初中数学整式测试题
- 格式:pdf
- 大小:573.05 KB
- 文档页数:4
初中整式练习题及答案作为初中数学的一部分,整式是一个基础且重要的概念。
掌握整式的运算规则和解题技巧,对学生的数学学习能力和解决问题的能力都是非常有帮助的。
在这篇文章中,我们将介绍一些常见的初中整式练习题,并附上它们的答案,希望能够帮助同学们更好地掌握整式的知识。
【题目一】简化下列各式:1. 2x + 3y - x + y答案:x + 4y2. 5a + 7b - (2a - 4b)答案:3a + 11b3. (2x + 3y) - (x - y)答案:x + 4y【题目二】展开下列各式:1. (x + 3)(2x - 5)答案:2x^2 - 5x + 6x - 15 = 2x^2 + x - 152. (2a - b)^2答案:(2a - b)(2a - b) = 4a^2 - 2ab - 2ab + b^2 = 4a^2 - 4ab + b^23. (3x - 2y)(3x + 2y)答案:9x^2 - 4y^2【题目三】对下列各式进行合并同类项:1. 4x + 2y - 3x + y答案:x + 3y2. 5a^2b - 3ab + 2a^2b + ab答案:7a^2b - 2ab【题目四】对下列各式进行分解因式:1. x^2 + 2xy + y^2答案:(x + y)(x + y) = (x + y)^22. 4m^2 - 9n^2答案:(2m + 3n)(2m - 3n)【题目五】计算下列各式的值:1. 3(x - 2) + 2(3x + 1) - 4x答案:3x - 6 + 6x + 2 - 4x = 5x - 42. 2(3a - 4) - 3(2a + 1) + 5a答案:6a - 8 - 6a - 3 + 5a = 5a - 11【题目六】求解下列等式:1. 2x + 3 = 9答案:2x + 3 - 3 = 9 - 3,得到2x = 6,再除以2,得到x = 32. 5(2a - 1) = 13答案:10a - 5 = 13,再加上5,得到10a = 18,再除以10,得到a = 1.8通过解答这些练习题,我们可以发现整式的运算和变形是非常有规律和逻辑性的。
初一数学整式试题1.丽丽在洗手后,没有把水龙头拧紧,该水龙头每秒会滴下2滴水,每滴水约0.05毫升,设t小时内该水龙头共滴了m毫升水,请你写出该水龙头流失的水量m与时间t的关系式:。
【答案】m=360t.(x≥0)【解析】根据m毫升=时间×每秒钟的滴水量进行解答.试题解析:∵水龙头每秒钟会滴下2滴水,每滴水约0.05毫升,∴离开t小时滴的水为3600×2×0.05t,∴m=360t.(x≥0)【考点】函数关系式.2.若x+2y=1, 则.【答案】1.【解析】∵若x+2y=1,∴.【考点】1.求代数式的值;2.整体思想的应用.3.已知m+n=2,mn=-2,则(1-m)(1-n)的值为()A.-3B.-4C.3D.4【答案】A.【解析】∵m+n=2,mn=-2,∴(1-m)(1-n)=1-n-m+mn=1-(m+n)+mn=1-2-2=-3故选A.【考点】代数式求值.4.先化简,再求值:(2x+1)(x-2)-(2-x)2, 其中x=-2.【答案】-4.【解析】先化简原式,利用整式的乘法和加法,再代入x=-2求值即可.原式=2x2-3x-2-4+4x-x2=x2+x-6当x=-2时,原式=(-2)2+(-2)-6=-4.【考点】整式的混合运算—化简求值.5.洗衣机原价a元/台,在第一次降价10%的基础上,再次降价10%,则洗衣机现价为()A.0.81a元/台B.0.80a元/台C.0.90a元/台D.0.99a元/台【答案】A.【解析】这种洗衣机现价:a×(1-10%)×(1-10%),=a×0.9×0.9,=0.81a.故选A.考点:列代数式.6.若,,则的值为_____________。
【解析】因为=,由,,得=7,所以=【考点】幂的运算点评:本题考查幂的运算,熟悉幂的运算性质,利用幂的运算性质来进行计算,此类题难度都不大7.分解因式:(1)(a-b)m2+(b-a)n2; (2)4xy2-4x2y-y3.【答案】(1)(a-b)(m+n)(m-n) (2)-y(2x-y)2【解析】(a-b)m2+(b-a)n2=(a-b)(m2- n2)= (a-b)(m+n)(m-n)(2)4xy2-4x2y-y3=y(4xy-4 x2-y2)=-y(2x-y)2【考点】分解因式点评:本题难度较低,主要考查学生对分解因式知识点的掌握。
初中数学整式知识经典题型一、选择题1.下列各式哪一个表示的是x的2倍与y的平方的差( )A.2(x-y)2B.(2x-y)2C.(x-2y)2D.2x-y22.单项式2x2y5c3的次数是( )A. 8B. 10C. 9D. 123.下列说法正确的是( )A.多项式x4+y2的次数是6B.单项式π的次数是1C.-x/3不是整式D.单项式与单项式相乘的积一定是单项式4.如果3a2n b6与-4a44b2m是同类项则mn的值为()A.4B.5C.6D.75.已知6x m y n-4x3y n=2x3y2,则mn的值时多少()A.4B.8C.6D.26.下面计算结果正确的是()A.x3+x5=x8B.(-x3)6=x9 c.x4×x4=4x4 D.2x5×4x3=8x87.x3×(-x)4的值为()A.x7B.-x7C.x12D.x7或-x78.下列各式能用平方差公式的是( )(1).(x+2y)(-2y+x) (2)(-x+2y)(x-2y) (3)(-x-2y)(x-2y) (4)(x+2y)(2y-x)A.(1),(2)B.(1),(2),(3)C.(2),(4)D.(1),(3),(4)9.式子4x2+ax+9适用于完全平方公式,那么a的值为( )A.12B.-12C. 36D.±12第7页10.下列计算结果正确的是( )A.(-x)6÷(-x)3=-x3B.(-x)4÷(-x)2=-x2C.(2+x)2的值一定大于0D.x6÷x2=x311.如果x+y=6,xy=8,那么(x-2)(y-2)的值为()A.0B.6C.8D.412.下列用提取公因式进行因式分解中,正确的是( )A.4(a-3)+a(a-3)=(a-3)(a-4)B.3xy2+4x2y2=xy(3y+4xy)C.2x n+2+6x n=2x n(x2+3)D.3x(x-y)2+3xy(x-y)=3x(x-y)13.如果(a+1)0=1那么( )A.a≥-1B.a≤-1C.a≠1D.a≠-114.如果(x-y)3a-2能够被(x-y)a+4整除,那么a的值为( )A.任何有理数B.3C.大于3的整数D.大于或等于3的整数15.下列各式属于因式分解的是()A.a2+2ab+b2+1=(a+b)2+1B.xy+xy2+x2y+2=xy(1+x+y)+2C.2x+4y+6=2(x+2y+3)D.5a2-4b2=a2+4(a+b)(a-b)二、填空题1.已知x a=8,x b=6,则x a-b=2.如果x-y=3,xy=-2,则(3x-2y-2xy)-(2x-y+4xy)的值为3.计算(2x3y2)3÷3x4y5=4.如下图所示:则︱2a+b︱-︱2a-b︱=b0a5.已知(x+y)2=16,xy=4,求x2+y2=6.计算(2a2-3b+1)(3a-4b2+2)=7.把3x2y-5xy2+2(x2y+4xy2-1)化成最简形式8.如果2x=a,2y=b,则2x+y=9.如果4x5a y2b与-7x5y6是同类项,则a+b=10.已知a,b互为相反数,求(a3)3+(b3)3+6=11.计算(2ab2c)2×(-ac3b)=三、解答题1.已知(a+b)=6,(a-b)=4,求ab的值2.用简便方法计算1012-9923.把下列各式进行因式分解(1) 2xy-2x-y+1 (2) 3x2-3y2-x-y(3) 2x2+4xy+2y2-1 (4) x2+2xy+y2+x+y-2(5)-2x2+4xy-2y2 (6)x2-4y-4xy-1(7)4x5-4xy2(8)x2+5x+44.若︱2x+4︱+2y2-4y+2=0,求x+y的值5.已知x-y=3,xy=-4,求(4x-2y+5xy)-(3x-y-6xy)的值6.已知a+b=6且ab为正整数,(x a)b=-(y a)b,2x+y=3,求x,y,a,b的值7.计算:(1)(8a5b2c+5a3b4c2-4a2b3c3)÷(-2a2bc) (2)(-2a2bc+3ab2c2-3a3bc2)×(ab2-b2c)8.先化简,再求值,(2a-b)(a+b)-(4ab2+4a2b-3ab)÷ab,其中a=2,b=19.如果x2-6x+y2+4y+13=0,求x,y的值初中数学 整式知识经典题型答案一.选择题:1.D2.B3.D4.C5.C6.D7.A8.D9.D 10.A 11.A 12.C 13.D14.C 15.C二、填空题: 1.34 2. 15 3.38x 5y 4.2b 5. 8 6.6a 3-8a 2b 2+4a 2-9ab+12b 3-6b+3a-4b 2+37.5x 2y+3xy 2-2 8.ab 9. 4 10. 6 11.-4a 3b 5c 5三、解答题1.解:(1)∵(a+b)=6,∴(a+b)2=36,即a 2+b 2+2ab=362.解:原式可变为(100+1)2-(100-1)2(2)∵(a-b)=4,∴(a-b)2=16,即a 2+b 2-2ab=16 =1002+200+1-(1002-200+1)由(1)-(2)得4ab=20, =1002+200+1-1002+200-1∴ab=5 =4003.把下列各式进行因式分解(1) 解:原式=2x(y-1)-(y-1) (2) 解:原式=3(x 2-y 2)-(x+y) =(2x-1)(y-1)=3(x+y)(x-y)-(x+y)=3(x+y)(x-y-1)(3)解:原式=2(x+y )2-1=x 2-1+y 2-1+xy+x+xy+y=2(x+y+1)(x+y-1)(4)原式=(x+1)(x-1)+(y+1)(y-1)+x(y+1)+y(x+1)=(x+1)(x+y-1)+(y+1)(x+y-1)=(x+y-1)(x+y+2)(5)解:原式=-2(x 2-2xy+y 2) (6)解:原式=(x 2-1)-4y(x+1) =-2(x-y)2 =(x+1)(x-1)-4y(x+1)=(x+1)(x-4y-1)(7)解:原式=4x(x 4-y 2) (8)解:原式=(x+1)(x+4) =4x(x 2+y)(x 2-y)4.解:原式可变为:︱2x+4︱+2(y-1)2=05.解:(4x-2y+5xy )-(3x-y-6xy ) 由上式可知:2x+4=0,x=-2 =4x-2y+5xy-3x+y+6xy y-1=0,y=1 =x-y+11xy∴x+y=-1 把x-y=3,xy=-4,代入上式 则所求的值为-416.解:由(x a )b =-(y a )b ,2x+y=3可知x 与y 互为相反数,再由2x+y=3可解得只有x=3,y=-3符号题意∵x=3 ∴(x a )b =-(y a )b >0又∵y=-3 ∴a 和b 的值只能为奇数又∵a+b=6且ab 为正整数, ∴当a=3,b=3或a=1,b=5时,才有(x a )b =-(y a )b ∴x=3,y=-3,a=3,b=3 或x=3,y=-3,a=1,b=57.计算:-4a 3b-25ab 3c+2b 2c 2 (2)-2a 3b 3c+2a 2b 3c 2+3a 2b 4c 2-3ab 4c 3-3a 4b 3c 2+3a 3b 3c 38. 09.解x 2-6x+y 2+4y+13=x 2-6x+9+ y 2+4y+4=(x-3)2+(y+2)2∵x2-6x+y2+4y+13=0 ∴(x-3)2+(y+2)2=0 ∴(x-3)2=0,(y+2)2∴x=3,y=-2。
第一篇 数与式 专题02 整式的运算☞解读考点知 识 点名师点晴整式的有关概念单项式知道单项式、单项式的系数、次数多项式 知道多项式、多项式的项、多项式的次数、常数项.同类项能够分清哪些项是同类项.整式的运算1.幂的运算能运用幂的运算法则进行同底数幂的乘法、除法、幂的乘方、积的乘方运算2.整式的加、减、乘、除法运算法则能按照运算法则进行整式的加、减、乘、除法运算以及整式的混合运算3.乘法公式能熟练运用乘法公式☞2年中考【2017年题组】一、选择题1.(2017云南省)下列计算正确的是( )A .2a ×3a =5aB .33(2)6a a -=- C .6a ÷2a =3a D .326()a a -= 【答案】D . 【解析】 试题分析:A .原式=26a ,故A 错误; B .原式=38a -,故B 错误; C .原式=3,故C 错误; D .326()a a -=,正确; 故选D .考点:整式的混合运算.2.(2017内蒙古呼和浩特市)下列运算正确的是( )A .222222(2)2()3a b a b a b +--+=+ B .212111a aa a a +--=-- C .32()(1)mm m m a a a -÷=- D .2651(21)(31)x x x x --=--【答案】C . 【解析】考点:1.分式的加减法;2.整式的混合运算;3.因式分解﹣十字相乘法等.3.(2017吉林省长春市)如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .3a +2bB .3a +4bC .6a +2bD .6a +4b 【答案】A .点睛:考查了列代数式,关键是得到这块矩形较长的长与两个正方形边长的关系. 考点:完全平方公式的几何背景. 4.(2017四川省乐山市)已知31=+x x ,则下列三个等式:①7122=+xx ,②51=-x x ,③2622-=-x x 中,正确的个数有( )A .0个B .1个C .2个D .3个 【答案】C . 【解析】 试题分析:∵31=+x x ,∴21()9x x +=,整理得:7122=+xx ,故①正确. 211()4x x x x-=±+- =±5,故②错误. 方程2622-=-x x 两边同时除以2x 得:13x x -=-,整理得:31=+xx ,故③正确. 故选C .考点:1.完全平方公式;2.分式的混合运算.学科~网 5.(2017四川省眉山市)下列运算结果正确的是( )A .8182-=-B .2(0.1)0.01--=C .222()2a b a b a b÷=D .326()m m m -=- 【答案】A . 【解析】试题分析:A .81822322-=-=-,正确,符合题意; B .21(0.1)0.01--==100,故此选项错误; C .232232428()2a b a a a b a b b b÷=⨯=,故此选项错误; D .325()m m m -=-,故此选项错误; 故选A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.6.(2017宁夏)如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )A .()2222a b a ab b -=-+ B .()2a ab a ab -=-C .()222a b a b -=- D .()()22a b a b a b -=+-【答案】D .点睛:本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键. 考点:平方差公式的几何背景.7.(2017山东省淄博市)若a +b =3,227a b +=,则ab 等于( ) A .2 B .1 C .﹣2 D .﹣1 【答案】B . 【解析】试题分析:∵a +b =3,∴2()9a b +=,∴2229a ab b ++=,∵227a b +=,∴7+2ab =9,∴ab =1.故选B .考点:1.完全平方公式;2.整体代入.8.(2017南京)计算()3624101010⨯÷的结果是( )A . 310B . 710C . 810D .910 【答案】C . 【解析】试题分析:原式=664101010⨯÷=810.故选C .考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方.9.(2017上海市)计算:22a a ⋅=. 【答案】32a .考点:单项式乘单项式. 二、填空题10.(2017内蒙古通辽市)若关于x 的二次三项式412++ax x 是完全平方式,则a 的值是 . 【答案】±1. 【解析】试题分析:中间一项为加上或减去x 和12积的2倍,故a =±1,解得a =±1,故答案为:±1. 点睛:本题考查了完全平方式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.关键是注意积的2倍的符号,避免漏解. 考点:1.完全平方式;2.分类讨论.11.(2017广东省深圳市)阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知i 2=﹣1,那么(1+i )•(1﹣i )= . 【答案】2. 【解析】试题分析:由题意可知:原式=1﹣i 2=1﹣(﹣1)=2.故答案为:2. 考点:1.平方差公式;2.实数的运算;3.新定义.12.(2017江苏省徐州市)已知a +b =10,a ﹣b =8,则22a b -= . 【答案】80. 【解析】试题分析:∵(a +b )(a ﹣b )=22a b -,∴22a b -=10×8=80,故答案为:80. 考点:平方差公式.13.(2017江苏省泰州市)已知2m ﹣3n =﹣4,则代数式m (n ﹣4)﹣n (m ﹣6)的值为 . 【答案】8.考点:整式的混合运算—化简求值.14.(2017湖北省孝感市)如图所示,图1是一个边长为a 的正方形剪去一个边长为1的小正方形,图2是一个边长为(a ﹣1)的正方形,记图1,图2中阴影部分的面积分别为S 1,S 2,则12S S 可化简为 .【答案】11a a +-. 【解析】试题分析:12S S =221(1)a a --=2(1)(1)(1)a a a +--=11a a +-,故答案为:11a a +-.点睛:此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积. 考点:平方差公式的几何背景.学科!网15.(2017贵州省六盘水市)计算:2017×1983= . 【答案】3999711. 【解析】试题分析:原式=(2000+17)(2000﹣17)=20002﹣172=4000000﹣289=3999711.故答案为:3999711. 考点:平方差公式.16.(2017贵州省黔南州)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a +b )5= . 【答案】1a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+1b 5. 【解析】点睛:本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.考点:1.完全平方公式;2.规律型. 三、解答题17.(2017吉林省长春市)先化简,再求值:()223(21)21a a a a ++-+,其中a =2.【答案】32342a a a +--,36. 【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值.试题解析:原式=32363242a a a a ++---=32342a a a +--,当a =2时,原式=24+16﹣2﹣2=36. 考点:1.整式的混合运算—化简求值;2.整式.学科#网18.(2017湖北省荆门市)先化简,再求值: ()()()2212132x x x +--+-,其中2x =【答案】225x + ,9. 【解析】试题分析:原式利用完全平方公式,多项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=224412462x x x x ++--+-=225x + 当2x ==4+5=9.考点:整式的混合运算—化简求值.19.(2017贵州省贵阳市)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题. 解:()()2212x x y x x +-++222212x xy x x x =+-+++ 第一步241xy x =++ 第二步(1)小颖的化简过程从第 步开始出现错误; (2)对此整式进行化简.【答案】(1)一;(2)2xy ﹣1. 【解析】考点:1.单项式乘多项式;2.完全平方公式.20.(2017河北省)发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍. (2)()()()()()2222222211251052n n n n n n n -+-+++++=+=+. ∵n 为整数,∴这个和是5的倍数. 延伸 余数是2.理由:设中间的整数为n ,()()22221132n n n n -+++=+被3除余2.点睛:本题考查了因式分解的应用,完全平方公式,整式的加减运算,解题的关键是掌握合并同类项的法则并且能够正确运算.考点:1.因式分解的应用;2.完全平方公式;3.整式的加减.【2016年题组】一、选择题1.(2016吉林省)计算32()a -结果正确的是( )A .5a B .﹣5a C .﹣6a D .6a【答案】D . 【解析】考点:幂的乘方与积的乘方.2.(2016内蒙古呼伦贝尔市)化简32()()x x --,结果正确的是( ) A .6x - B .6x C .5x D .5x - 【答案】D . 【解析】试题分析:32()()x x --=5()x -=5x -.故选D .考点:同底数幂的乘法.3.(2016内蒙古包头市)下列计算结果正确的是( )A .233+=B 822=C .236(2)6a a -=-D .22(1)1a a +=+【答案】B . 【解析】试题分析:A .23不是同类二次根式,所以不能合并,所以A 错误; B 822=,所以B 正确; C .236(2)8a a -=-,所以C 错误; D .22(1)21a a a +=++,所以D 错误. 故选B .学科¥网考点:1.二次根式的乘除法;2.幂的乘方与积的乘方;3.完全平方公式. 4.(2016内蒙古呼和浩特市)下列运算正确的是( ) A .235a a a += B .23241(2)()162a a a -÷=- C .1133aa -=D .2222(233)3441a a a a a ÷=-+【答案】D . 【解析】考点:1.整式的除法;2.合并同类项;3.幂的乘方与积的乘方;4.负整数指数幂. 5.(2016云南省昆明市)下列运算正确的是( )A .22(3)9a a -=-B .248a a a ⋅= C 93=± D 382-=-【答案】D . 【解析】试题分析:A .22(3)69a a a -=-+,故错误; B .246a a a ⋅=,故错误; C 93=,故错误; D 382-=-,故正确. 故选D .考点:1.同底数幂的乘法;2.算术平方根;3.立方根;4.完全平方公式. 6.(2016云南省曲靖市)下列运算正确的是( )A .3223=B .632a a a ÷=C .235a a a += D .326(3)9a a =【答案】D . 【解析】考点:1.二次根式的加减法;2.合并同类项;3.幂的乘方与积的乘方;4.同底数幂的除法. 7.(2016内蒙古巴彦淖尔市)下列运算正确的是( )A .2222236x y xy x y -⋅=- B .22(2)(2)4x y x y x y --+=- C .322623x y x y xy ÷= D .32294(4)16x y x y = 【答案】C .【解析】试题分析:2232236x y xy x y -⋅=-,故选项A 错误;.22(2)(2)44x y x y x xy y --+=---,故选项B 错误;.322623x y x y xy ÷=,故选项C 正确;.32264(4)16x y x y =,故选项D 错误;.故选C .考点:整式的混合运算.8.(2016宁夏)下列计算正确的是( )A .a b ab +=B .224()a a -=-C .22(2)4a a -=-D .aa b b ÷=(a ≥0,b >0)【答案】D .【解析】考点:1.二次根式的混合运算;2.幂的乘方与积的乘方;3.完全平方公式.9.(2016安徽)计算102a a ÷(a ≠0)的结果是( )A .5aB .5-aC .8aD .8-a【答案】C .【解析】试题分析:102a a ÷=8a .故选C .考点:1.同底数幂的除法;2.负整数指数幂.学科%网10.(2016四川省乐山市)下列等式一定成立的是( )A .235m n mn +=B .326()=m mC . 236m m m ⋅=D .222()m n m n -=-【答案】B .【解析】试题分析:A .2m +3n 无法计算,故此选项错误;B .326()=m m ,正确;C .235m m m ⋅=,故此选项错误;D .222()2m n m mn n -=-+,故此选项错误.故选B .考点:1.合并同类项;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.完全平方公式.11.(2016四川省凉山州)下列计算正确的是( )A .235a b ab +=B .2363(2)6a b a b -=-C =D .222()a b a b +=+ 【答案】C .【解析】考点:1.二次根式的加减法;2.合并同类项;3.幂的乘方与积的乘方;4.完全平方公式.12.(2016四川省巴中市)下列计算正确的是( )A .2222()a b a b =B .623a a a ÷=C .2224(3)6xy x y =D .725()()m m m -÷-=- 【答案】D .【解析】试题分析:A .积的乘方等于乘方的积,故A 错误;B .同底数幂的除法底数不变指数相减,故B 错误;C .积的乘方等于乘方的积,故C 错误;D .同底数幂的除法底数不变指数相减,故D 正确;故选D .学科…网考点:1.同底数幂的除法;2.幂的乘方与积的乘方.13.(2016四川省广安市)下列运算正确的是( )A .326(2)4a a -=-B 3=±C .236m m m ⋅=D .33323x x x +=【答案】D .【解析】试题分析:A .326(2)4a a -=,故本选项错误;B 3=,故本选项错误;C .235m m m ⋅=,故本选项错误;D .33323x x x +=,故本选项正确.故选D . 考点:1.幂的乘方与积的乘方;2.算术平方根;3.合并同类项;4.同底数幂的乘法.14.(2016四川省甘孜州)下列计算正确的是( )A .431x x -=B .2242x x x +=C .236()x x =D .23622x x x ⋅= 【答案】C .【解析】考点:1.单项式乘单项式;2.合并同类项;3.幂的乘方与积的乘方.15.(2016四川省眉山市)下列等式一定成立的是( )A .2510a a a ⋅=B a b a b +=C .3412()a a -=D 2a a =【答案】C .【解析】试题分析:A .257a a a ⋅=,所以A 错误;B a b +B 错误;C .3412()a a -=,所以C 正确;D 2a a =,所以D 错误.故选C .考点:1.同底数幂的乘法;2.二次根式的加减法;3.幂的乘方与积的乘方;4.二次根式的性质与化简.16.(2016四川省资阳市)下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=- 【答案】C .【解析】考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法;4.因式分解-运用公式法.17.(2016山东省济南市)下列运算正确的是( )A .232a a a +=B .236a a a ⋅=C .326(2)4a a -= D .623a a a ÷= 【答案】C .【解析】试题分析:A .2a 与a 不是同类项,不能合并,故本选项错误;B .235a a a ⋅=,故本选项错误;C .326(2)4a a -=,故本选项正确;D .624a a a ÷=,故本选项错误;故选C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.18.(2016山东省聊城市)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是( )A .7.1×10﹣6B .7.1×10﹣7C .1.4×106D .1.4×107【答案】B .【解析】试题分析:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷1.4×1018≈7.1×10﹣7.故选B .考点:整式的除法.19.(2016山东省青岛市)计算5322a a a -⋅)(的结果为( ) A .652a a - B .6a - C .654a a - D .63a -【答案】D .【解析】考点:1.幂的乘方与积的乘方;2.同底数幂的乘法.20.(2016山西省)下列运算正确的是( )A .239()24-=-B .236(3)9a a =C .3515525--÷= D 85032=- 【答案】D .【解析】试题分析:A .239()24-=,故此选项错误; B .236(3)27a a =,故此选项错误;C .355525--÷=,故此选项错误;D .850225232-=-=-,正确;故选D .学科&网考点:1.幂的乘方与积的乘方;2.有理数的乘方;3.算术平方根;4.负整数指数幂.21.(2016广东省广州市)下列计算正确的是( )A .22x x y y =(0y ≠)B .2122xy xy y÷=(0y ≠) C .235x y xy +=(x ≥0,y ≥0) D .()2326xy x y =【答案】D .【解析】 试题分析:A .22x y无法化简,故此选项错误; B 23122xy xy y÷=,故此选项错误; C .23x y +,无法计算,故此选项错误;D .()2326xy x y =,正确.故选D .考点:1.二次根式的加减法;2.幂的乘方与积的乘方;3.分式的乘除法.22.(2016广西来宾市)计算(2x ﹣1)(1﹣2x )结果正确的是( )A .241x -B .214x -C .2441x x -+-D .2441x x -+【答案】C .【解析】考点:完全平方公式.23.(2016河北省)计算正确的是( )A .0(5)0-=B .235x x x +=x 2+x 3=x 5C .2335()ab a b = D .2122a a a -⋅= 【答案】D .【解析】试题分析:A .0(5)1-=,故错误;B .23x x +,不是同类项不能合并,故错误;C .2336()ab a b =,故错误;D .2122a aa -⋅=,正确. 故选D .考点:1.单项式乘单项式;2.幂的乘方与积的乘方;3.零指数幂;4.负整数指数幂.24.(2016江苏省南京市)下列计算中,结果是6a 的是( )A .24a a +B .23a a ⋅C .122a a ÷D .23()a 【答案】D .【解析】试题分析:∵2a 与4a 不是同类项,不能合并,∴选项A 的结果不是6a ;∵235a a a ⋅=,∴选项B 的结果不是6a ;∵12210a a a ÷=,∴选项C 的结果不是6a ;∵236()a a =,∴选项D 的结果是6a . 故选D .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方;5.推理填空题.25.(2016浙江省杭州市)下列各式变形中,正确的是( )A .236x x x ⋅=B x =C .21()1x x x x -÷=-D .22111()24x x x -+=-+【答案】B .【解析】考点:1.二次根式的性质与化简;2.同底数幂的乘法;3.多项式乘多项式;4.分式的混合运算.26.(2016浙江省杭州市)设a ,b 是实数,定义@的一种运算如下:()()22@a b a b a b =+--,则下列结论: ①若@0a b =,则a =0或b =0;②()@@@a b c a b a c +=+;③不存在实数a ,b ,满足22@5a b a b =+;④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时,@a b 最大.其中正确的是( )A .②③④B .①③④C .①②④D .①②③【答案】C .【解析】试题分析:由分析可得:对于①若()()22@40a b a b a b ab =+--==,则a =0或b =0正确;对于②()()()22@44a b c a b c a b c ab ac +=++---=+而@@44a b a c ab ac +=+.故正确;对于③ 22@5a b a b =+,由()()2222@45a b a b a b ab a b =+--==+,可得由22450a ab b -+=化简:()2220a b b -+=解出存在实数a ,b ,满足22@5a b a b =+;对于④a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时, @a b 最大.正确.故选C .考点:1.完全平方公式;2.新定义.27.(2016湖北省咸宁市)下列运算正确的是( )A 633=B 2(3)3-=-C .22a a a ⋅=D .326(2)4a a =【答案】D .【解析】考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.二次根式的性质与化简.28.(2016湖北省武汉市)运用乘法公式计算2(3)x +的结果是( )A .29x +B .269x x -+C .269x x ++D .239x x ++【答案】C .【解析】试题分析:2(3)x +=269x x ++,故选C .考点:完全平方公式.29.(2016福建省南平市)下列运算正确的是( )A .3x +2y =5xyB .235()m m =C .2(1)(1)1a a a +-=-D .22b b += 【答案】C .【解析】试题分析:A .3x +2y ≠5xy ,此选项错误;B .236()m m =,此选项错误;C .2(1)(1)1a a a +-=-,此选项正确;D .22b b+≠,此选项错误; 故选C .学科&网考点:1.平方差公式;2.合并同类项;3.幂的乘方与积的乘方;4.约分.30.(2016贵州省铜仁市)单项式22r π的系数是( )A .12B .πC .2D .2π【答案】D .【解析】考点:单项式.31.(2016湖南省怀化市)下列计算正确的是( )A .222()x y x y +=+B .222()2x y x xy y -=--C .2(1)(1)1x x x +-=-D .22(1)1x x -=-【答案】C .【解析】试题分析:A .222()2x y x y xy +=++,故此选项错误;B .(222()2x y x xy y -=-+,故此选项错误;C .(2(1)(1)1x x x +-=-,正确;D .22(1)21x x x -=-+,故此选项错误;故选C .考点:1.平方差公式;2.完全平方公式.32.(2016重庆市)计算23()x y 的结果是( )A .63x yB .53x yC .5x yD .23x y【答案】A .【解析】考点:幂的乘方与积的乘方.二、填空题33.(2016上海市)计算:计算:3a a ÷=__________.【答案】2a .【解析】试题分析:3a a ÷=2a .故答案为:2a .考点:同底数幂的除法.34.(2016四川省南充市)如果221()x mx x n ++=+,且m >0,则n 的值是 .【答案】1.【解析】试题分析:∵221(1)x mx x ++=± =2()x n +,∴m =±2,n =±1,∵m >0,∴m =2,∴n =1,故答案为:1. 考点:完全平方式.35.(2016四川省巴中市)若a +b =3,ab =2,则2()a b -= .【答案】1.【解析】试题分析:将a +b =3平方得:222()29a b a b ab +=++=,把ab =2代入得:22a b +=5,则2()a b -=222a ab b -+=5﹣4=1.故答案为:1.考点:完全平方公式.36.(2016四川省广安市)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了()n a b +(n =1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序): 请依据上述规律,写出20162()x x -展开式中含2014x 项的系数是 .【答案】﹣4032.【解析】考点:1.整式的混合运算;2.阅读型;3.规律型.37.(2016四川省雅安市)已知8a b +=,224a b =,则222a b ab +-= . 【答案】28或36.【解析】试题分析:∵224a b =,∴ab =±2.①当a +b =8,ab =2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a +b =8,ab =﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为:28或36.学科*网考点:1.完全平方公式;2.分类讨论.38.(2016江苏省常州市)已知x 、y 满足248xy⋅=,当0≤x ≤1时,y 的取值范围是 . 【答案】1≤y ≤32. 【解析】试题分析:∵248xy⋅=,∴23222x y ⋅=,即2322x y +=,∴x +2y =3,∴y =32x -,∵0≤x ≤1,∴1≤y ≤32. 故答案为:1≤y ≤32. 考点:1.解一元一次不等式组;2.同底数幂的乘法;3.幂的乘方与积的乘方. 39.(2016江苏省淮安市)计算:3a ﹣(2a ﹣b )= . 【答案】a +b . 【解析】试题分析:3a ﹣(2a ﹣b )=3a ﹣2a +b =a +b .故答案为:a +b . 考点:整式的加减.40.(2016河北省)若mn =m +3,则2mn +3m ﹣5mn +10= . 【答案】1. 【解析】考点:整式的加减—化简求值.41.(2016福建省漳州市)一个矩形的面积为a a 22+,若一边长为a ,则另一边长为___________.【答案】a +2. 【解析】试题分析:∵(a a 22+)÷a =a +2,∴另一边长为a +2,故答案为:a +2.考点:整式的除法.42.(2016青海省西宁市)已知250x x +-=,则代数式2(1)(3)(2)(2)x x x x x ---++-的值为 .【答案】2. 【解析】试题分析:原式=2222134x x x x x -+-++-=23x x +-,因为250x x +-=,所以25x x +=,所以原式=5﹣3=2.故答案为:2.考点:1.整式的混合运算—化简求值;2.整体思想. 43.(2016黑龙江省大庆市)若2ma =,8na =,则m na += .【答案】16. 【解析】试题分析:∵2ma =,8na =,∴m n a +=m na a ⋅=16,故答案为:16.考点:同底数幂的乘法. 三、解答题44.(2016山东省济南市)(1)先化简再求值:a (1﹣4a )+(2a +1)(2a ﹣1),其中a =4.(2)解不等式组:217321x x x +≤⎧⎨+≥+⎩①②.【答案】(1)a ﹣1,3;(2)﹣2≤x ≤3. 【解析】 (2)217321x x x +≤⎧⎨+≥+⎩①②,解不等式①得:x ≤3,解不等式②得:x ≥﹣2,∴不等式组的解集为﹣2≤x ≤3.考点:1.整式的混合运算—化简求值;2.解一元一次不等式组.45.(2016山东省济宁市)先化简,再求值:2(2)()a a b a b -++,其中a =﹣1,b. 【答案】222a b +,4. 【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.试题解析:原式=22222a ab a ab b -+++=222a b + 当a =﹣1,b =2时,原式=2+2=4.考点:整式的混合运算—化简求值.学.科.网46.(2016山东省菏泽市)已知4x =3y ,求代数式22(2)()()2x y x y x y y ---+-的值. 【答案】0. 【解析】考点:整式的混合运算—化简求值.47.(2016广东省茂名市)先化简,再求值:2(2)(1)x x x -++,其中x =1. 【答案】221x +,3. 【解析】试题分析:原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=22221x x x x -+++=221x +; 当x =1时,原式=2+1=3.考点:整式的混合运算—化简求值.48.(2016吉林省)先化简,再求值:(x +2)(x ﹣2)+x (4﹣x ),其中x =14. 【答案】4x ﹣4,-3. 【解析】试题分析:根据平方差公式和单项式乘以多项式,然后再合并同类项即可对题目中的式子化简,然后将x =14代入化简后的式子,即可求得原式的值. 试题解析:原式=2244x x x -+-=4x ﹣4 当x =14时,原式=1444⨯-=1-4=-3. 考点:整式的混合运算—化简求值.49.(2016吉林省长春市)先化简,再求值:(a +2)(a ﹣2)+a (4﹣a ),其中a =14. 【答案】44a -,3-. 【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a =14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a =14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值.50.(2016浙江省宁波市)先化简,再求值:)3()1)(1(x x x x -+-+,其中x =2. 【答案】3x ﹣1,5. 【解析】考点:整式的混合运算—化简求值.51.(2016浙江省温州市)(1)计算:2020(3)(21)+---.(2)化简:(2+m )(2﹣m )+m (m ﹣1). 【答案】(1)258+;(2)4﹣m . 【解析】试题分析:(1)直接利用二次根式的性质结合零指数幂的性质分别分析得出答案; (2)直接利用平方差公式计算,进而去括号得出答案. 试题解析:(1)原式=2591-=58; (2)原式=224m m m -+-=4﹣m .考点:1.实数的运算;2.单项式乘多项式;3.平方差公式;4.零指数幂.52.(2016湖北省襄阳市)先化简,再求值:(2x +1)(2x ﹣1)﹣(x +1)(3x ﹣2),其中x 21.【答案】21x x -+,532-【解析】试题分析:首先利用整式乘法运算法则化简,进而去括号合并同类项,再将已知代入求出答案.试题解析:原式=2241(3322)x x x x --+--=224132x x x ---+=21x x -+把x =21-代入得:原式=2(21)(21)1---+=32222--+=532-.考点:整式的混合运算—化简求值.☞考点归纳归纳 1:整式的有关概念 基础知识归纳:1.整式:单项式与多项式统称整式.(1)单项式:由数与字母的乘积组成的代数式叫做单项式(单独一个数或字母也是单项式).单项式中的数字因数叫做这个单项式的系数;单项式中的所有字母的指数的和叫做这个单项式的次数.(2) 多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中次数最高的项的次数叫做这个多项式的次数.不含字母的项叫做常数项. 2. 同类项:所含字母相同并且相同字母的指数也分别相等的项叫做同类项.基本方法归纳:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同. 注意问题归纳:1、单项式的次数是指单项式中所有字母指数的和,单独一个非0数的次数是0;2、多项式的次数是指次数最高的项的次数.3、同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同.【例1】(2016云南省曲靖市)单项式13m xy -与4n xy 的和是单项式,则m n 的值是( )A .3B .6C .8D .9 【答案】D .【分析】根据已知得出两单项式是同类项,得出m ﹣1=1,n =3,求出m 、n 后代入即可. 【解析】∵13m xy -与4n xy 的和是单项式,∴m ﹣1=1,n =3,∴m =2,∴n m =32=9.故选D .【点评】本题考查了合并同类项和负整数指数幂的应用,关键是求出m 、n 的值.考点:1.合并同类项;2.单项式.归纳 2:幂的运算 基础知识归纳:(1)同底数幂相乘:a m ·a n =a m +n (m ,n 都是整数,a ≠0) (2)幂的乘方:(a m )n =a mn (m ,n 都是整数,a ≠0) (3)积的乘方:(ab )n =a n ·b n (n 是整数,a ≠0,b ≠0) (4)同底数幂相除:a m ÷a n =a m -n (m ,n 都是整数,a ≠0)注意问题归纳:(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理. 【例2】(2017吉林省)下列计算正确的是( )A .235a a a +=B .236a a a ⋅= C .236()a a = D .22()ab ab =【答案】C .【分析】根据整式的运算法则即可求出答案.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.归纳 3:整式的运算 基础知识归纳:1.整式的加减法:实质上就是合并同类项 1.整式乘法①单项式乘多项式:m (a +b )=ma +mb ; ②多项式乘多项式:(a +b )(c +d )=ac +ad +bc +bd③乘法公式:平方差公式:(a +b )(a -b )=a 2-b 2;完全平方公式:(a ±b )2=a 2±2ab +b 2. 3.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.注意问题归纳:注意整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.【例3】(2017浙江省台州市)下列计算正确的是( )A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+ D .()2222a b a ab b -=-+ 【答案】D .【分析】各项计算得到结果,即可作出判断.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 考点:整式的混合运算.【例4】(2017河南省)先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中21x =+,21y =-.【答案】9xy ,9.【分析】首先化简原式,然后把21x =+,21y =-代入化简后的算式,求出算式的值是多少即可【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值. 考点:整式的混合运算—化简求值.【例5】(2017贵州省黔东南州)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a +b )20的展开式中第三项的系数为( ) A .2017 B .2016 C .191 D .190 【答案】D .【分析】根据图形中的规律即可求出(a +b )20的展开式中第三项的系数; 【解析】找规律发现(a +b )3的第三项系数为3=1+2; (a +b )4的第三项系数为6=1+2+3; (a +b )5的第三项系数为10=1+2+3+4;不难发现(a +b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a +b )20第三项系数为1+2+3+…+20=190.故选D .【点评】此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力. 考点:1.完全平方公式;2.规律型;3.综合题.☞1年模拟一、选择题1.下列运算正确的是( )A .325()x y x y +=+B .34x x x +=C . 236x x x = D .236()x x =【答案】D . 【解析】考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 2.下列计算正确的是( ) A .232358x y xy x y +=B .222()x y x y+=+C .2(2)4x x x -÷=D .1y x x y y x+=-- 【答案】C . 【解析】 试题分析:A .23x y 与5xy 不是同类项,故A 不正确; B .原式=222x xy y ++ ,故B 不正确; C .原式=24x x ÷=4x ,故C 正确; D .原式=1y x x y x y-=---,故D 不正确; 故选C .考点:1.分式的加减法;2.整式的混合运算. 3.下列运算正确的是( )A .235+=B .32361126xy x y ⎛⎫-=- ⎪⎝⎭C .523()()x x x -÷-=D .31864324+-=-【答案】D . 【解析】考点:1.同底数幂的除法;2.算术平方根;3.立方根;4.幂的乘方与积的乘方. 4.下列计算正确的是( )A .235a b ab +=B 366=±C .22122a b ab a ÷= D .()323526ab a b =【答案】C . 【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确;C .22122a b ab a ÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 5.下列运算正确的是( ) A .222()x y x y -=- B 3223=C =D .﹣(﹣a +1)=a +1 【答案】B . 【解析】考点:1.二次根式的加减法;2.实数的性质;3.去括号与添括号;4.完全平方公式. 6.下列运算正确的是( )A .2222a a a =B .224a a a +=C .22(12)124a a a +=++ D .2(1)(1)1a a a -++=- 【答案】D . 【解析】试题分析:A .224a a a =,此选项错误; B .2222a a a +=,此选项错误;C .22(12)144a a a +=++,此选项错误; D .2(1)(1)1a a a -++=-,此选项正确; 故选D .考点:1.平方差公式;2.合并同类项;3.同底数幂的乘法;4.完全平方公式. 7.计算()322323aa a a a -+-÷,结果是( )A .52a a - B .512a a- C .5a D .6a 【答案】D . 【解析】试题分析:原式=655a a a +-=6a .故选D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂. 8.计算6236(2)m m ÷-的结果为( )A .﹣mB .﹣1C .43D .43- 【答案】D . 【解析】考点:1.整式的除法;2.幂的乘方与积的乘方.9.若a ﹣b =2,b ﹣c =﹣3,则a ﹣c 等于( )A .1B .﹣1C .5D .﹣5【答案】B .【解析】试题分析:∵a ﹣b =2,b ﹣c =﹣3,∴a ﹣c =(a ﹣b )+(b ﹣c )=2﹣3=﹣1,故选B .考点:1.整式的加减;2.整体思想.二、填空题10.计算:310(5)ab ab ÷-= .【答案】22b -.【解析】试题分析:原式=22b -,故答案为:22b -.考点:整式的除法.11.213x y 是 次单项式. 【答案】3.【解析】 试题分析:213x y 是3次单项式.故答案为:3. 考点:单项式.12.计算:2(x ﹣y )+3y = .【答案】2x +y .【解析】试题分析:原式=2x ﹣2y +3y =2x +y ,故答案为:2x +y .考点:1.整式的加减;2.整式.13.计算(a ﹣2)(a +2)=.【答案】24a -.【解析】考点:平方差公式.14.如图,从边长为(a +3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是 .【答案】a +6.【解析】试题分析:拼成的长方形的面积=(a +3)2﹣32=(a +3+3)(a +3﹣3)=a (a +6),∵拼成的长方形一边长为a ,∴另一边长是a +6.故答案为:a +6.考点:1.平方差公式的几何背景;2.操作型.15.若代数式225x kx ++是一个完全平方式,则k = .【答案】±10.【解析】试题分析:∵代数式225x kx ++是一个完全平方式,∴k =±10,故答案为:±10.考点:完全平方式.三、解答题 16.(1)计算:321(2)()8sin 453--+. (2)分解因式:22(2)(2)y x x y +-+.【答案】(1)-1;(2)3()()x y x y +- .【解析】试题分析:(1)原式=289222-+-1﹣2=-1; (2)原式=[(2)(2)][(2)(2)]y x x y y x x y ++++-+ =3()()x y x y +-.考点:1.实数的运算;2.完全平方公式;3.平方差公式;4.负整数指数幂;5.特殊角的三角函数值.17.先化简,再求值:(x +2)(x ﹣2)﹣x (x ﹣1),其中x =﹣2.。
初中数学整式试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是单项式?A. 3x^2B. -5C. 7x^3yD. 2x+3y答案:D2. 合并同类项后,下列哪个表达式的结果不是同类项?A. 3x^2 + 2x^2 = 5x^2B. 4xy - 3xy = xyC. 5y^2 + 2x^2 = 7y^2D. 6ab - 3ab = 3ab答案:C3. 计算下列表达式的结果,正确的是:A. (3x - 2) + (x + 4) = 4x + 2B. (5x^2 - 3x) - (2x^2 + x) = 3x^2 - 4xC. (2x^3 - 5x^2 + 3x) + (-x^3 + 4x^2 - 2x) = x^3 - x^2 + xD. (4x^2 - 3x + 2) - (2x^2 - 5x + 3) = 2x^2 + 2x - 1答案:D4. 将下列表达式因式分解,正确的是:A. 2x^2 - 4x = 2x(x - 2)B. x^2 - 4 = (x + 2)(x - 2)C. 3x^2 - 6x + 3 = 3(x^2 - 2x + 1)D. x^2 - 2x - 3 = (x - 3)(x + 1)答案:B5. 下列哪个表达式不是完全平方公式?A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab + b^2答案:C6. 计算下列表达式的值,正确的是:A. (3x + 2)(3x - 2) = 9x^2 - 6x + 4B. (2x + 3)(2x - 3) = 4x^2 - 9C. (x + 4)(x - 4) = x^2 - 16D. (x - 5)(x + 5) = x^2 + 25答案:C7. 计算下列多项式乘以单项式的结果,正确的是:A. 3x^2(2x - 5) = 6x^3 - 15x^2B. 4x(3x^2 + 2x - 1) = 12x^3 + 8x^2 - 4xC. 5y(2y^2 - 3y + 4) = 10y^3 - 15y^2 + 20yD. 2a(a^2 - 3a + 5) = 2a^3 - 6a^2 + 10a答案:D8. 计算下列多项式除以单项式的结果,正确的是:A. (3x^2 - 6x + 9) ÷ 3 = x^2 - 2x + 3B. (4x^3 - 12x^2 + 12x) ÷ 4x = x^2 - 3x + 3C. (2x^3 - 4x^2 + 6x) ÷ 2x = x^2 - 2x + 3D. (5x^4 - 10x^3 + 15x^2) ÷ 5x^2 = x^2 - 2x + 3 答案:B9. 计算下列多项式除以多项式的结果,正确的是:A. (x^3 - 2x^2 + x) ÷ (x - 1) = x^2 - x + 1B. (x^3 - 3x^2 + 3x - 1) ÷ (x - 1) = x。
试卷第1页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………初中数学第二章整式单元测试题试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx题号 一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I 卷的文字说明评卷人 得 分一.选择题(共10小题)1.如果单项式2a n b 2c 是六次单项式,那么n=( ) A .6B .5C .4D .32.有下列说法:(1)单项式x 的系数、次数都是0;(2)多项式﹣3x 2+x ﹣1的系数是﹣3,它是三次二项式;(3)单项式﹣34x 2y 与πr 6都是七次单项式;(4)单项式﹣和﹣πa 2b 的系数分别是﹣4和﹣;(5)是二次单项式;(6)2a +与3π+都是整式,其中正确的说法有( )A .0个B .1个C .3个D .4个 3.下列所列式子错误的是( ) A .x 的3倍与y 的2倍的差:3x ﹣2y B .x 除以2的商与5的和的立方:C .三个数a 、b 、c 的积的10倍再减去10:10abc ﹣10D .x 与y 平方和的倒数:4.某商品的原价为每件x 元,后来店主将每件加价10元,再降价25%,则现在的单价是( )A .(25%x +10)元B .[(1﹣25%)x +10]元C .25%(x +10)元D .(1﹣25%)(x +10)元试卷第2页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………5.若A 是五次多项式,B 也是五次多项式,则A +B 的次数是( ) A .十次B .五次C .不高于五次D .不能确定6.在矩形ABCD 内,将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD ﹣AB=2时,S 2﹣S 1的值为( )A .2aB .2bC .2a ﹣2bD .﹣2b7.若关于x 、y 的多项式2x 2+mx +5y ﹣2nx 2﹣y +5x +7的值与x 的取值无关,则m +n=( )A .﹣4B .﹣5C .﹣6D .68.一组按规律排列的多项式:a +b ,a 2﹣b 3,a 3+b 5,a 4﹣b 7,…,其中第10个式子是( )A .a 10+b 19B .a 10﹣b 19C .a 10﹣b 17D .a 10﹣b 219.若a 2+2ab=﹣10,b 2+2ab=16,则多项式a 2+4ab +b 2与a 2﹣b 2的值分别为( )A .6,26B .﹣6,26C .6,﹣26D .﹣6,﹣2610.甲、乙两个水桶中装有重量相等的水,先把甲桶的水倒三分之一给乙桶,再把乙桶的水倒出四分之一给甲桶(假设不会溢出).最后甲、乙两桶中水的重量的大小是( ) A .甲>乙 B .甲=乙 C .甲<乙D .不能确定,与桶中原有水的重量有关试卷第3页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人 得 分二.填空题(共5小题) 11.代数式﹣+4x ﹣3的二次项系数是12.若单项式2a x +1b 与﹣3a 3b y +4是同类项,则x y = . 13.若单项式与﹣2x b y 3的和仍为单项式,则其和为 .14.若多项式A 满足A +(2a 2﹣b 2)=3a 2﹣2b 2,则A= .15.如图,数轴上点A 、B 、C 所对应的数分别为a 、b 、c ,化简|a |+|c ﹣b |﹣|a +b ﹣c |= .评卷人 得 分三.解答题(共8小题) 16.化简:(1)(2a ﹣b )﹣(2b ﹣3a )﹣2(a ﹣2b )(2)2x 2﹣[7x ﹣(4x ﹣3)﹣x 2]试卷第4页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………17.化简并求值:3(x 2﹣2xy )﹣[(﹣2xy +y 2)+(x 2﹣2y 2)],其中x 、y 的位置如图所示.18.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:﹣(a 2+4ab +4b 2)=a 2﹣4b 2(1)求所捂的多项式(2)当a=﹣2,b=时,求所捂的多项式的值19.已知:多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,求: (1)4A ﹣B ;(2)当x=1,y=﹣2时,4A ﹣B 的值.试卷第5页,总6页20.大刚计算“一个整式A 减去2ab ﹣3bc +4ac”时,误把“减去”算成“加上”,得到的结果是2bc +ac ﹣2ab .请你帮他求出正确答案.21.小明在依次测验中计算一个多项式M 加上5ab ﹣3bc +2ac 时,不小心看成减去:5ab ﹣3bc +2ac ,结果计算出错误答案为2ab +6bc ﹣4ac . (1)求多项式M ;(2)试求出原题目的正确答案.22.某天深圳开往北京(西)的列出上原载客(3a ﹣b )人,当车行驶到南昌时,下去了一半客人,又上来了若干人,此时车上共有客人(8a ﹣5b )人,问上车的乘客是多少人?当a=200,b=60时,上车的乘客是多少人?试卷第6页,总6页23.某个体商贩在一次买卖中同时买进两件上衣,每件都以a 元出售,若按成本计算,一件盈利25%,另一件亏本25%,那么该商贩在这次买卖过程中是赚了还是赔本了?赚或赔多少?初中数学第二章整式单元测试题参考答案与试题解析一.选择题(共10小题)1.如果单项式2a n b 2c是六次单项式,那么n=()A.6 B .5 C.4 D.3【分析】直接利用单项式的次数求法得出n的值.【解答】解:∵单项式2a n b2c是六次单项式,∴n+2+1=6,解得:n=3.故选:D.【点评】此题主要考查了单项式,正确把握单项式次数求法是解题关键.2.有下列说法:(1)单项式x的系数、次数都是0;(2)多项式﹣3x2+x﹣1的系数是﹣3,它是三次二项式;(3)单项式﹣34x2y与πr6都是七次单项式;(4)单项式﹣和﹣πa2b 的系数分别是﹣4和﹣;(5)是二次单项式;(6)2a +与3π+都是整式,其中正确的说法有()A.0个 B.1个 C.3个 D.4个【分析】解决本题关键是搞清整式、单项式、多项式的概念,紧扣概念作出判断.【解答】解:根据单项式和多项式的概念可知,单项式的系数是字母前的数字,次数是字母的指数和;多项式是若干个单项式的和.故(1),(2),(3)(4)(5)(6)都错.其中(2)多项式﹣3x2+x﹣1不能说多项式的系数,它是2次3项式;(3)单项式﹣34x2y是3次单项式πr6是6次单项式;(4)单项式﹣和﹣πa2b的系数分别是﹣和﹣π;(5)是多项式;(6)2a+是整式,3π+是分式.故选:A.1【点评】主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.3.下列所列式子错误的是()A.x的3倍与y的2倍的差:3x﹣2yB.x除以2的商与5的和的立方:C.三个数a、b、c的积的10倍再减去10:10abc﹣10D.x与y平方和的倒数:【分析】根据题意结合选项分别列出代数式,选出错误的选项即可.【解答】解:A、x的3倍与y的2倍的差:3x﹣2y ,该式正确,故本选项错误;B、x除以2的商与5的和的立方:,该式正确,故本选项错误;C、三个数a、b、c的积的10倍再减去10:10abc﹣10,该式正确,故本选项错误;D、x与y平方和的倒数:,原式错误,故本选项正确;故选:D.【点评】本题考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“平方”、“和”等,从而明确其中的运算关系,正确地列出代数式.4.某商品的原价为每件x元,后来店主将每件加价10元,再降价25%,则现在的单价是()A.(25%x+10)元B.[(1﹣25%)x+10]元C.25%(x+10)元D.(1﹣25%)(x+10)元【分析】根据某商品原价每件x元,后来店主将每件增加10元,再降价25%,可以求得表示现在的单价代数式,从而可以解答本题.【解答】解:由题意可得,2现在的单价是:(x+10)(1﹣25%),故选:D.【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.5.若A是五次多项式,B也是五次多项式,则A+B的次数是()A.十次B.五次C.不高于五次D.不能确定【分析】几个多项式相加后所得的多项式可能增加项数,但不会增加次数.【解答】解:A是五次多项式,B也是五次多项式,∵几个多项式相加后所得的多项式可能增加项数,但不会增加次数,故A+B的次数不高于五次.故选:C.【点评】本题考查多项式的知识,难度不大,掌握多项式相加的特点是关键.6.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b【专题】11:计算题.【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.【解答】解:S1=(AB﹣a)•a+(CD﹣b)(AD﹣a)=(AB﹣a)•a+(AB﹣b)(AD﹣a),S2=AB(AD﹣a)+(a﹣b)(AB﹣a),∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣a)﹣(AB﹣a)•a﹣(AB﹣b)(AD ﹣a)=(AD﹣a)(AB﹣AB+b)+(AB﹣a)(a﹣b﹣a)=b•AD﹣ab﹣b•AB+ab=b (AD﹣AB)=2b.故选:B.3【点评】本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.7.若关于x、y的多项式2x2+mx+5y﹣2nx2﹣y+5x+7的值与x的取值无关,则m+n=()A.﹣4 B.﹣5 C.﹣6 D.6【专题】1:常规题型.【分析】首先利用关于x、y的多项式2x2+mx+5y﹣2nx2﹣y+5x+7的值与x的取值无关,得出x的二次项、一次项的系数和为0,进而得出答案.【解答】解:2x2+mx+5y﹣2nx2﹣y+5x+7=(2﹣2n)x2+(m+5)x+4y+7,∵关于x、y的多项式2x2+mx+5y﹣2nx2﹣y+5x+7的值与x的取值无关,∴2﹣2n=0,解得n=1,m+5=0,解得m=﹣5,则m+n=﹣5+1=﹣4.故选:A.【点评】此题主要考查了多项式,正确得出m,n的值是解题关键.8.一组按规律排列的多项式:a+b,a2﹣b3,a3+b5,a4﹣b7,…,其中第10个式子是()A.a10+b19B.a10﹣b19C.a10﹣b17D.a10﹣b21【专题】2A:规律型.【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【解答】解:多项式的第一项依次是a,a2,a3,a4,…,a n,第二项依次是b,﹣b3,b5,﹣b7,…,(﹣1)n+1b2n﹣1,所以第10个式子即当n=10时,代入到得到a n+(﹣1)n+1b2n﹣1=a10﹣b19.故选:B.【点评】本题属于找规律的题目,把多项式分成几个单项式的和,分别找出4各单项式的规律是解决这类问题的关键.9.若a2+2ab=﹣10,b2+2ab=16,则多项式a2+4ab+b2与a2﹣b2的值分别为()A.6,26 B.﹣6,26 C.6,﹣26 D.﹣6,﹣26【分析】将多项式合理变形即可,a2+4ab+b2=(a2+2ab)+(b2+2ab);a2﹣b2=(a2+2ab)﹣(b2+2ab).【解答】解:∵a2+2ab=﹣10,b2+2ab=16,∴a2+4ab+b2=(a2+2ab)+(b2+2ab),=﹣10+16,=6;∴a2﹣b2=(a2+2ab)﹣(b2+2ab),=﹣10﹣16,=﹣26.故选:C.【点评】解答本题的关键是合理的将多项式进行变形,与已知相结合.10.甲、乙两个水桶中装有重量相等的水,先把甲桶的水倒三分之一给乙桶,再把乙桶的水倒出四分之一给甲桶(假设不会溢出).最后甲、乙两桶中水的重量的大小是()A.甲>乙B.甲=乙C.甲<乙D.不能确定,与桶中原有水的重量有关【分析】设甲、乙两个水桶中水的重量是a,甲桶的水倒三分之一给乙桶后乙桶的水=(1+)a,甲桶为(1﹣)a,把乙桶的水倒出四分之一给甲桶时,甲桶有(1﹣)a+(1+)a×,乙桶有水=(1+)a×(1﹣),再比较出其大小即可.【解答】解:设甲、乙两个水桶中水的重量是a,∵甲桶的水倒三分之一给乙桶后乙桶的水=(1+)a,甲桶为(1﹣)a,∴把乙桶的水倒出四分之一给甲桶时,甲桶有(1﹣)a+(1+)a×=a+a=a;乙桶有水=(1+)a×(1﹣)=a,∴甲=乙.故选:B.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.二.填空题(共5小题)11.代数式﹣+4x﹣3的二次项系数是﹣【专题】1:常规题型.【分析】直接利用多项式中各项系数确定方法分析得出答案.【解答】解:代数式﹣+4x﹣3的二次项系数是:﹣.故答案为:﹣.【点评】此题主要考查了多项式,正确把握相关定义是解题关键.12.若单项式2a x+1b与﹣3a3b y+4是同类项,则x y=.【专题】512:整式.【分析】依据同类项的相同字母指数相同列方程求解即可.【解答】解:单项式2a x+1b与﹣3a3b y+4是同类项,∴x+1=3,y+4=1,∴x=2,y=﹣3.∴x y=2﹣3=.故答案为:.【点评】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.若单项式与﹣2x b y3的和仍为单项式,则其和为.【分析】若单项式与﹣2x b y3的和仍为单项式,则它们是同类项.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.根据同类项的定义中相同字母的指数也相同求出a和b的值.【解答】解:若单项式与﹣2x b y3的和仍为单项式,则它们是同类项.由同类项的定义得a=3,b=2,则其和为﹣x2y3.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.14.若多项式A满足A+(2a2﹣b2)=3a2﹣2b2,则A=a2﹣b2.【分析】此题涉及整式的加减运算,解答时只要用和减去加数即可得出A的结果.【解答】解:A=3a2﹣2b2﹣(2a2﹣b2)=3a2﹣2b2﹣2a2+b2=a2﹣b2.【点评】解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.括号前是负号,括号里的各项要变号;合并同类项时,注意是系数相加减,字母与字母的指数不变.15.如图,数轴上点A、B、C所对应的数分别为a、b、c,化简|a|+|c﹣b|﹣|a+b﹣c|=0.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据题意得:a<0<b<c,∴a<0,c﹣b>0,a+b﹣c<0,∴|a|+|c﹣b|﹣|a+b﹣c|=﹣a+(c﹣b)+(a+b﹣c)=﹣a+c﹣b+a+b﹣c=0.故答案为0.【点评】本题考查的是整式的加减及绝对值的性质,熟知整式的加减实质上就是合并同类项是解答此题的关键.三.解答题(共8小题)16.化简:(1)(2a﹣b)﹣(2b﹣3a)﹣2(a﹣2b)(2)2x2﹣[7x﹣(4x﹣3)﹣x2]【专题】1:常规题型.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)原式=2a﹣b﹣2b+3a﹣2a+4b=3a+b(2)原式=2x2﹣[7x﹣4x+3﹣x2]=2x2﹣[3x+3﹣x2]=2x2﹣3x﹣3+x2=3x2﹣3x﹣3【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.17.化简并求值:3(x2﹣2xy)﹣[(﹣2xy+y2)+(x2﹣2y2)],其中x、y的位置如图所示.【专题】1:常规题型.【分析】根据数轴可知x与y的值,然后根据整式的运算法则即可求出答案.【解答】解:由数轴可知:x=2,y=﹣1,原式=3x2﹣6xy﹣(﹣2xy+y2+x2﹣2y2)=3x2﹣6xy+2xy﹣y2﹣x2+2y2=2x2+y2﹣4xy=8+1+8=17【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.18.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂的多项式(2)当a=﹣2,b=时,求所捂的多项式的值【专题】1:常规题型.【分析】(1)根据整式的运算法则即可求出答案.(2)将a与b的值代入(1)的多项式即可求出答案.【解答】解:(1)所捂多项式=(a2+4ab+4b2)+a2﹣4b2=2a2+4ab(2)当a=﹣2,b=时,所捂多项式=2×4+4×(﹣2)×=8+(﹣4)=4【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.已知:多项式A=2x2﹣xy,B=x2+xy﹣6,求:(1)4A﹣B;(2)当x=1,y=﹣2时,4A﹣B的值.【专题】1:常规题型.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)∵多项式A=2x2﹣xy,B=x2+xy﹣6,∴4A﹣B=4(2x2﹣xy)﹣(x2+xy﹣6)=8x2﹣4xy﹣x2﹣xy+6=7x2﹣5xy+6(2)∵由(1)知,4A﹣B=7x2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.大刚计算“一个整式A减去2ab﹣3bc+4ac”时,误把“减去”算成“加上”,得到的结果是2bc+ac﹣2ab.请你帮他求出正确答案.【专题】1:常规题型.【分析】根据整式的运算法则即可求出答案.【解答】解:由题意可知:A+(2ab﹣3bc+4ac)=2bc+ac﹣2ab,A=2bc+ac﹣2ab﹣(2ab﹣3bc+4ac)=2bc+ac﹣2ab﹣2ab+3bc﹣4ac=5bc﹣3ac﹣4ab∴A﹣(2ab﹣3bc+4ac)=5bc﹣3ac﹣4ab﹣2ab+3bc﹣4ac=8bc﹣7ac﹣6ab【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.小明在依次测验中计算一个多项式M加上5ab﹣3bc+2ac时,不小心看成减去:5ab﹣3bc+2ac,结果计算出错误答案为2ab+6bc﹣4ac.(1)求多项式M;(2)试求出原题目的正确答案.【专题】11:计算题;512:整式.【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)列出正确的关系式,去括号合并即可得到结果.【解答】解:(1)依题意得:M﹣(5ab﹣3bc+2ac)=2ab+6bc﹣4ac,∴M=2ab+6bc﹣4ac+(5ab﹣3bc+2ac)=7ab+3bc﹣2ac,∴多项式M为7ab+3bc﹣2ac;(2)M+(5ab﹣3bc+2ac)=(7ab+3bc﹣2ac)+(5ab﹣3bc+2ac)=12ab,∴原题目的正确答案为12ab.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.某天深圳开往北京(西)的列出上原载客(3a﹣b)人,当车行驶到南昌时,下去了一半客人,又上来了若干人,此时车上共有客人(8a﹣5b)人,问上车的乘客是多少人?当a=200,b=60时,上车的乘客是多少人?【专题】11:计算题;512:整式.【分析】根据题意列出关系式,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:根据题意得:(8a﹣5b)﹣(3a﹣b)=8a﹣5b﹣a+b=(a ﹣b)人,当a=200,b=60时,原式=1300﹣270=1030(人).【点评】此题考查了整式的加减,列代数式,以及代数式求值,熟练掌握去括号法则及合并同类项法则是解本题的关键.23.某个体商贩在一次买卖中同时买进两件上衣,每件都以a元出售,若按成本计算,一件盈利25%,另一件亏本25%,那么该商贩在这次买卖过程中是赚了还是赔本了?赚或赔多少?【专题】12:应用题.【分析】此题首先要设出原来各自的成本,再根据题意表示售价,最后比较总售价和总进价,进行判断.【解答】解:设第一件上衣的成本为x元,第二件的成本为y元.则a=x(1+25%);a=y(1﹣25%).∴,.∴,故该商贩在这次买卖中赔了.赔了元.【点评】注意无论是赔,还是赚,其基数都是原来的进价.。
初中数学整式基础50题一、单选题1.下列计算中,结果正确的是()A. 2x2+3x3=5x5B. 2x3•3x2=6x6C. 2x3÷x2=2xD. (2x2)3=2x62.下面的计算中,正确的是()A. b4•b4=2b4B. x3•x3=x6C. (a4)3•a2=a9D. (ab3)2=ab63.计算a2a3的结果是()A. a5B. a6C. 2a5D. 2a64.(m2)3•m4等于()A. m9B. m10C. m12D. m145.已知一个正方形的边长为a,将该正方形的边长增加1,则得到的新正方形的面积为()A. a2+2a+1B. a2-2a+1C. a2+1D. a-16.下列计算正确的是()A. (x﹣y)2=x2﹣y2B. (﹣a2b)3=a6b3C. a10÷a2=a5D. (﹣3)﹣2=7.下面计算结果正确的是(()A. b3•b3=2b3B. x4•x4=x16C. (ab2)3=a3b6D. (﹣2a)2=﹣4a28.下列计算正确的是()A. a3+a2=a5B. a6÷(﹣a3)=﹣a3C. (﹣a2)3=a6D.9.下列运算结果为的是A. B. C. D.10.下列多项式乘法,不能用平方差公式计算的是( )A. (-a-b)(-b+a)B. (xy+z)(xy-z)C. (-2a-b)(2a+b)D. (0.5x-y)(-y-0.5x)二、填空题11.若,则的值为________ ;若,那么________ .12.计算(-3x2y)•( xy2)=________.13.计算:(﹣x2y)3=________14.如果代数式x2+mx+9=(x+b)2,那么m的值为________.15.2x2y3•(﹣7x3y)=________.16.若4x2+2(k-3)x+9是完全平方式,则k=________.17.已知a+2b=0,则式子a3+2ab(a+b)+4b3的值是________.18.(a2)3=________.19.计算:________.20.一个长方形的面积为,长是,则这个长方形的宽是________.三、计算题21.计算或化简:(1);(2).22.计算:(2m3)2+m2·m4-2m8÷m223.计算:24.直接写出下列式子的结果.(1)102019×10(2)(x+1)(x-1)25.(1)先化简,再求值:()÷,其中x=2(2)已知x m=6,x n=3,试求x2m﹣3n的值.26.27.计算题(1)计算:(a-1)²-a(a-1);(2)分解因式:xy²-4x;28.计算:29.化简:(1)(-ab-2a)(-a2b2);(2)(2m-1)(3m-2).30.化简:四、解答题31.计算:a5•(﹣a)3+(﹣2a2)4.32.如图,某市区有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,现准备进行绿化,中间的有一边长为(a+b)米的正方形区域将修建一座雕像,则绿化的面积是多少平方米?并求出当a=5,b=3时的绿化面积.33.已知a,b,c是的三边长,且满足=,=,求的周长.34.若成立,请求出a、b的值.35.若22•16n=(22)9,解关于x的方程nx+4=2.36.下列各式中,哪些是整式,哪些是分式,哪些是有理式?① ;② ;③ ;④ ;⑤ ;⑥ ;⑦ ;⑧ ;⑨ ;⑩ ;⑪ ;⑫ 。
初中数学专题整式练习题(含答案)试题及答案初中数学专题整式练习题(含答案)试题及答案1. 问题描述:计算下列各式的值:(1) 1+2+3+...+99+100;(2) 1+4+7+...+97+100;(3) 1^2+2^2+3^2+...+9^2;(4) 1^3+2^3+3^3+...+10^3。
2. 解答:解答(1):根据等差数列求和公式,即可求得:1+2+3+...+99+100 = (1+100) × 100 ÷ 2 = 5050。
解答(2):观察可知,该等差数列为公差为3的等差数列。
根据等差数列的求和公式,可以将该等差数列分为两个部分求和,即:1+4+7+...+97+100 = [1+(1+3×33)] × 33 ÷ 2 + [4+(4+3×32)] × 33 ÷ 2 = 1717。
解答(3):根据平方和公式,可以得出结论:1^2+2^2+3^2+...+9^2 = 1^2+2^2+3^2+...+n^2 = n(n+1)(2n+1) ÷ 6 = 9(9+1)(2×9+1) ÷ 6 = 285。
解答(4):根据立方和公式,可以得出结论:1^3+2^3+3^3+...+10^3 = 1^3+2^3+3^3+...+n^3 = (n(n+1) ÷ 2)^2 = (10(10+1) ÷ 2)^2 = 3025。
3. 答案:(1) 1+2+3+...+99+100 = 5050;(2) 1+4+7+...+97+100 = 1717;(3) 1^2+2^2+3^2+...+9^2 = 285;(4) 1^3+2^3+3^3+...+10^3 = 3025。
这些都是基础的整式运算题,通过运用相应的公式和规律,可以轻松解答。
在解题过程中,注意运算的顺序和符号的正确应用,以确保得出准确的结果。
初中数学整式练习题及答案初中数学整式练习题及答案从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等,接下来就由店铺带来初中数学整式练习题及答案,希望对你有所帮助!选择题1.已知y2+my+16是完全平方式,则m的值是()A.8 B.4 C.±8 D.±42.下列多项式能用完全平方公式分解因式的是()A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+13.下列各式属于正确分解因式的是()A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)24.把x4-2x2y2+y4分解因式,结果是()A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2答案:1.C 2.D 3.B 4.D填空题(每小题4分,共28分)5.(4分)(1)当x _________ 时,(x﹣4)0=1;(2)(2/3)2002×(1.5)2003÷(﹣1)2004= _________6.(4分)分解因式:a2﹣1+b2﹣2ab= _________ .7.(4分)(2004万州区)如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要_________ .(单位:mm)(用含x、y、z的代数式表示)8.(4分)(2004郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为 _________ .9.(4分)(2002长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的'系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+ _________ a3b+ _________ a2b2+ _________ ab3+b4.10.(4分)(2004荆门)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a)第n年12345…老芽率aa2a3a5a…新芽率0aa2a3a…总芽率a2a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 _________ (精确到0.001).11.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,则a 的值为 _________ .答案:5.考点:零指数幂;有理数的乘方。
送你几道有价值的题初中——整式一、选择题(共24小题)1.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3D.a2•a2•a22.下列运算正确的是()A.(a﹣3)2=a2﹣9B.a2•a4=a8C.=±3D.=﹣23.下列各式计算正确的是()A.(a+b)2=a2+b2B.x2•x3=x6C.x2+x3=x5D.(a3)3=a94.下列运算正确的是()A.(﹣)2=﹣B.(3a2)3=9a6C.5﹣3÷5﹣5=D.5.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+16.下列运算正确的是()A.a2•a3=a6B.(﹣a3)2=﹣a6C.(ab)2=ab2D.2a3÷a=2a27.下列等式错误的是()A.(2mn)2=4m2n2B.(﹣2mn)2=4m2n2C.(2m2n2)3=8m6n6D.(﹣2m2n2)3=﹣8m5n58.已知实数x、y、z满足x2+y2+z2=4,则(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是()A.12B.20C.28D.369.计算1+2+22+23+…+22010的结果是()A.22011﹣1B.22011+1C.D.10.已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac 的值为()A.0B.1C.2D.311.计算多项式10x3+7x2+15x﹣5除以5x2后,得余式为何?()A.B.2x2+15x﹣5C.3x﹣1D.15x﹣512.如图,长方形内的阴影部分是由四个半圆围成的图形,则阴影部分的面积是()A.B.C.D.13.下列计算正确的是()A.(a2b)2=a2b2B.a6÷a2=a3C.(3xy2)2=6x2y4D.(﹣m)7÷(﹣m)2=﹣m514.下列计算正确的是()A.4x﹣3x=1B.x2+x2=2x4C.(x2)3=x6D.2x2•x3=2x615.计算正确的是()A.(﹣5)0=0B.x2+x3=x5C.(ab2)3=a2b5D.2a2•a﹣1=2a16.下列运算正确的是()A.a2+a3=a5B.(﹣2a2)3÷()2=﹣16a4C.3a﹣1=D.(2a2﹣a)2÷3a2=4a2﹣4a+117.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×10718.计算(2x+1)(x﹣1)﹣(x2+x﹣2)的结果,与下列哪一个式子相同?()A.x2﹣2x+1B.x2﹣2x﹣3C.x2+x﹣3D.x2﹣319.对于下列四个式子:①0.1;②;③;④.其中不是整式的是()A.①B.②C.③D.④20.在六个代数式中,是单项式的个数()A.2个B.3个C.4个D.5个21.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),则b﹣a的值为()A.5B.6C.7D.822.设A,B,C均为多项式,小方同学在计算“A﹣B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x﹣1,C=x2+2x,那么A﹣B=()A.x2﹣2xB.x2+2xC.﹣2D.﹣2x23.多项式2x2+3x﹣2与下列一个多项式的和是一个一次二项式,则这个多项式可以是()A.﹣2x2﹣3x+2B.﹣x2﹣3x+1C.﹣x2﹣2x+2D.﹣2x2﹣2x+124.下列各式中计算正确的是()A.x2•x4=x6B.2m﹣(n+1)=2m﹣n+1C.x5+2x5=3x10D.(2a)3=2a3二、填空题(共16小题)25.如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,设△AFC的面积S为.26.观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2013个单项式是.27.若,则=.28.计算(1﹣)()﹣(1﹣﹣)()的结果是.29.如图两幅图中,阴影部分的面积相等,则该图可验证的一个初中数学公式为.30.一组数据为:x,﹣2x2,4x3,﹣8x4,…观察其规律,推断第n个数据应为.31.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.32.已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为.33.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是.34.用整式的乘法公式计算:20002﹣2001×1999=.35.如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为,则方格纸的面积为.36.观察下列关于x的单项式,探究其规律x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2016个单项式是.37.若(x+a)(x﹣2)的结果中不含关于字母x的一次项,则a=.38.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为.39.如果二次三项式x2﹣2(m+1)x+16是一个完全平方式,那么m的值是.40.若多项式4x4+1加上一个含字母的单项式,就能变形为一个含x的多项式的平方,则这样的单项式为.一、选择题(共24小题)1.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3D.a2•a2•a2【剖析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解析】∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【考点】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.2.下列运算正确的是()A.(a﹣3)2=a2﹣9B.a2•a4=a8C.=±3D.=﹣2【剖析】利用同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式分别计算后即可确定正确的选项.D、=﹣2,故正确,故选D.【考点】本题考查了同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式,属于基础知识,比较简单.3.下列各式计算正确的是()A.(a+b)2=a2+b2B.x2•x3=x6C.x2+x3=x5D.(a3)3=a9【剖析】根据完全平方公式判断A;根据同底数幂的乘法法则判断B;根据合并同类项的法则判断C;根据幂的乘方法则判断D.【解析】A、(a+b)2=a2+2ab+b2,故本选项错误;B、x2•x3=x5,故本选项错误;C、x2与x3不是同类项,不能合并,故本选项错误;D、(x3)3=x9,故本选项正确;故选D.【考点】本题考查完全平方公式、同底数幂的乘法、合并同类项、幂的乘方,熟练掌握运算性质和法则是解题的关键.4.下列运算正确的是()A.(﹣)2=﹣B.(3a2)3=9a6C.5﹣3÷5﹣5=【剖析】分别利用积的乘方运算法则以及二次根式的加减运算法则、同底数幂的除法运算法则分别化简求出答案.【解析】A、(﹣)2=,故此选项错误;B、(3a2)3=27a6,故此选项错误;C、5﹣3÷5﹣5=25,故此选项错误;D、﹣=2﹣5=﹣3,正确;故选:D.【考点】此题主要考查了积的乘方运算以及二次根式的加减运算、同底数幂的除法运算等知识,正确掌握相关运算法则是解题关键.5.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【剖析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解析】A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.【考点】此题主要考查了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键.6.下列运算正确的是()A.a2•a3=a6B.(﹣a3)2=﹣a6C.(ab)2=ab2D.2a3÷a=2a2【剖析】分别利用同底数幂的乘除运算法则以及积的乘方运算法则和幂的乘方运算法则分别化简求出答案.【解析】A、a2•a3=a5,故此选项错误;B、(﹣a3)2=a6,故此选项错误;C、(ab)2=a2b2,故此选项错误;D、2a3÷a=2a2,正确.故选:D.【考点】此题主要考查了同底数幂的乘除运算以及积的乘方运算和幂的乘方运算等知识,正确应用相关运算法则是解题关键.7.下列等式错误的是()A.(2mn)2=4m2n2B.(﹣2mn)2=4m2n2C.(2m2n2)3=8m6n6D.(﹣2m2n2)3=﹣8m5n5【剖析】根据幂的乘方和积的乘方分别求出每个式子的值,再判断即可.【解析】A、结果是4m2n2,故本选项错误;B、结果是4m2n2,故本选项错误;C、结果是8m6n6,故本选项错误;B、结果是﹣8m6n6,故本选项正确;故选D.【考点】本题考查了幂的乘方和积的乘方的应用,能熟记法则的内容是解此题的关键.8.已知实数x、y、z满足x2+y2+z2=4,则(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是()A.12B.20C.28D.36【剖析】由题意实数x、y、z满足x2+y2+z2=4,可以将(2x﹣y)2+(2y﹣z)2+(2z﹣x)2,用x2+y2+z2和(xy+yz+xz)表示出来,然后根据完全平方式的基本性质进行求解.【解析】∵实数x、y、z满足x2+y2+z2=4,∴(2x﹣y)2+(2y﹣z)2+(2z﹣x)2=5(x2+y2+z2)﹣4(xy+yz+xz)=20﹣2[(x+y+z)2﹣(x2+y2+z2)]=28﹣2(x+y+z)2≤28∴当x+y+z=0时(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是28.故选C.【考点】此题主要考查完全平方式的性质及代数式的求值,要学会拼凑多项式.9.计算1+2+22+23+…+22010的结果是()A.22011﹣1B.22011+1C.D.【剖析】可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.【解析】设S=1+2+22+23+ (22010)则2S=2+22+23+…+22010+22011②②﹣①得S=22011﹣1.故选A.【考点】本题考查了整式的混合运算,解答本题的关键是设出和为S,并求出2S进行做差求解.10.已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac 的值为()A.0B.1C.2D.3【剖析】观察知可先把多项式转化为完全平方形式,再代入值求解.【解析】由题意可知a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,所求式=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)],=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选D.【考点】本题考查了完全平方公式,属于基础题,关键在于灵活思维,对多项式扩大2倍是利用完全平方公式的关键.11.计算多项式10x3+7x2+15x﹣5除以5x2后,得余式为何?()B.2x2+15x﹣5C.3x﹣1D.15x﹣5【剖析】利用多项式除以单项式法则计算,即可确定出余式.【解析】用直式计算,如图:故选:D.【考点】此题考查了多项式的除法,熟练掌握运算法则是解本题的关键.12.如图,长方形内的阴影部分是由四个半圆围成的图形,则阴影部分的面积是()A.B.C.【剖析】观察图形可知:阴影部分的面积=大圆的面积﹣小圆的面积,大圆的直径=a,小圆的直径=,再根据圆的面积公式求解即可.【解析】据题意可知:阴影部分的面积S=大圆的面积S1﹣小圆的面积S2,∵据图可知大圆的直径=a,小圆的半径=,∴阴影部分的面积S=π()2﹣π()2=π(2ab ﹣b2).故选A.【考点】此题主要考查学生的观察能力,只要判断出两圆的直径,问题就迎刃而解.本题涉及到圆的面积公式、整式的混合运算等知识点,是整式的运算与几何相结合的综合题.13.下列计算正确的是()A.(a2b)2=a2b2B.a6÷a2=a3C.(3xy2)2=6x2y4D.(﹣m)7÷(﹣m)2=﹣m5【剖析】根据积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,可得答案.【解析】A、积的乘方等于乘方的积,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、积的乘方等于乘方的积,故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.【考点】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.14.下列计算正确的是()A.4x﹣3x=1B.x2+x2=2x4C.(x2)3=x6D.2x2•x3=2x6【剖析】根据合并同类项的法则只需把系数相加减,字母和字母的指数不变得出A和B 不正确;根据幂的乘方底数不变、指数相乘得出C正确;根据同底数幂的乘法底数不变,指数相加得出D不正确.【解析】A、4x﹣3x=x,故本选项错误;B、x2+x2=2x2,故本选项错误;C、(x2)3=x6,故本选项正确;D、2x2•x3=2x5,故本选项错误;故选C.【考点】此题考查了单项式乘单项式、合并同类项和幂的乘方与积的乘方,熟练掌握运算法则是本题的关键,是一道基础题.15.计算正确的是()A.(﹣5)0=0B.x2+x3=x5C.(ab2)3=a2b5D.2a2•a﹣1=2a【剖析】根据零指数幂的性质,幂的乘方和积的乘方的计算法则,单项式乘以单项式的法则计算即可.【解析】A、(﹣5)0=1,故错误,B、x2+x3,不是同类项不能合并,故错误;C、(ab2)3=a3b6,故错误;D、2a2•a﹣1=2a故正确.故选D.【考点】本题考查了零指数幂的性质,幂的乘方和积的乘方的计算法则,单项式乘以单项式的法则,熟练掌握这些法则是解题的关键.16.下列运算正确的是()A.a2+a3=a5B.(﹣2a2)3÷()2=﹣16a4C.3a﹣1=D.(2a2﹣a)2÷3a2=4a2﹣4a+1【剖析】分别利用合并同类项法则以及整式的除法运算法则和负整指数指数幂的性质分别化简求出答案.【解析】A、a2+a3,无法计算,故此选项错误;B、(﹣2a2)3÷()2=﹣8a6÷=﹣32a4,故此选项错误;C、3a﹣1=,故此选项错误;D、(2a2﹣a)2÷3a2=4a2﹣4a+1,正确.故选:D.【考点】此题主要考查了合并同类项以及整式的除法运算和负整指数指数幂的性质等知识,正确掌握相关运算法则是解题关键.17.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×107【剖析】直接利用整式的除法运算法则结合科学记数法求出答案.【解析】∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10﹣7.故选:B.【考点】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.18.计算(2x+1)(x﹣1)﹣(x2+x﹣2)的结果,与下列哪一个式子相同?()A.x2﹣2x+1B.x2﹣2x﹣3C.x2+x﹣3D.x2﹣3【剖析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可作出判断.【解析】(2x+1)(x﹣1)﹣(x2+x﹣2)=(2x2﹣2x+x﹣1)﹣(x2+x﹣2)=2x2﹣x﹣1﹣x2﹣x+2=x2﹣2x+1,故选A【考点】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.19.对于下列四个式子:①0.1;②;③;④.其中不是整式的是()A.①B.②C.③D.④【剖析】根据整式的概念对各个式子进行判断即可.【考点】本题考查的是整式的概念,对整式概念的认识,凡分母中含有字母的代数式都不属于整式,在整式范围内用“+”或“﹣”将单项式连起来的就是多项式,不含“+”或“﹣”的整式绝对不是多项式,而单项式注重一个“积”字.20.在六个代数式中,是单项式的个数()A.2个B.3个C.4个D.5个【剖析】根据单项式是数与字母的乘积,单独一个数或一个字母也是单项式,可得答案.【考点】本题考查了单项式,单项式是数与字母的乘积,单独一个数或一个字母也是单项式,注意﹣2﹣2是分式.21.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),则b﹣a的值为()A.5B.6C.7D.8【剖析】直接利用已知图形得出b﹣a=b+空白面积﹣(a+空白面积)=大正六边形﹣小正六边形,进而得出答案.【解析】∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),∴b﹣a=b+空白面积﹣(a+空白面积)=大正六边形﹣小正六边形=16﹣9=7.故选:C.【考点】此题主要考查了整式的加减运算,正确转化代数式是解题关键.22.设A,B,C均为多项式,小方同学在计算“A﹣B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x﹣1,C=x2+2x,那么A﹣B=()A.x2﹣2xB.x2+2xC.﹣2D.﹣2x【剖析】根据题意得到B=C﹣A,代入A﹣B中,去括号合并即可得到结果.【解析】根据题意得:A﹣B=A﹣(C﹣A)=A﹣C+A=2A﹣C=2(x2+x﹣1)﹣(x2+2x)=x2+2x﹣2﹣x2﹣2x=﹣2,故选C【考点】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.23.多项式2x2+3x﹣2与下列一个多项式的和是一个一次二项式,则这个多项式可以是()A.﹣2x2﹣3x+2B.﹣x2﹣3x+1C.﹣x2﹣2x+2D.﹣2x2﹣2x+1【剖析】由已知多项式与选项中多项式和为一个一次二项式,确定出结果即可.【解析】根据题意得:(2x2+3x﹣2)+(﹣2x2﹣2x+1)=2x2+3x﹣2﹣2x2﹣2x+1=x﹣1,结果为一次二项式,故选D【考点】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.24.下列各式中计算正确的是()A.x2•x4=x6B.2m﹣(n+1)=2m﹣n+1C.x5+2x5=3x10D.(2a)3=2a3【剖析】直接利用同底数幂的乘法运算法则以及去括号法则以及积的乘方运算法则分别化简进而求出答案.【解析】A、x2•x4=x6,正确;B、2m﹣(n+1)=2m﹣n﹣1,故此选项错误;C、x5+2x5=3x5,故此选项错误;D、(2a)3=8a3,故此选项错误;故选:A.【考点】此题主要考查了积的乘方运算、同底数幂的乘法运算以及去括号法则,正确掌握运算法则是解题关键.二、填空题(共16小题)25.如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,设△AFC的面积S为2.【剖析】根据即可推出S梯形ABGF+S△ABC﹣S△CGF,然后根据梯形、三角形的面积公式表示出阴影部分的面积,由CG=BC+BG,AB=BC=CD=AD,EF=FG=GB=BE,经过等量代换后,即可推出阴影部分的面积.【解析】∵正方形ABCD和正方形EFGB,∴AB=BC=CD=AD,EF=FG=GB=BE,∵正方形ABCD的边长为2,∴S△AFC=S梯形ABGF+S△ABC﹣S△CGF=×(FG+AB)×BG+×AB×BC﹣×FG×CG=×(FG+AB)×BG+×AB×BC﹣×FG×(BC+BG)=×FG2+FG+2﹣FG﹣×FG2=2.解法二:连接FB∵∠CAB=∠ABF=45°∴FB∥AC又∵△ABC和△AFC有同底AC且等高∴S△AFC =S△ABC=×2×2=2故答案为:2.【考点】本题主要考查整式的混合运算,梯形的面积、三角形的面积、正方形的性质,=S梯形ABGF+S△ABC﹣S△CGF.关键在于根据图形推出S△AFC26.观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2013个单项式是4025x2.【剖析】先看系数的变化规律,然后看x的指数的变化规律,从而确定第2013个单项式.【解析】系数依次为1,3,5,7,9,11,…2n﹣1;x的指数依次是1,2,2,1,2,2,1,2,2,可见三个单项式一个循环,故可得第2013个单项式的系数为4025;∵=671,∴第2013个单项式指数为2,故可得第2013个单项式是4025x2.故答案为:4025x2.【考点】本题考查了单项式的知识,属于规律型题目,解答本题关键是观察系数及指数的变化规律.27.若,则=6.【剖析】根据非负数的性质先求出a2+、b的值,再代入计算即可.【解析】∵,∴+(b+1)2=0,∴a2﹣3a+1=0,b+1=0,∴a+=3,∴(a+)2=32,∴a2+=7;b=﹣1.∴=7﹣1=6.故答案为:6.【考点】本题考查了非负数的性质,完全平方公式,整体思想,解题的关键是整体求出a2+的值.28.计算(1﹣)()﹣(1﹣﹣)()的结果是.【剖析】设a=1﹣﹣﹣﹣,b=+++,然后根据整式的乘法与加减混合运算进行计算即可得解.【解析】设a=1﹣﹣﹣﹣,b=+++,则原式=a(b+)﹣(a﹣)•b=ab+a﹣ab+b=(a+b),∵a+b=1﹣﹣﹣﹣++++=1,∴原式=.故答案为:.【考点】本题考查了整式的混合运算,利用换元法可以使书写更简便且形象直观.29.如图两幅图中,阴影部分的面积相等,则该图可验证的一个初中数学公式为a2﹣b2=(a+b)(a﹣b).【剖析】利用正方形的面积公式以及矩形的面积公式即可表示出两个图形中阴影部分的面积,两个式子相等,即可得到公式.【解析】第一个图的阴影部分的面积是:a2﹣b2,第二个图形阴影部分的面积是:(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故答案是:a2﹣b2=(a+b)(a﹣b).【考点】本题考查了平方差公式,理解题意是关键.30.一组数据为:x,﹣2x2,4x3,﹣8x4,…观察其规律,推断第n个数据应为(﹣2)n ﹣1x n.【剖析】通过观察题意可得:n为奇数时,单项式为正数.x的指数为n时,2的指数为(n ﹣1).由此可解出本题.【解析】依题意得:(1)n为奇数,单项式为:2(n﹣1)x n;(2)n为偶数时,单项式为:﹣2(n﹣1)x n.综合(1)、(2),本数列的通式为:(﹣2)n﹣1•x n.故答案为:(﹣2)n﹣1•x n.【考点】本题考查了单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.31.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4.【剖析】根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解析】设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.【考点】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.32.已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为0.【剖析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出a,b,c的值,即可求出原式的值.【解析】已知等式整理得:x2+2x﹣3=ax2+bx+c,∴a=1,b=2,c=﹣3,则原式=9﹣6﹣3=0.故答案为:0.【考点】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.33.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是(a﹣b)2.【剖析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【解析】∵图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵由题意可得,正方形的边长为(a+b),∴正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故答案为(a﹣b)2.【考点】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键.34.用整式的乘法公式计算:20002﹣2001×1999=1.【剖析】原式变形后,利用平方差公式计算即可得到结果.【解析】原式=20002﹣如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为,则方格纸的面积为12.【剖析】设每个方格的边长为x,根据题意表示出灰色三角形面积,将已知面积代入求出x的值,即可确定出方格纸面积.【解析】可设每个方格的边长为x,根据题意得:(4x)2﹣•2x•3x﹣•x•4x﹣•2x•4x=,整理得:x2=,则方格纸的面积为×16=12.故答案为:12.【考点】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.36.观察下列关于x的单项式,探究其规律x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2016个单项式是4031x2016.【剖析】系数的规律:第n个对应的系数是2n﹣1,指数的规律:第n个对应的指数是n.【解析】根据分析的规律,得第2016个单项式是4031x2016.故答案为:4031x2016.【考点】此题考查单项式问题,分别找出单项式的系数和次数的规律是解决此类问题的关键.37.若(x+a)(x﹣2)的结果中不含关于字母x的一次项,则a=2.【剖析】原式利用多项式乘以多项式法则计算,根据结果不含x的一次项,求出a的值即可.【解析】原式=x2﹣2x+ax﹣2a=x2+(a﹣2)x﹣2a,由结果不含x的一次项,得到a﹣2=0,解得:a=2.故答案为:2.【考点】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.38.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为13.【剖析】设正方形A的边长为a,正方形B的边长为b,由图形得出关系式求解即可.【解析】设正方形A的边长为a,正方形B的边长为b,由图甲得a2﹣b2﹣2(a﹣b)b=1即a2+b2﹣2ab=1,由图乙得(a+b)2﹣a2﹣b2=12,2ab=12,所以a2+b2=13,故答案为:13.【考点】本题主要考查了完全平方公式的几何背景,解题的关键是根据图形得出数量关系.39.如果二次三项式x2﹣2(m+1)x+16是一个完全平方式,那么m的值是3或﹣5.【剖析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍,故﹣2(m+1)=±8,求解即可.【解析】中间一项为加上或减去x和4积的2倍,故﹣2(m+1)=±8,解得m=3或﹣5,故答案为:3或﹣5.【考点】本题考查了完全平方式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.40.若多项式4x4+1加上一个含字母的单项式,就能变形为一个含x的多项式的平方,则这样的单项式为±4x2,4x8.【剖析】由于多项式4x4+1加上一个含字母的单项式后能成为一个含x的多项式的平方,可能是二次项或八次项,分2种情况讨论即可.【解析】∵多项式4x4+1加上一个单项式后能成为一个整式的完全平方,∴此单项式可能是二次项,可能是常数项,可能是一次项,还可能是4次项,①4x4+4x8+1=(2x4+1)2,故此单项式是4x8.②∵4x4+1±4x2=(2x2±1)2,故此单项式是±4x2;故答案是:±4x2,4x8.【考点】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.。
整式的练习题及解答一、填空题1. 化简以下整式:(3x² - 2)(x - 4) + 5(x² + 2x - 1)解:将括号内的整式进行分配律展开,并合并同类项,得到:3x³ - 14x² + 7x - 182. 将以下整式写成乘积形式:4x² - 9y²解:根据差平方公式,将整式分解为(2x - 3y)(2x + 3y)3. 将以下整式写成乘积形式:a³ - b³解:根据差立方公式,将整式分解为(a - b)(a² + ab + b²)4. 计算以下整式的值:(x - 3)²,当x = 4时解:将整式展开,得到(x - 3)² = x² - 6x + 9。
当x = 4时,代入得到:4² - 6 × 4 + 9 = 25二、选择题1. 化简整式 (2x + 3)² - (3x - 4)²结果为:A. -x² - 2x - 7B. -x² - x - 7C. -x² + 2x - 7D. -x² - 2x + 7答案:B2. 将整式 a²b + b²a - ab²写成乘积形式得到:A. (a + b)²B. (a + b)(ab - b²)C. (a² - ab + b²)(a + b)D. a²b + ab²答案:B三、解答题1. 将以下整式写成乘积形式:x⁴ - y⁴解:根据差平方公式可以将整式分解为(x² - y²)(x² + y²)。
其中,x² -y²可再分解为(x - y)(x + y)。
因此,整式的乘积形式为(x - y)(x + y)(x² + y²)2. 化简整式 (3a + b)² - (a - 2b)²解:展开整式得到 (3a + b)² - (a - 2b)² = 9a² + 6ab + b² - (a² - 4ab + 4b²) 合并同类项得到 9a² + 6ab + b² - a² + 4ab - 4b²化简得到 8a² + 10ab - 3b²综上所述,整式的练习题及解答包括了填空题、选择题和解答题,涵盖了整式的简化、展开、分解等运算。
1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab 9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x2y-7xy2)-(xy2-3x2y);22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a].23、3a2-9a+5-(-7a2+10a-5);24、-3a2b-(2ab2-a2b)-(2a2b+4ab2).25、(5a-3a2+1)-(4a3-3a2);26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]27、(8xy-x2+y2)+(-y2+x2-8xy);28、(2x2-21+3x)-4(x-x2+21);29、3x2-[7x-(4x-3)-2x2].30、5a+(4b-3a)-(-3a+b);31、(3a2-3ab+2b2)+(a2+2ab-2b2);32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a 2-1+2a )-3(a-1+a 2);34、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)].35、 -32ab +43a 2b +ab +(-43a 2b )-136、(8xy -x 2+y 2)+(-y 2+x 2-8xy );37、2x -(3x -2y +3)-(5y -2);38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3)40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b )44、()[]{}y x x y x --+--3233245、(-x 2+5+4x 3)+(-x 3+5x -4)46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).48、4a 2+2(3ab-2a 2)-(7ab-1).49、 21xy+(-41xy )-2xy 2-(-3y 2x )50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]5556、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab ).57、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2;58、5ab+(-4a2b2)+8ab2-(-3ab)+(-a2b)+4a2b2;59、(7y-3z)-(8y-5z);60、-3(2x2-xy)+4(x2+xy-6).61、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)62、-3x2y+2x2y+3xy2-2xy2;63、3(a2-2ab)-2(-3ab+b2);64、5abc-{2a2b-[3abc-(4a2b-ab2]}.65、5m2-[m2+(5m2-2m)-2(m2-3m)].66、-[2m-3(m-n+1)-2]-1.67、31a-(21a-4b-6c)+3(-2c+2b)68、-5a n-a n-(-7a n)+(-3a n)69、x2y-3xy2+2yx2-y2x70、41a2b-0.4ab2-21a2b+52ab2;71、3a-{2c-[6a-(c-b)+c+(a+8b-6)]}72、-3(xy-2x2)-[y2-(5xy-4x2)+2xy];73、化简、求值21x2-2212- (x+ y)2⎡⎤⎢⎥⎣⎦-23(-32x2+31y2),其中x=-2,y=-3474、化简、求值21x-2(x-31y2)+(-23x+31y2),其中x=-2,y=-32.75、xxxxxx5)64(213223312323-++-⎪⎭⎫⎝⎛---其中x=-121;76、化简,求值(4m+n)-[1-(m-4n)],m=52n=-13177、化简、求值2(a2b+2b3-ab3)+3a3-(2ba2-3ab2+3a3)-4b3,其中a=-3,b=278、化简,求值:(2x3-xyz)-2(x3-y3+xyz)+(xyz-2y3),其中x=1,y=2,z=-3.79、化简,求值:5x2-[3x-2(2x-3)+7x2],其中x=-2.80、若两个多项式的和是2x2+xy+3y2,一个加式是x2-xy,求另一个加式.81、若2a2-4ab+b2与一个多项式的差是-3a2+2ab-5b2,试求这个多项式.82、求5x2y-2x2y与-2xy2+4x2y的和.83、求3x2+x-5与4-x+7x2的差.84、计算 5y+3x+5z 2与12y+7x-3z 2的和85、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M87、当3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88、化简再求值5abc-{2a2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-4189、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ; (2)求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B93、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .94、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.95、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0.96、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .97、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值.98、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值99、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a 的值.100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.答案:1、3(a+5b)-2(b-a)=5a+13b2、3a-(2b-a)+b=4a-b.3、2(2a2+9b)+3(-5a2-4b)=—11a2+6b24、(x3-2y3-3x2y)-(3x3-3y3-7x2y)= -2x3+y3+4x2y5、3x2-[7x-(4x-3)-2x2] = 5x2 -3x-36、(2xy-y)-(-y+yx)= xy7、5(a22b-3ab2)-2(a2b-7ab)= -a2b+11ab8、(-2ab+3a)-2(2a-b)+2ab= -2a+b9、(7m2n-5mn)-(4m2n-5mn)= 3m2n10、(5a2+2a-1)-4(3-8a+2a2)= -3a2+34a-1311、-3x2y+3xy2+2x2y-2xy2= -x2y+xy212、2(a-1)-(2a-3)+3.=413、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]=7a2+ab-2b214、(x2-xy+y)-3(x2+xy-2y)= -2x2-4xy+7y15、3x2-[7x-(4x-3)-2x2]=5x2-3x-3 16、a2b-[2(a2b-2a2c)-(2bc+a2c)]=-a2b+2bc+6a2c17、-2y3+(3xy2-x2y)-2(xy2-y3)= xy2-x2y18、2(2x-3y)-(3x+2y+1)=2x-8y-119、-(3a2-4ab)+[a2-2(2a+2ab)]=-2a2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p21、(5x2y-7xy2)-(xy2-3x2y)=4xy2-4x2y22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a]=-18a2+7a+223、3a2-9a+5-(-7a2+10a-5)=10a2-19a+1024、-3a2b-(2ab2-a2b)-(2a2b+4ab2)= -4a2b-64ab225、(5a-3a2+1)-(4a3-3a2)=5a-4a2+126、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]=7a2+ab-2b227、(8xy-x2+y2)+(-y2+x2-8xy)=028、(2x2-21+3x)-4(x-x2+21) = 6x2-x-2529、3x2-[7x-(4x-3)-2x2]= 5x2-3x-330、5a+(4b-3a)-(-3a+b)= 5a+3b31、(3a2-3ab+2b2)+(a2+2ab-2b2)= 4a2-ab32、2a2b+2ab2-[2(a2b-1)+2ab2+2].= -133、(2a2-1+2a)-3(a-1+a2)= -a2-a+234、2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)]=-2x2+5xy-2y235、-32ab+43a2b+ab+(-43a2b)-1 =31ab-136、(8xy-x2+y2)+(-y2+x2-8xy)=037、2x-(3x-2y+3)-(5y-2)=-x-3y-138、-(3a+2b)+(4a-3b+1)-(2a-b-3)=-a-4b+439、4x3-(-6x3)+(-9x3)=x340、3-2xy+2yx2+6xy-4x2y = -2 x2y+441、1-3(2ab+a)十[1-2(2a-3ab)]=2-7a42、3x-[5x+(3x-2)]=-5x+243、(3a2b-ab2)-(ab2+3a2b)= -2ab244、()[]{}yxxyx--+--32332= 5x+y45、(-x2+5+4x3)+(-x3+5x-4)= 3x3-x2+5x+146、(5a2-2a+3)-(1-2a+a2)+3(-1+3a-a2)=a2+9a-147、5(3a2b-ab2)-4(-ab2+3a2b).=3a2b-ab248、4a2+2(3ab-2a2)-(7ab-1)=1-ab49、21xy+(-41xy)-2xy2-(-3y2x)=41xy+xy250、5a2-[a2-(5a2-2a)-2(a2-3a)]=11a2-8a51、5m-7n-8p+5n-9m+8p=-4m-2n52、(5x2y-7xy2)-(xy2-3x2y)=8x2y-6xy253、3x2y-[2x2y-3(2xy-x2y)-xy]=-2x2y+7xy56、(a2+4ab-4b2)-3(a2+b2)-7(b2-ab)=-2a2+11ab-14b257、a2+2a3+(-2a3)+(-3a3)+3a2 =-3a3+4a258、5ab+(-4a2b2)+8ab2-(-3ab)+(-a2b)+4a2b2=8ab+8ab2-a2b59、(7y-3z)-(8y-5z)=-y+2z60、-3(2x2-xy)+4(x2+xy-6)=-2x2+7xy-2461、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)=062、-3x2y+2x2y+3xy2-2xy2 =-x2y+xy263、3(a2-2ab)-2(-3ab+b2)=3a2-2b264、5abc-{2a2b-[3abc-(4a2b-ab2]}=8abc-6a2b+ab265、5m2-[m2+(5m2-2m)-2(m2-3m)]=m2-4m66、-[2m-3(m-n+1)-2]-1=m-3n+467、31a-(21a-4b-6c)+3(-2c+2b)= -61a+10b68、 -5a n -a n -(-7a n )+(-3a n )= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 2 71、 41a 2b-0.4ab 2- 21a 2b+ 52ab 2=-41a 2b 71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x2-y 273、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34 原式=2x 2+21y 2-2 =69874、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.原式=-3x+y 2=69475、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;原式=x 3+x 2-x+6=68376、 化简,求值(4m+n )-[1-(m-4n )],m=52n=-131原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=-2ab 3+3ab 2=1278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3.原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2. 原式=-2x 2+x-6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 2 81、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y 83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x-984、计算 5y+3x+5z 2与12y+7x-3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 285、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差(8xy 2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x 2y+3xy 2+1 86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M M=-21x 2+4xy —23y87、当x=- 21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值. 原式=-8xy+y= —15 88、化简再求值5abc-{2a2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-41原式=83abc-a 2b-2ab 2=3689、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ; (2)求41(B-A); A+B=2a 2+2b 241(B-A)=ab 90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+3 91、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .M-2N=5x 2-4x+392、已知222244,5A x xy y B x xy y =-+=+-,求3A -B3A -B=11x 2-13xy+8y 293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .2A -3B= 5x 2+11xy +2y 294、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.原式=9ab 2-4a 2b=3495、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0. 原式=8abc-8a 2b=-3296、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x 2y+xyz )-3(x 2y-xyz )-4x 2y . 原式=-5x 2y+5xyz=90 97、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值.原式=10a+10b-2ab=5098、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值原式=2m2+6mn+5=1599、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B 的大小.A=2a2-4a+1 B=2a2-4a+3 所以A<B。
初二数学整式试题答案及解析1.已知x2﹣5x=14,求(x﹣1)(2x﹣1)﹣(x+1)2+1的值.【答案】15【解析】将所求式子化简,结果为x2﹣5x+1,再将已知条件整体代入该式即可.试题解析:(x﹣1)(2x﹣1)﹣(x+1)2+1,=2x2﹣x﹣2x+1﹣(x2+2x+1)+1,=2x2﹣x﹣2x+1﹣x2﹣2x﹣1+1,=x2﹣5x+1.当x2﹣5x=14时,原式=(x2﹣5x)+1=14+1=15.【考点】整式的化简求值.2.下列因式分解正确的是()A.B.C.D.【答案】B【解析】A、x2+y2不能分解;B、x2-y2=(x+y)(x-y),故正确;C、-x2+y2=(y+x)(y-x),故错误;D、-x2-y2不能分解,故错误,故选B【考点】因式分解3.你能化简()()吗?我们不妨先从简单情况入手,现规律,归纳结论.(1)先填空:()()= ;()()= ;()()= ;……由此猜想()()= .(2)利用这个结论,你能解决下面两个问题吗?①2199+2198+2197+……+22+2+1;②若,则等于多少?【答案】(1)a2-1;a3-1;a4-1;a100-1;(2)①2200-1;②1.【解析】(1)利用多项式乘以多项式法则及平方差公式化简即可得到结果.(2)归纳总结得到一般性规律,即可求出所求式子的结果.(3)①利用得出的结论计算即可得到结果;②利用得出的结论计算即可得到结果.试题解析:(1)(a-1)(a+1)=a2-1;(a-1)(a2+a+1)=a3-1;(a-1)(a3+a2+a+1)=a4-1;…由此猜想(a-1)(a99+a98+a97+…+a2+a+1)=a100-1;(2)①根据得出的结论得:2199+2198+2197+…+22+2+1=(2199+2198+2197+…+22+2+1)(2-1)=2200-1;②根据题意得:(a-1)(a5+a4+a3+a2+a+1)=a6-1,将a5+a4+a3+a2+a+1=0代入得:a6=1.【考点】1.探索规律题(数字的变化类);2.整式的混合运算.4.把x2-y2-2y-1分解因式结果正确的是()。
一、选择题(每题4分,共20分)1. 下列各数中,不是有理数的是()。
A. 3/4B. -5C. √9D. π2. 下列代数式中,错误的是()。
A. 2a + 3b = 5B. 3x - 4y + 2z = 0C. 5a - 2b + c = 10D. 4x^2 - 3xy + 2y^2 = 03. 简化表达式 5a^2 - 2a + 3 - 3a^2 + 4a - 1 的结果是()。
A. 2a + 2B. 2a + 4C. 2a + 2D. 2a - 44. 若 a = 2,则代数式 3a^2 - 4a + 1 的值是()。
A. 5B. 6C. 7D. 85. 下列各式中,同类项是()。
A. 2x^2 和 3x^3B. 4xy 和 5y^2C. 3a^2b 和 2ab^2D. 7mn 和 4mn二、填空题(每题5分,共25分)6. 若 a = -2,则代数式 5a^2 - 3a + 2 的值是 _______。
7. 简化表达式 4x^2 - 3x + 5 - 2x^2 + 4x - 3 的结果是 _______。
8. 若 m = 3,则代数式 2m^2 - 5m + 1 的值是 _______。
9. 扩展表达式 3x^2 - 2xy + 5y^2 + 2x - 3y + 1,使其成为完全平方形式,结果为 _______。
10. 若 a 和 b 是同类项,且 a = 2x^2y,b = 3x^2y,则 a + b 的结果是_______。
三、解答题(每题10分,共30分)11. 解下列方程:(1) 2x - 3 = 7(2) 5a^2 - 3a - 2 = 012. 简化下列代数式:(1) 4x^2 - 3x + 2 - 2x^2 + 5x - 1(2) 3a^2 - 4a + 2 - 2a^2 + 3a - 113. 扩展下列表达式,使其成为完全平方形式:(1) 2x^2 - 5xy + 2y^2(2) 3a^2 - 6ab + 4b^2四、应用题(每题10分,共20分)14. 甲、乙两数的和是50,甲数是乙数的2倍,求甲、乙两数。
一、选择题(每题3分,共30分)1. 下列各式中,不是整式的是()A. 2x^2 - 3x + 1B. 5xyC. 3/4x + 2D. 1/x - 22. 如果a + b = 5,a - b = 1,那么ab的值为()A. 12B. 10C. 8D. 63. 下列各式中,同类项的是()A. 3x^2y^3和5xy^2B. 2a^2b和ab^2C. 4m^3n和mn^2D. 5xy和7xy4. 下列各式中,能因式分解的是()A. x^2 - 4B. x^2 + 4C. x^2 + 2x + 1D. x^2 - 2x - 35. 若m^2 - 3m + 2 = 0,则m的值为()A. 1或2B. 2或-1C. 1或-2D. 2或36. 若a^2 - b^2 = 9,则(a + b)(a - b)的值为()A. 3B. 9C. 6D. 127. 下列各式中,绝对值最大的是()A. |-2|B. |2|C. |-3|D. |3|8. 若a + b = 5,a - b = 1,则a^2 - b^2的值为()A. 4B. 6C. 10D. 129. 下列各式中,能化简的是()A. (a + b)^2B. (a - b)^2C. (a + b)(a - b)D. (a - b)(a + b)10. 若a^2 + b^2 = 25,a - b = 4,则ab的值为()A. 3B. 5C. 7D. 9二、填空题(每题5分,共25分)11. (x + 2)(x - 3) = ________。
12. (a - b)^2 = ________。
13. 3x^2y^3z^2的同类项是 ________。
14. 若a + b = 5,a - b = 1,则ab的值为 ________。
15. (a + b)^2 = ________。
三、解答题(每题10分,共30分)16. 因式分解:x^2 - 5x + 6。
17. 解方程:2(x - 3) = 5x + 1。