和频率代入,得到波长λ = v/f = (30m/s)/(60Hz) = 0.5m。
然后,根据公式 T = 1/f,我们可以将已知的频率代入,得到振动周期 T = 1/f = 1/(60Hz) = 0.0167s。
3. 问题描述:一个水波的波长为2m,波速为10m/s,求频率。
解决方法:在这个问题中,我们已知波长和波速,需要求解频率。
根据公式v = fλ,我们可以将已知的波速和波长代入,得到频率f = v/λ = (10m/s)/(2m) = 5Hz。
通过上述练习题的解析,我们可以看到,利用波速和频率这两个参数可以解决振动与波动相关的问题。
在实际问题中,我们只需要根据题目给出的已知条件,运用适当的公式进行计算,即可得到所需的结果。
振动1. 一倔强系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为1T ,若将此弹簧截去一半的长度,下端挂一质量为12m 的物体,则系统振动周期2T 等于 (A )21T (B )1T (C )1T /2 (D )1T /2 (E )1T /4(C )弹簧的弹性系数问题:一根弹簧,弹性系数为k ,把它截短以后,k 不是减小了,而是增大了。
为什么?因为我们知道胡克定律为:f kx =(力的大小),即 f k x=。
下面两根弹簧,本来材料、长度、弹性系数都是完全一样的,但是把其中的一根截短,加上相等的拉力f ,截短以后的弹簧伸长量要小于原来长度的弹簧的伸长量,弹性系数k 增大了。
f12T = 22k k =,下端挂一质量为12m的物体,则系统振动周期2T 为:2T 1112222T π⎛=== ⎝2. 图(下左)中三条曲线分别表示简谐振动中的位移x ,速度v 和加速度a ,下列说法中那一个是正确的?(A )曲线3、1、2分别表示x 、v 、a 曲线。
(B )曲线2、1、3分别表示x 、v 、a 曲线。
(C )曲线1、3、2分别表示x 、v 、a 曲线。
(D )曲线2、3、1分别表示x 、v 、a 曲线。
(E )曲线1、2、3分别表示x 、v 、a 曲线。
(E )位移x 与加速度a 的曲线时刻都是反相的,从图上看曲线1、3反相,曲线2是速度v 曲线;另外,速度比位移的位相超前2π,加速度比速度的位相超前2π,从图上看曲线3比2超前了2π,3是加速度曲线; 曲线2比1超前了2π,1是位移曲线。
3. 在t =0时,周期为T 、振幅为A 的单摆分别处于图(上右)(a)、(b)、(c)三种状态,若选单摆的平衡位置为x 轴的原点,x 轴正向指向右方,则单摆作小角度摆动的振动表达式分别为(1) ; (2) ; (3) 。
关键是写出初位相,用旋转矢量法最方便:0v (a)(b)t(a )φ= -π/2(b )φ= π/2(c )φ= π所以: (1)Y=Acos (t T π2-2π) (2)Y=Acos (t T π2+2π) (3)Y=Acos (t Tπ2+π)4.一系统作谐振动,周期为T ,以余弦函数表达振动时,初位相为零,在0≤t ≤T /2范围内,系统在t = 、 时刻动能和势能相等。
七、机械振动 机械波水平预测双基型★1.简谐运动属于下列运动中的( ).(A)匀速直线运动 (B)匀加速直线运动(C)匀变速直线运动 (D)非匀变速直线运动答案:D(提示:作简谐运动物体的同复力与位移的大小成正比、方向与其相反,故其加速度时刻变化)★★★5.如图所示,一轻弹簧上端悬于顶壁,下端挂一物体,在AB 之间作简谐运动,其中O 点为它的平衡位置,物体在A 时弹簧处于自然状态.若v 、x 、F 、a 、E k 、E p 分别表示物体运动到某一位置的速度、位移、回复力、加速度、动能和势能,则( ).(A)物体在从O 点向A 点运动过程中,v 、E p 减小向而x 、a 增大(B)物体在从B 点向O 点运动过程中,v 、E k 增大而x 、F 、E p 减小(C)当物体运动到平衡位置两侧的对称点时,v 、x 、F 、a 、E k 、E p 的大小均相同(D)当物体运动到平衡位置两侧的对称点时,v 、x 、F 、a 、E k 的大小均相同,但E p 的大小不同 答案:BC(提示:简谐运动具有各量关于平衡位置对称、运动过程机械能守恒等特点,注意该题振子运动到某一位置的势能等于重力势能与弹性势能之和).★★★6.如图所示是两列相干波的干涉图样,实线表示波峰,虚线表示波谷,两列波的振幅都为10cm,波速和波长分别为1m/s 和0.2m,C 点为AB 连线的中点,则图示时刻A 、B 两点的竖直高度差为______cm,图所示五点中振动加强的点是_____,振动减弱的点是_____,c 点此时的振动方向_____(选填”向上”或”向下),从图示时刻再经过0.65s 时,C 点的位移为_____cm,O 点经过的路程_____cm.答案:40,A 、B 、C,D 、E,向下,-20,260(提示:利用叠加原理画出各质点从图示时刻开始的振动图像)★★★★8.一列横波在x 轴上传播着,在t 1=0和t 2=0.005s 时的波形曲线如图所示.(1)由图中读出波的振幅和波长.(2)设周期大于(t 2-t 1),如果波向右传,波速多大?如果波向左传,波速又多大?(3)设周期小于(t 2-t 1].并且波速为6000m/s,求波的传播方向.答案:(1)0.2m,8m(2)右传:在Δt 时间内波传播距离2m,波速为400m/s;左传:在Δt 时间内波传播距离6m,波速为1200m/s(3)由于Δt >T,故若左传,则T )43n (t +=∆;若右传,则T )41n (t +=∆,且n >1,由v =λ/T 可得n 值,计算结果右传时n 为非整数,左传时n 为整数,故该情况为左传. ★★★★9.在核物理中,研究核子与核子关联的最有效途径是”双电荷交换反应”,这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C 沿轨道以速度v 0向B 球运动,如图所示.C 与B 发生碰撞并立即结成一个整体D,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后A 球与挡板P 发生碰撞,碰撞后A 、B 都静止不动,A 与P 接触而不粘连,过一段时间,弹簧突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m.试求:(1)弹簧长度刚被锁定后A 球的速度.(2)在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能.(2000年全国高考试题)答案:(1)设B 、C 碰撞形成D 时速度为v 1,锁定时速度为v 2,P 处解除锁定并恢复原长时D 的速度为v 2,之后当弹簧为最大长度时又一次同速,此速度为v 4,首次锁定时弹簧最大弹性势能为E p1,A 离开挡板后弹簧最大弹性势能为E p2,则有针对不同过方程:mv 0=2mv 1,①2mv 1=3mv 2,②2221p 3mv 212mv 21E 1⨯-⨯=;③23p 2mv 21E 1⨯=,④2mv 3=3mv 4,⑤可得v 2=v 0/3,12mv E 20p 1=,04v 93v =v 0,36m v 3m v 21E E 2024p p 12=⨯-= 简谐运动 受迫振动★★3.作简谐运动的物体,回复力和位移的关系图是下图所给四个图像中的( ).【0.5】答案:D★★★9.把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它的转动会给筛子形成一个周期性的驱动力,这样就做成了一个共振筛,筛子自由振动时每次全振动用时2s,在某电压下电动偏心轮转速为36r/min,若增大电压可以使偏心轮转速提高,增加筛子质量,可以增大筛子的固有周期,那么,要使筛子的振幅变大,可采取的措施有(1)_________、(2)_________.【1】 答案:(1)减小电压(2)减小筛子质量★★★12.如图所示,有一脉冲波在a 、b 之间传播,下列说法中,正确的有( ).【3】(A)如果传播方向从a 到b,则a 、b 之间各个质点起始振动方向均朝上(B)如果传播方向从a 到b,则a 、b 之间各个质点起始振动方向均朝下(C)a 、b 之间各个质点起始振动速度为零(D)a 、b 之间各个质点起始振动方向与波的传播方向无关答案:B★★★15.一个质点在平衡位置O 点的附近作简谐运动,某时刻过O 点后经3s 时间第一次经过M 点,再经2s 第二次经过M 点.该质点再经______第三:次经过M 点.若该质点由O 点出发后在20s 内经过的路程是20cm,则质点振动的振幅为_________.【3】答案:Δt 1=14s 、Δt 2=10/3s,A 1=4cm 、A 2=4/3cm★★★18.作简谐运动的弹簧振子,其质量为m,最大速率为v.下列说法中正确的是( ).【4】(A)从某时刻算起,在半个周期的时间内,弹力做的功一定为零(B)从某时刻算起,在半个周期的时间内,弹力做的功可能是0~21mv 2之间的某个值 (C)从某时刻算起,在半个周期的时间内,弹力的冲量大小一定为零(D)从某时刻算起,在半个周期的时间内,弹力的冲量大小可能是0~2mv 间的某个值 答案:AD★★★★19.如图所示,一个弹簧振子在A 、B 两点之间作简谐运动,某时刻物体正经过C 点向上运动,速度大小为v C 已知OC=a,物体的质量为M 振动周期为T,则从此时刻开始的半个周期内( ).【4】(A)重力做功2mga (B)重力冲量为2mgT (C)回复力做功为零 (D)回复力的冲量为2mv C答案:ABCD★★★★21.如图所示是一个单摆的共振曲线,读图回答下列问题:(1)该单摆摆长多大?(2)共振时单摆振幅多大?(3)共振时摆球的最大加速度、最大速度多大?【6】答案:(1)1m(2)8cm(3)0.8m/s 2,0.25m/s单摆振动图像★3.若单摆的摆长不变,摆球的质量增加为原来的4倍,摆球经过平衡位置时的速度减为原来的1/2,则单摆振动的( ).【0.5】(A)频率不变,振幅不变 (B)频率改变,振幅变大(C)频率改变,振幅不变 (D)频率不变,振幅变小答案:D★★7.一弹簧振子作简谐运动,其振动图像如图所示,那么在(t 2T ∆-)和(t 2T ∆+)两个时刻,振子的:①速度相同;②加速度相同;③相对平衡位置的位移相同;④振动的能量相同.以上选项中正确的是( ).【1】(A)①④ (B)②③ (C)③④ (D)①②答案:A★★★14.盛砂漏斗与悬线构成砂摆在竖直平面摆动.其下方有一薄板垂直摆动平面匀速拉动,可画出振动图像,若砂摆有两种不同摆长而薄板也分别以v 1、v 2两种速度拉动,且v 2=2v 1,得到如图所示的两种图像,则其振动周期丁.T 1和T 2的关系为( ).【4】(A)T 2=T 1(B)T 2=2T 1. (C)T 2=4T 1(D)T 2=T 1/4 答案:A★★★16.两个行星的质量之比为P,半径之比为Q,两个相同的单摆分别置于两个行星的表面,那么它们的振动周期之比为( ).【2】(A)PQ 2 (B)P Q (C)Q P (D)P Q答案:D★★★17.如图所示,绝缘线长L,一可视为质点的摆球带正电并用该线悬于O 点摆动,当摆球过竖直线OC 时,便进入或离开一个匀强磁场,磁场方向垂直摆动平面.摆球沿ACB 圆弧来回摆动且摆角小于5°,下列说法中正确的是( ).【3】(A)A 、B 处于同一水平线上(B)球在A 、B 点时线的拉力大小不等(C)单摆的周期T=g l 2π (D)单摆向左或向右运动经过D 点时线的拉力大小相等 答案:AC★★★21.在用单摆测重力加速度的实验中,从下列器材中选用最合适的(填写器材代号) ________.【2】(A)小铁球 (B)小塑料球 (C)30cm 长的摆线(D)100cm 长的摆线 (E)150cm 长的摆线 (F)手表(G)秒表 (H)米尺 (I)铁架台答案:ADGHI★★★24.一单摆摆长为l,摆线离开平衡位置的最大夹角为θ,摆球质量为m,当摆球从最大位移处运动到平衡位置的过程中,重力做功为_____,合外力冲量的大小为______.【4】 答案:Mgl(1-cosθ),()θcos l 2gl m -★★★25.图中各摆中线的长度都已知,摆球视为质点,且均作小角摆动.求它们的周期.【8】T a=________;T b=_______;T c=________;T d=________;T e=________;T f=_________.答案:g sin l l 221απ+,g a l 2+π,g l 2π,mg Eq ml 2+π,gl 2π,mg -F ml 2π ★★★★31.有一水平轨道AB,在B 点处与半径为300m 的光滑弧形轨道BC 相切,一质量为0.99㎏的木块静止于B 处,现有一颗质量为10g 的子弹以500m/s 的水平速度从左边射入木块且未穿出,如图所示.已知木块与该水平轨道AB 间的动摩擦因数μ=0.5,g 取10m/s 2.,试问子弹射入木块后,木块需经多长时间停止运动(cos5°=0.996)?【6】答案:(1+π30)s★★★★★34.如图所示是一种记录地震相关情况的装置,有一质量为m的球固定在边长为l 、质量可忽略不计的等边三角形的顶点A 上,它的对边BC 跟竖直线成夹角α,球可绕固定轴BC 摆动,求摆球作微小摆动时的周期.【10】答案:απ2gsin 3l 2T = 机械波波的图像双基训练★1.下列关于波的图像和振动图像正确的是( ).【0.5】(A)波的图像表示某一时刻某质点的位移(B)振动图像表示某一质点在各个时刻的位移(C)波的图像表示各个时刻各个质点的位移(D)振动图像表示某一质点在某一时刻的位移答案:B★★★★8.如图所示分别为一列横波在某一时刻的图像和在x=6m处的质点从该时刻开始计时的振动图像,则这列波( ).【3】(A)沿x轴的正方向传播(B)沿x轴的负方向传播(C)波速为100m/s(D)波速为2.5m/s答案:BC★★★9.如图所示为一列沿x轴正方向传播、频率为50Hz的简谐横波在t=0时刻的波形,此时P点恰好开始振动.已知波源的平衡位置在O点,P、Q两质点平衡位置坐标分别为P(12,0)、Q(56,0),则( ).【4】(A)波源刚开始振动时的运动方向沿+y方向(B)这列波的波速为600m/s(C)当t=0).11s时,Q点刚开始振动(D)Q点刚开始振动时,P点恰位于波谷答案:C★★★10.一列波沿绳子传播时、绳上有相距3m的P点和Q点,它们的振动图线如图所示.其中实线为P点的图线,虚线为Q点的图线,则该列波的波长和波速的可能值为( ).【2】(A)6m,30m/s (B)6m,12m/s(C)2m,12m/s (D)2m,10m/s答案:A★★★11.如图所示为一列向某方向传播的简谐横波在某时刻的波形图,在波的传播方向上有一质点P在该时刻的振动方向如图.由图可知( ).【2】(A)波向右传播(B)波向左传播(C)P点在该时刻前1/4周期时和后3/4周期时运动情况相同(D)P点在该时刻前1/4周期时和后1/4周期时运动情况相反答案:BCD★★★12.一列横波以10m/s的波速沿水平方向向右传播,某时刻的波形图如图中的实线所示,经过时间后波形如图中虚线所示,由此可知Δt的可能值是( ).【3】(A)0.3,s (B)0.5s (C)0.6s (D)0.7s答案:B★★★14.如图是一列向右传播的横波,波速为0.4m/s,M点的横坐标x=10m,图示时刻波传到N点,现从图示时刻开始计时,问:(1)经过多长时间,M点第二次到达波谷?(2)这段时间里,N点经过的路程为多少?【4】答案:(1)29s(2)145cm★★★★16.一列横波沿直线ab,向右传播,ab=2m,a、b两点的振动情况如图所示,下列说法中正确的是( ).【5】(A)波速可能是2/43m/s (B)波长可能是8/3m(C)波速可能大于2/3m/s (D)波长可能大于8/3m答案:CD★★★★17.机械横波在某时刻的波形图如图实线所示,已知波的传播速度大小为1m/s.经过一段Δt后,波形变成图中虚线所示,则Δt的可能值为( ).【4】(A)1s (B)3s (C)5s (D)7s答案:ABCD★★★★18.在波的传播直线上有两个介质质点A、B,它们相距60cm,当A质点在平衡位置处向上振动时,B质点处于波谷位置.若波速的大小为24m/s,则波的频率可能值是( ).【6】(A)30Hz (B)410Hz (C)400Hz (D)490Hz答案:ABD★★★★20.如图所示,实线是一列简谐横波在t1时刻的波形图,虚线是在t2=(t1+0.2)s的波形图.(1)若波速为35m/s,求质点M在t1.时刻的振动方向.(2)在t1到t2的时间内,如果M通过的路程为1m,那么波的传播方向怎样?波速多大?【5】答案:(1)向下(2)右传,5m/s干涉衍射声波★★5.关于波的干涉现象,下列说法中正确的是( ).【1】(A)在振动削弱的区域,质点不发生振动(B)在振动削弱的区域,各质点都处于波谷(C)在振动加强的区域,各质点都处于波峰(D)在振动加强的区域,有时质点的位移也等于零答案:D★★6.两列波叠加,在空间出现稳定的干涉图样,下列说法中正确的是( ).【1】(A)振动加强的区域内各质点都在波峰上(B)振动加强区域内各质点都有位移为零的时刻(C)振动加强是指合振动的振幅变大,振动质点的能量变大(D)振动加强和减弱区域的质点随波前进答案:BC★★7.如图所示是波遇到小孔或障碍物后的图像,图中每两条实线间的距离表示一个波长,其中正确的图像是( ).【2】答案:B★★8.宋代科学家沈括所著《梦溪笔谈》中有这样一段话”古法以牛黄为矢眼(箭壶),卧以为枕,取其中虚,附地枕之,数里外有人马声,则闻之.”这是利用了_______的原理.【1】答案:声音的共振★★★9.两列振幅、波长相同的简谐横波,以相同的速率沿相反方向在同一介质中传播,如图所示为某一时刻的波形图,其中实线为向右传播的波.虚线为向左传播的波,a、b、c、d、e为五个等距离的质点,两列波传播的过程中,下列说法中正确的是( ).【3】(A)质点a、b、c、d、e始终静止不动(B)质点b、d始终静止不动(C)质点a、c、e始终静止不动(D)质点a、c、e以振幅2A作简谐运动答案:BD★★★10.如图所示为两列相向传播的振幅、波长都相同的简谐横波(脉冲波),当它们相遇后,下列图像中可能存在的是( ).【3】答案:BD★★★11.如图所示是声波1和声波2在同一种介质中传播时某时刻的波形图,则( ).【1】(A)波1速度比波2速度大(B)波2的音品比波1好(C)波2响度比波1响度大(D)波2音调比波1高答案:D横向拓展★★★★12.将两端开口的玻璃管竖直插入深水槽中,今敲击一个固有频率为500Hz的音叉并同时把它放在管口上端,逐渐上提玻璃管,测得该过程中产生第一、二次共振的空气柱长度相差34cm,求声速.【10】答案:340m/s★★★★13.如图7—49所示,广场上有一个半径为45m的圆,AB是直径,在圆心O点和A点处分别安装两个有相同声源的扬声器,它们发出的声波波长是10m.有一人站在B处几乎听不到声音,他沿着圆周逆时针向A走,在走到A之前,他还有几次几乎听不到声音?【10】答案:8次★★★★★14.将一根长为100多厘米的均匀弦线,沿水平的x轴放置,拉紧并使两端固定,现对离固定的右端25cm处(取该处为原点O,如图(a)所示)的弦上一点施加一个沿垂直于弦线方向(即y轴方向)的扰动,其位移随时间的变化规律如图(b)所示.该扰动将沿弦线传播而形成波(孤立的脉冲波).已知该波在弦线中的传播速度为 2.5cm/s,且波在传播和反射过程中都没有能量损失.。
振动、波动练习题一.选择题1.一质点在X 轴上作简谐振动,振幅A=4cm 。
周期T=2s 。
其平衡位置取作坐标原点。
若t=0时刻质点第一次通过x= -2cm 处,且向X 轴负方向运动,则质点第二次通过x= -2cm 处的时刻为( )。
A 1sB 32s C 34s D 2s2.一圆频率为ω的简谐波沿X 轴的正方向传播,t=0时刻的波形如图所示,则t=0时刻,X 轴上各点的振动速度υ与X 轴上坐标的关系图应( )。
3.图示一简谐波在t=0时刻的波形图,波速υ=200m/s ,则图中O 点的振动加速度的表达式为( )。
)22cos(4.0)2cos(4.0)23cos(4.0)2cos(4.02222ππππππππππππ+-=--=-=-=t a D t a C t a B t a A4.频率为100Hz点振动的相位差为3π,则这两点相距( )。
A 2mB 2.19mC 0.5mD 28.6m5.一平面简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最大位置处的过程中,( )。
A 它的动能转换成势能B 它的势能转换成动能C 它从相邻的一段质元获得能量其能量逐渐增大D 它把自己的能量传给相邻的一段质元,其能量逐渐减小6.在下面几种说法中,正确的说法是:( )。
A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播方向上的任一质点振动位相总是比波源的位相滞后D 在波传播方向上的任一质点振动位相总是比波源的位相超前7.一质点作简谐振动,周期为T ,当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为( )。
A 4T B 12T C 6T D 8T8.在波长为λ的驻波中两个相邻波节之间的距离为( )。
A λ B 3λ/4 C λ/2 D λ/49.在同一媒质中两列相干的平面简谐波的强度之比421=I I 是,则两列波的振幅之比是:( ) A=21A A 4 B =21A A 2 C =21A A 16 D =21A A 4110.有二个弹簧振子系统,都在作振幅相同的简谐振动,二个轻质弹簧的劲度系数K 相同,但振子的质量不同。
高考物理力学知识点之机械振动与机械波技巧及练习题附解析一、选择题1.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( )A .C 的振幅比B 的大 B .B 和C 的振幅相等 C .B 的周期为2π2L g D .C 的周期为2π1L g2.做简谐运动的物体,下列说法正确的是 A .当它每次经过同一位置时,位移可能不同 B .当它每次经过同一位置时,速度可能不同 C .在一次全振动中通过的路程不一定为振幅的四倍 D .在四分之一周期内通过的路程一定为一倍的振幅3.一列波在传播过程中遇到一个障碍物,发生了一定程度的衍射,一定能使衍射现象更明显的措施是A .增大障碍物尺寸,同时增大波的频率。
B .缩小障碍物尺寸,同时增大波的频率。
C .增大障碍物尺寸,同时减小波的频率。
D .缩小障碍物尺寸,同时减小波的频率。
4.沿x 轴正向传播的一列简谐横波在t=0时刻的波形如图所示,M 为介质中的一个质点,该波的传播速度为40m/s ,则t=s 时A .质点M 对平衡位置的位移一定为负值B .质点M 的速度方向与对平衡位置的位移方向相同C .质点M 的加速度方向与速度方向一定相同D .质点M 的加速度方向与对平衡位置的位移方向相同5.两个弹簧振子,甲的固有频率是100Hz ,乙的固有频率是400Hz ,若它们均在频率是300Hz 的驱动力作用下做受迫振动,则 ( ) A .甲的振幅较大,振动频率是100Hz B .乙的振幅较大,振动频率是300HzC .甲的振幅较大,振动频率是300HzD .乙的振幅较大,振动频率是400Hz6.图甲所示为以O 点为平衡位置、在A 、B 两点间做简谐运动的弹簧振子,图乙为这个弹簧振子的振动图象,由图可知下列说法中正确的是A .在t =0.2s 时,弹簧振子运动到O 位置B .在t =0.1s 与t =0.3s 两个时刻,弹簧振子的速度相同C .从t =0到t =0.2s 的时间内,弹簧振子的动能持续地减小D .在t =0.2s 与t =0.6s 两个时刻,弹簧振子的加速度相同7.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍B .若2Tt ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于mkx m M+ 8.下图表示一简谐横波波源的振动图象.根据图象可确定该波的( )A .波长,波速B .周期,振幅C .波长,振幅D .周期,波速9.如图所示为一列沿x 轴负方向传播的简谐横波在t 1=0时的波形图。
1. 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ⨯ 10-2 m 。
若使物体上下振动,且规定向下为正方向。
(1)t =0时,物体在平衡位置上方8.0 ⨯ 10-2 m处,由静止开始向下运动,求运动方程。
(2)t = 0时,物体在平衡位置并以0.60 m/s 的速度向上运动,求运动方程。
题1分析:求运动方程,也就是要确定振动的三个特征物理量A 、ω,和ϕ。
其中振动的角频率是由弹簧振子系统的固有性质(振子质量m 及弹簧劲度系数k )决定的,即m k /=ω,k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相ϕ需要根据初始条件确定。
解:物体受力平衡时,弹性力F 与重力P 的大小相等,即F = mg 。
而此时弹簧的伸长量m l 2108.9-⨯=∆。
则弹簧的劲度系数l mg l F k ∆=∆=//。
系统作简谐运动的角频率为1s 10//-=∆==l g m k ω(1)设系统平衡时,物体所在处为坐标原点,向下为x 轴正向。
由初始条件t = 0时,m x 210100.8-⨯=,010=v 可得振幅m 100.8)/(2210102-⨯=+=ωv x A ;应用旋转矢量法可确定初相πϕ=1。
则运动方程为])s 10cos[()m 100.8(121π+⨯=--t x(2)t = 0时,020=x ,120s m 6.0-⋅=v ,同理可得m 100.6)/(22202022-⨯=+=ωv x A ,2/2πϕ=;则运动方程为]5.0)s 10cos[()m 100.6(122π+⨯=--t x2.某振动质点的x -t 曲线如图所示,试求:(1)运动方程;(2)点P 对应的相位;(3)到达点P 相应位置所需要的时间。
题2分析:由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题。
本题就是要通过x -t 图线确定振动的三个特征量量A 、ω,和0ϕ,从而写出运动方程。
1.下列关于简谐振动和简谐波的说法,正确的是A.媒质中质点振动的周期一定和相应的波的周期相等B.媒质中质点振动的速度一定和相应的波的波速相等C.波的传播方向一定和媒质中质点振动的方向一致D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍2.做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的A.频率、振幅都不变B.频率、振幅都改变C.频率不变、振幅改变D.频率改变、振幅不变3.家用洗衣机在正常脱水时较平稳,切断电源后,洗衣机的振动先是变得越来越剧烈,然后逐渐减弱。
对这一现象,下列说法正确的是A.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率大B.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率小C.正常脱水时,洗衣机脱水缸的运转频率等于洗衣机的固有频率D.当洗衣机的振动最剧烈时,脱水缸的运转频率恰好等于洗衣机的固有频率4.两个振动情况完全一样的波源S1、S2相距6m,它们在空间产生的干涉图样如图所示,图中实线表示振动加强的区域,虚线表示振动减弱的区域,下列说法正确的是A.两波源的振动频率一定相同B.虚线一定是波谷与波谷相遇处C.两列波的波长都为2mD.两列波的波长都为1m5.频率一定的声源在空气中向着静止的接收器匀速运动。
以u表示声源的速度,V表示声波的速度(u<V),v表示接收器接收到的频率。
若u增大,则A.v增大,V增大 B. v增大,V不变C. v不变,V增大D. v减少,V不变6.如图所示,沿x轴正方向传播的一列简谐横波在某时刻的波形图为一正弦曲线,其波速为200m/s,下列说法中正确的是A.图示时刻质点b的加速度将减小B.从图示时刻开始,经过0.01s,质点a通过的路程为0.4mC.若此波遇到另一列波并发生稳定干涉现象,则另一列波的频率为50HzD.若该波传播中遇到宽约4m的障碍物能发生明显的衍射现象7.一列沿x轴正方向传播的简谐横波,周期为0.50s。
第10章振动与波动一.基本要求1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。
2. 掌握振幅、周期、频率、相位等概念的物理意义。
3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。
4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。
5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。
6. 理解机械波产生的条件。
7. 掌握描述简谐波的各物理量的物理意义及其相互关系。
8. 了解波的能量传播特征及能流、能流密度等概念。
9. 理解惠更斯原理和波的叠加原理。
掌握波的相干条件。
能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。
10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。
二. 内容提要1. 简谐振动的动力学特征作谐振动的物体所受到的力为线性回复力,即取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为2. 简谐振动的运动学特征作谐振动的物体的位置坐标x与时间t成余弦(或正弦)函数关系,即由它可导出物体的振动速度)=tAv-ω+ωsin(ϕ物体的振动加速度)=tAa2cos(ϕ-+ωω3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。
周期与频率互为倒数,即ν=1T 或 T1=ν5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ωπ=2T 或 πν=ω26. 相位和初相 谐振动方程中(ϕ+ωt )项称为相位,它决定着作谐振动的物体的状态。
t=0时的相位称为初相,它由谐振动的初始条件决定,即应该注意,由此式算得的ϕ在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。
7. 旋转矢量法 作逆时针匀速率转动的矢量,其长度等于谐振动的振幅A ,其角速度等于谐振动的角频率ω,且t=0时,它与x 轴的夹角为谐振动的初相ϕ,t=t时刻它与x 轴的夹角为谐振动的相位ϕω+t 。
一 选择题 (共60分)1. (本题 3分)(0327) 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是:(A) 2max 2max/x m k v =. (B) x mg k /=. (C) 22/4T m k π=. (D) x ma k /=. [ ]2. (本题 3分)(3255) 如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为4m 的物体,最后将此弹簧截断为两个等长的弹簧并联后悬挂质量为m 的物体,则这三个系统的周期值之比为(A) 1∶2∶2/1. (B) 1∶21∶2 . (C) 1∶2∶21. (D) 1∶2∶1/4 . [ ]3. (本题 3分)(3256) 图(a)、(b)、(c)为三个不同的简谐振动系统.组成各系统的各弹簧的原长、各弹簧的劲度系数及重物质量均相同.(a)、(b)、(c)三个振动系统的ω2(ω为固有角频率)值之比为(A) 2∶1∶21. (B) 1∶2∶4 .(C) 2∶2∶1 . (D) 1∶1∶2 .[ ](a)(b)4. (本题 3分)(5507) 图中三条曲线分别表示简谐振动中的位移x ,速度v ,和加速度a .下列说法中哪一个是正确的?(A) 曲线3,1,2分别表示x ,v ,a 曲线;(B) 曲线2,1,3分别表示x ,v ,a 曲线; (C) 曲线1,3,2分别表示x ,v ,a 曲线; (D) 曲线2,3,1分别表示x ,v ,a 曲线;(E) 曲线1,2,3分别表示x ,v ,a 曲线. [ ]x, v , at O123已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A) )3232cos(2π+π=t x .(B) )3232cos(2π−π=t x .(C) )3234cos(2π+π=t x .(D) )3234cos(2π−π=t x .(E) )4134cos(2π−π=t x . [ ]6. (本题 3分)(3028) 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为 (A) E 1/4. (B) E 1/2.(C) 2E 1. (D) 4 E 1 . [ ]7. (本题 3分)(3023) 一弹簧振子,当把它水平放置时,它可以作简谐振动.若把它竖直放置或放在固定的光滑斜面上,试判断下面哪种情况是正确的:(A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动. (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动.(C) 两种情况都可作简谐振动.(D) 两种情况都不能作简谐振动. [ ]放在光滑斜面上8. (本题 3分)(5181) 一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是 (A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ ]9. (本题 3分)(3560) 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A) kA 2. (B) 221kA .(C) (1/4)kA 2. (D) 0. [ ]10. (本题 3分)(3066) 机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]一平面余弦波在t = 0时刻的波形曲线如图所示,则O 点的振动初相φ 为:(A) 0. (B) π21(C) π (D) π23(或π−21) [ ]xyOu12. (本题 3分)(3151) 图中画出一向右传播的简谐波在t 时刻的波形图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为 [ ]13. (本题 3分)(3072) 如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则波的表达式为 (A) }]/)([cos{0φω+−−=u l x t A y . (B) })]/([cos{0φω+−=u x t A y .(C) )/(cos u x t A y −=ω.(D) }]/)([cos{0φω+−+=u l x t A y . [ ]14. (本题 3分)(3071) 一平面简谐波以速度u 沿x 轴正方向传播,在t = t '时波形曲线如图所示.则坐标原点O 的振动方程为 (A) 2)(cos[π+′−=t t b u a y . (B) ]2)(2cos[π−′−π=t t b u a y . (C) ]2)(cos[π+′+π=t t bu a y .(D) 2)(cos[π−′−π=t t b u a y . [ ]15. (本题 3分)(3286) 在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ ]一列机械横波在t 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元的位置是:(A) o ',b ,d ,f . (B) a ,c ,e ,g .(C) o ',d . (D) b ,f .[ ]17. (本题 3分)(3289) 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则(A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播.(C) B 点处质元的振动动能在减小.(D)各点的波的能量密度都不随时间变化. [ ]18. (本题 3分)(3090) 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能. (B) 它的势能转换成动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. [ ]19. (本题 3分)(5321) S 1和S 2是波长均为λ 的两个相干波的波源,相距3λ /4,S 1的相位比S 2超前π21.若两波单独传播时,在过S 1和S 2的直线上各点的强度相同,不随距离变化,且两波的强度都是I 0,则在S 1、S 2连线上S 1外侧和S 2外侧各点,合成波的强度分别是(A) 4I 0,4I 0. (B) 0,0.(C) 0,4I 0 . (D) 4I 0,0. [ ]20. (本题 3分)(3101) 在驻波中,两个相邻波节间各质点的振动(A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. [ ]二 填空题 (共81分)21. (本题 4分)(3010) 有两相同的弹簧,其劲度系数均为k .(1) 把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________;(2) 把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________________________.22. (本题 3分)(3041) 一简谐振动曲线如图所示,则由图可确定在t = 2s时刻质点的位移为 ____________________,速度为__________________.23. (本题 5分)(3398) 一质点作简谐振动.其振动曲线如图所示.根据此图,它的周期T =___________,用余弦函数描述时初相φ =_________________.24. (本题 5分)(3400) 试在下图中画出简谐振子的动能,振动势能和机械能随时间t 而变的三条曲线(设t = 0时物体经过平衡位置).EtTT/2T 为简谐振动的周期25. (本题 3分)(3569) 如图所示的是两个简谐振动的振动曲线,它们合成的余弦振动的初相为__________________.21−一质点同时参与了三个简谐振动,它们的振动方程分别为)31cos(1π+=t A x ω, )35cos(2π+=t A x ω, )cos(3π+=t A x ω其合成运动的运动方程为x = ______________.27. (本题 4分)(5315) 两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅为___________________ cm ,第一、二两个简谐振动的相位差φ1 − φ2为____________.28. (本题 5分)(3075) 一平面简谐波的表达式为 )37.0125cos(025.0x t y −= (SI),其角频率ω =__________________________,波速u =______________________,波长λ = _________________.29. (本题 4分)(3862) 一横波的表达式是 )30/01.0/(2sin 2x t y −π=其中x 和y 的单位是厘米、t 的单位是秒,此波的波长是_________cm ,波速是_____________m/s .30. (本题 5分)(3074) 一平面简谐波的表达式为 )/(cos u x t A y −=ω)/cos(u x t A ωω−= 其中x / u 表示_____________________________;ωx / u 表示________________________;y 表示______________________________.31. (本题 5分)(3863) 已知平面简谐波的表达式为 )cos(Cx Bt A y −=式中A 、B 、C 为正值常量,此波的波长是_________,波速是_____________.在波传播方向上相距为d 的两点的振动相位差是____________________.一简谐波沿BP 方向传播,它在B 点引起的振动方程为t A y π=2cos 11.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为)2cos(22π+π=t A y .P 点与B 点相距0.40 m ,与C 点相距0.5 m (如图).波速均为u = 0.20 m/s .则两波在P 点的相位差为______________________.33. (本题 5分)(3063) 一平面简谐波沿x 轴正方向传播,波速 u = 100 m/s ,t = 0时刻的波形曲线如图所示.可知波长λ = ____________; 振幅A = __________;频率ν = ____________.34. (本题 5分)(3133) 一平面简谐波沿Ox 轴正方向传播,波长为λ.若如图P 1点处质点的振动方程为)2cos(1φν+π=t A y ,则P 2点处质点的振动方程为_________________________________;与P 1点处质点振动状态相同的那些点的位置是___________________________.OP 1P 235. (本题 3分)(3301) 如图所示,S 1和S 2为同相位的两相干波源,相距为L ,P 点距S 1为r ;波源S 1在P 点引起的振动振幅为A 1,波源S 2在P 点引起的振动振幅为A 2,两波波长都是λ ,则P 点的振幅A = _________________________________________________________.1236. (本题 4分)(5517) S 1,S 2为振动频率、振动方向均相同的两个点波源,振动方向垂直纸面,两者相距λ23(λ为波长)如图.已知S 1的初相为π21.(1) 若使射线S 2C 上各点由两列波引起的振动均干涉相消,则S 2的初相应为________________________.(2) 若使S 1 S 2连线的中垂线MN 上各点由两列波引起的振动均干涉相消,则S 2的初位相应为_______________________.37. (本题 3分)(3595) 一驻波的表达式为 )2cos()/2cos(2t x A y νλππ=.两个相邻波腹之间的距离是___________________.一驻波表达式为t x A y ωλcos )/2cos(2π=,则λ21−=x 处质点的振动方程是___________________________________________;该质点的振动速度表达式是______________________________________.39. (本题 5分)(3107) 如果入射波的表达式是)(2cos 1λxT t A y +π=,在x = 0处发生反射后形成驻波,反射点为波腹.设反射后波的强度不变,则反射波的表达式y 2 =___________________________________________; 在x = 2λ /3处质点合振动的振幅等于______________________.40. (本题 3分)(3462) 在真空中一平面电磁波的电场强度波的表达式为:103(102cos[100.6882×−×π×=−xt E y (SI)则该平面电磁波的波长是____________________.三 计算题 (共74分)41. (本题10分)(3022) 一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.42. (本题 5分)(3045) 一质点作简谐振动,其振动方程为x = 0.24)3121cos(π+πt (SI),试用旋转矢量法求出质点由初始状态(t = 0的状态)运动到x = -0.12 m ,v < 0的状态所需最短时间∆t .43. (本题 5分)(3085) 在弹性媒质中有一沿x 轴正向传播的平面波,其表达式为)214cos(01.0π−π−=x t y (SI).若在x = 5.00 m 处有一媒质分界面,且在分界面处反射波相位突变π,设反射波的强度不变,试写出反射波的表达式.如图,一平面简谐波沿Ox 轴传播,波动表达式为])/(2cos[φλν+−π=x t A y (SI),求(1) P 处质点的振动方程;(2) 该质点的速度表达式与加速度表达式.OP45. (本题 5分)(3332) 如图所示,一简谐波向x 轴正向传播,波速u = 500 m/s ,x 0 = 1 m, P 点的振动方程为 )21500cos(03.0π−π=t y (SI).(1) 按图所示坐标系,写出相应的波的表达式;(2) 在图上画出t = 0时刻的波形曲线.46. (本题 8分)(5516) 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200m/s .在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度.47. (本题 8分)(3078) 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求 (1) x = 0处质点振动方程;(2) 该波的表达式.xu O t =t ′y48. (本题 8分)(3138) 某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求(1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.49. (本题10分)(3146) 如图为一平面简谐波在t = 0 时刻的波形图,已知波速u = 20 m/s .试画出P 处质点与Q 处质点的振动曲线,然后写出相应的振动方程.如图所示,两列相干波在P 点相遇.一列波在B 点引起的振动是 t y π×=−2cos 103310 (SI);另一列波在C 点引起的振动是)212cos(103320π+π×=−t y (SI); 令=BP 0.45 m ,=CP 0.30m ,两波的传播速度u = 0.20 m/s ,不考虑传播途中振幅的减小,求P 点的合振动的振动方程.51. (本题 5分)(3336) 如图所示,两列波长均为λ 的相干简谐波分别通过图中的O 1和O 2点,通过O 1点的简谐波在M 1 M 2平面反射后,与通过O 2点的简谐波在P 点相遇.假定波在M 1 M 2平面反射时有相位突变π.O 1和O 2两点的振动方程为 y 10 =A cos(πt ) 和y 20 = A cos(πt ),且 λ81=+mP m O , λ32=P O (λ 为波长),求:(1) 两列波分别在P 点引起的振动的方程;(2) P 点的合振动方程.(假定两列波在传播或反射过程中均不衰减)2一 选择题 (共60分)1. (本题 3分)(0327) (B)2. (本题 3分)(3255) (C)3. (本题 3分)(3256) (B)4. (本题 3分)(5507) (E)5. (本题 3分)(5186) (C)6. (本题 3分)(3028) (D)7. (本题 3分)(3023) (C)8. (本题 3分)(5181) (B)9. (本题 3分)(3560) (D)10. (本题 3分)(3066) (B)11. (本题 3分)(5204) (D)12. (本题 3分)(3151) (B)13. (本题 3分)(3072) (A)14. (本题 3分)(3071) (D)参考解:由图 b 2=λ, buu2==λν令波的表达式为 ])(2cos[φλν+−π=xt a y 在 t = t ′, ](2cos[φλν+−′π=xt a y 由图,这时x = 0处 初相 22π−=+′πφνt 可得 t ′π−π−=νφ22故x = 0处 ]2cos[φν+π=t a y ]2)(cos[π−′−π=t t bu a(C)16. (本题 3分)(5320) (B)17. (本题 3分)(3289) (B)18. (本题 3分)(3090) (D)19. (本题 3分)(5321) (D)20. (本题 3分)(3101) (B)二 填空题 (共81分)2分 k m 2/2π 2分22. (本题 3分)(3041) 0 1分 3π cm/s 2分23. (本题 5分)(3398) 3.43 s 3分 -2π/3 2分24. (本题 5分)(3400) 动能曲线见图 2分 势能曲线见图 2分 机械能曲线见图 1分Et 0TT/2动能势能机械能25. (本题 3分)(3569) π−21或π23 3分26. (本题 3分)(5190) 0 3分27. (本题 4分)(5315) 10 2分 π−212分125 rad/s 1分338 m/s 2分17.0 m 2分29. (本题 4分)(3862) 30 2分 30 2分30. (本题 5分)(3074) 波从坐标原点传至x 处所需时间 2分x 处质点比原点处质点滞后的振动相位 2分t 时刻x 处质点的振动位移 1分31. (本题 5分)(3863) 2π /C 1分 B /C 2分 Cd 2分32. (本题 3分)(3420) 0 3分33. (本题 5分)(3063) 0.8 m 2分 0.2 m 1分 125 Hz 2分34. (本题 5分)(3133) ])(2cos[212φλν++−π=L L t A y 3分λk L x +−=1 (k = ± 1,± 2,…) 2分35. (本题 3分)(3301) )22cos(2212221λπrL A A A A −++ 3分36. (本题 4分)(5517) 2k π + π /2, k = 0,±1,±2,… 2分2k π +3 π /2,k = 0,±1,±2,… 2分37. (本题 3分)(3595) λ213分38. (本题 4分)(3154) t A y ωcos 21−= 或 )cos(21π±=t A y ω 2分 t A ωsin 2=v 2分)(2cos λxT t A −π 3分 A 2分40. (本题 3分)(3462) 3 m 3分三 计算题 (共74分)41. (本题10分)(3022) 解:由旋转矢量图和 |v A | = |v B | 可知 T /2 = 4秒,∴ T = 8 s , ν = (1/8) s -1,ω = 2πν = (π /4) s -13分(1) 以AB 的中点为坐标原点,x 轴指向右方. t = 0时, 5−=x cm φcos A = t = 2 s 时, 5=x cm φφωsin )2cos(A A −=+=由上二式解得 tg φ = 1因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分 25cos /==φx A cm 1分∴ 振动方程 434cos(10252π−π×=−t x (SI) 1分(2) 速率 )434sin(41025d d 2π−π×π−==−t t x v (SI) 2分当t = 0 时,质点在A 点221093.3)43sin(10425d d −−×=π−×π−==t x v m/s 1分42. (本题 5分)(3045) 解:旋转矢量如图所示. 图3分由振动方程可得π21=ω,π=∆31φ 1分 667.0/=∆=∆ωφt s 1分-43. (本题 5分)(3085) 解:反射波在x 点引起的振动相位为π+π−−+π−=+21)55(4x t t φω π−π+π+=10214x t 3分反射波表达式为)10214cos(01.0π−π+π+=x t y (SI) 2分或)214cos(01.0π+π+=x t y (SI)解:(1) 振动方程 }]/)([2cos{φλν+−−π=L t A y P ])/(2cos[φλν++π=L t A 2分 (2) 速度表达式 ])/(2sin[2φλνπν++π−=L t A P v 2分加速度表达式 ])/(2cos[422φλνν++ππ−=L t A a P 1分45. (本题 5分)(3332) 解:(1) 2m )250/500(/===νλu m 波的表达式]/2)1(21500cos[03.0),(λπ−−π−π=x t t x y ]2/2)1(21500cos[03.0π−−π−π=x t )21500cos(03.0x t π−π+π= (SI) 3分(2) t = 0时刻的波形曲线x x x y π=π−π=sin 03.0)21cos(03.0)0,( (SI) 2分46. (本题 8分)(5516) 解:设x = 0处质点振动的表达式为 )cos(0φω+=t A y ,已知 t = 0 时,y 0 = 0,且 v 0 > 0 ∴π−=21φ∴ )2cos(0φν+π=t A y )21100cos(1022π−π×=−t (SI) 2分由波的传播概念,可得该平面简谐波的表达式为)/22cos(0u x t A y νφνπ−+π=)2121100cos(1022x t π−π−π×=− (SI) 2分x = 4 m 处的质点在t 时刻的位移)21100cos(1022π−π×=−t y (SI) 1分该质点在t = 2 s 时的振动速度为 )21200sin(1001022π−π××−=−πv 2分= 6.28 m/s 1分47. (本题 8分)(3078) 解:(1) 设x = 0 处质点的振动方程为 )2cos(φν+π=t A y 由图可知,t = t '时 0)2cos(=+′π=φνt A y 1分 0)2sin(2d /d <+′ππ−=φννt A t y 1分所以 2/2π=+′πφνt , t ′π−π=νφ2212分x = 0处的振动方程为 ]21)(2cos[π+′−π=t t A y ν 1分(2) 该波的表达式为 ]21)/(2cos[π+−′−π=u x t t A y ν 3分解:(1) 振动方程 )22cos(06.00π+π=ty )cos(06.0π+π=t (SI) 3分 (2) 波动表达式 ])/(cos[06.0π+−π=u x t y 3分])21(cos[06.0π+−π=x t (SI)(3) 波长 4==uT λ m 2分49. (本题10分)(3146) 解:(1)波的周期T = λ / u =( 40/20) s= 2 s . 2分P 处Q 处质点振动周期与波的周期相等,故P 处质点的振动曲线如图(a) 振动方程为: 2分 )21cos(20.0π−π=t y P (SI) 2分(2) Q 处质点的振动曲线如图(b),振动 2分方程为 )cos(20.0π+π=t y Q (SI)或 )cos(20.0π−π=t y Q (SI) 2分-50. (本题 5分)(3437) 解:第一列波在P 点引起的振动的振动方程是:)212cos(10331π−π×=−t y , (SI) 2分第二列波在P 点引起的振动的振动方程是:)212cos(10332π−π×=−t y , (SI) 2分P 点的合振动的振动方程是:)212cos(106321π−π×=+=−t y y y , (SI) 1分51. (本题 5分)(3336) 解:(1) )]8(2cos[1λλπ−π−π=t A y )cos(π−π=t A 2分)]3(2cos[2λλπ−π=t A y )cos(t A π= 2分(2) )cos()cos(21t A t A y y y π+π−π=+= 0)cos(cos =π+π−=t A t A 1分。