(完整word版)利用勾股定理解决折叠问题及答案
- 格式:doc
- 大小:146.01 KB
- 文档页数:4
勾股定理中的常考问题6种类型48道【类型一用勾股定理解决折叠问题】1.如图,将长方形ABCD沿着AE折叠,点D落在BC边上的点F处,已知AB=8,BC=10,则EC的长为()A.4B.3C.5D.2【答案】B【分析】长方形ABCD沿着AE折叠,得AD=AF=BC=10,EF=ED,根据勾股定理得BF=6,则CF=4,设EC=x,ED=8−x,根据勾股定理得EF2=EC2+CF2,即可解得EC的长.【详解】解:∵四边形ABCD是长方形,∴AD=BC=10,DC=AB=8,∵长方形ABCD沿着AE折叠,∴AD=AF=BC=10,EF=ED,∴BF=√AF2−AB2=√100−64=6,CF=BC−BF=4,设EC=x,ED=8−x,∴EF2=EC2+CF2,即(8−x)2=x2+42,解得x=3,所以EC=3,故选:B.【点睛】本题主要考查了图形折叠以及勾股定理等知识内容,掌握图形折叠的性质是解题的关键.2.如图,有一块直角三角形纸片,∠C=90°,AC=4,BC=3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()【答案】C【分析】利用勾股定理求得AB=5,由折叠的性质可得AB=AE=5,DB=DE,求得CE=1,设DB=DE=x,则CD=3−x,根据勾股定理可得12+(3−x)2=x2,进而求解即可.【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=√32+42=5,由折叠的性质得,AB=AE=5,DB=DE,∴CE=1,设DB=DE=x,则CD=3−x,在Rt△CED中,12+(3−x)2=x2,,解得x=53故选:C.【点睛】本题考查勾股定理、折叠的性质,熟练掌握勾股定理是解题的关键.【答案】B【分析】根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8−x,再Rt△BCE中利用勾股定理即可求出CE的长度.【详解】解:∵△ADE翻折后与△BDE完全重合,∴AE=BE,设AE=x,则BE=x,CE=8−x,∵在Rt△BCE中,CE2=BE2−BC2,即(8−x)2=x2−62,解得,x=7,4.∴CE=74故选:B【点睛】本题考查了图形的翻折变换,解题中应注意折叠是一种对称变换,属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()【答案】B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=√AC2−AB2=√52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.【点睛】本题考查了勾股定理与折叠问题,熟练掌握勾股定理是解题的关键.5.如图,矩形纸片ABCD的边AB长为4,将这张纸片沿EF折叠,使点C与点A重合,已知折痕EF长为2√5,则BC长为()A.4.8B.6.4C.8D.10【答案】C【分析】过点F作FG⊥BC于点G,则四边形ABGF是矩形,从而FG=AB=4,在Rt△EFG中,利用勾股定理求得EG=√EF2−FG2=√(2√5)2−42=2.设BE=x,则BG=BE+EG=x+2.由∠AFE=∠CEF=∠AEF 得到AE=AF=BG=x+2,从而在Rt△ABE中,有AB2+BE2=AE2,代入即可解得x的值,从而得到BE,CE的长,即可得到BC.【详解】过点F作FG⊥BC于点G∵在矩形ABCD中,∠DAB=∠B=90°∴四边形ABGF是矩形∴FG=AB=4∴在Rt△EFG中,EG=√EF2−FG2=√(2√5)2−42=2设BE=x,则BG=BE+EG=x+2∵在矩形ABCD中,BC∥AD∴∠AFE=∠CEF由折叠得∠CEF=∠AEF∴AE=AF∵在矩形ABGF中,AF=BG=x+2∴AE=AF=x+2∵在Rt△ABE中,AB2+BE2=AE2∴42+x2=(x+2)2解得x=3即BE=3,AE=5∴由折叠可得CE=AE=5∴BC=BE+EC=3+5=8故选:C【点睛】本题考查矩形的性质,勾股定理的应用,利用勾股定理构造方程是解决折叠问题的常用方法.A.7B.136【答案】B【分析】根据题意可得AD=AB=2,∠B=∠ADB,CE=DE,∠C=∠CDE,可得∠ADE=90°,继而设AE=x,则CE=DE=3−x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,∴AD=AB=2,∠B=∠ADB,∵折叠纸片,使点C与点D重合,∴CE=DE,∠C=∠CDE,∵∠BAC=90°,∴∠B+∠C=90°,∴∠ADB+∠CDE=90°,∴AD2+DE2=AE2,设AE=x,则CE=DE=3−x,∴22+(3−x)2=x2,,解得x=136即AE=13,6故选:B【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边BC沿CE翻折,点B落在点F处,连接CF交AB于点D,则FD的最大值为()【答案】D【分析】根据将边BC沿CE翻折,点B落在点F处,可得FD=CF−CD=4−CD,即知当CD最小时,FD最大,此时CD⊥AB,用面积法求出CD,即可得到答案.【详解】解:如图:∵将边BC沿CE翻折,点B落在点F处,∴CF=BC=4,∴FD=CF−CD=4−CD,当CD最小时,FD最大,此时CD⊥AB,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=√32+42=5,∵2S△ABC=AC⋅BC=AB⋅CD,∴CD=AC⋅BCAB =3×45=125,∴FD=CF−CD=4−125=85,故选:D.【点睛】本题考查直角三角形中的翻折问题,涉及勾股定理及应用,解题的关键是掌握翻折的性质.A.73B.154【答案】B【分析】先求出BD=2,由折叠的性质可得DN=CN,则BN=8−DN,利用勾股定理建立方程DN2= (8−DN)2+4,解方程即可得到答案.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将Rt△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC−CN=8−DN,在Rt△DBN中,由勾股定理得DN2=BN2+DB2,∴DN2=(8−DN)2+4,∴DN=17,4,∴BN=BC−CN=154故选:B.【点睛】本题主要考查了勾股定理与折叠问题,正确理解题意利用方程的思想求解是解题的关键.【类型二杯中吸管问题】9.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支15cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为()A.1cm B.2cm C.3cm D.不能确定【答案】B【分析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答.【详解】解∶∵CD=5cm,AD=12cm,∴AC=√CD2+AD2=√52+122,露出杯口外的长度为=15−13=2(cm).故答案为:B.【点睛】本题考查勾股定理的应用,所述问题是一个生活中常见的问题,与勾股定理巧妙结合,可培养同学们解决实际问题的能力.10.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.3cm D.2cm【分析】根据勾股定理求得AC的长,进而即可求解.【详解】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm).则这只铅笔在笔筒外面部分长度为3cm.故选:C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.11.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.4cm D.3cm【答案】D【分析】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.【详解】解:根据题意可得:AB BC=9cm,在Rt△ABC中∶AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm),则这只铅笔在笔筒外面部分长度为3cm.故选:D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm<ℎ≤16cm【分析】根据勾股定理及直径为最大直角边时即可得到最小值,当筷子垂直于底面时即可得到最大值即可得到答案;【详解】解:由题意可得,当筷子垂直于底面时ℎ的值最大,ℎmax=24−8=16cm,当直径为直角边时ℎ的值最小,根据勾股定理可得,ℎmin=24−√82+152=7cm,∴7cm<ℎ≤16cm,故选D.【点睛】本题考查勾股定理的运用,解题的关键是找到最大与最小距离的情况.13.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm≤ℎ≤16cm【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出的取值范围.【详解】解:如图1所示,当筷子的底端在D点时,筷子露在杯子外面的长度最长,=24−8=16cm,∴ℎ最大如图2所示,当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17cm,=24−17=7cm,∴此时ℎ最小∴的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键.A.5B.7C.12D.13【答案】A【分析】根据勾股定理求出h的最短距离,进而可得出结论.【详解】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB=√92+122=15(cm),故ℎ=20−15=5(cm);最短故选:A.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm【答案】D可.【详解】解:由题意,可得这只烧杯的直径是:√102−82=6(cm).故选:D.【点睛】本题考查了勾股定理的应用,能够将实际问题转化为数学问题是解题的关键.16.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为h cm,则h的取值范围是()A.4<h<5B.5<h<6C.5≤h≤6D.4≤h≤5【答案】C【分析】根据题意,求出牙刷在杯子外面长度最小与最大情况即可得出取值范围.【详解】解:根据题意,当牙刷与杯底垂直时,ℎ最大,如图所示:故ℎ最大=18−12=6cm;∵当牙刷与杯底圆直径、杯高构成直角三角形时,ℎ最小,如图所示:在RtΔABC中,∠ACB=90°,AC=5cm,BC=12cm,则AB=√BC2+AC2=√52+122=13cm,∵牙刷长为18cm,即AD=18cm,∴ℎ最小=AD−AB=18−13=5cm,∴h的取值范围是5≤h≤6,故选:C.【点睛】本题考查勾股定理解实际应用题,读懂题意,根据牙刷的放置方式明确牙刷在杯子外面长度最小与最大情况是解决问题的关键.【类型三楼梯铺地毯问题】17.如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要().A.3米B.4米C.5米D.7米【答案】D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【详解】解:由勾股定理得:楼梯的水平宽度=√52−32=4(米),∵地毯铺满楼梯的长度应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(米).故选:D.【点睛】此题考查了生活中的平移现象以及勾股定理,属于基础题,利用勾股定理求出水平边的长度是解答本题的关键.18.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=√132−52=12m,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(m).故选B.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解答本题的关键.19.如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m2【答案】B【分析】勾股定理求出BC,平移的性质推出防滑毯的长为AC+BC,利用面积公式进行求解即可.【详解】解:由图可知:∠C=90°,∵AC=5米,AB=13米,∴BC=√AB2−AC2=12米,由平移的性质可得:水平的防滑毯的长度=BC=12(米),铅直的防滑毯的长度=AC=5(米),∴至少需防滑毯的长为:AC+BC=17(米),∵防滑毯宽为5米∴至少需防滑毯的面积为:17×5=85(平方米).故选:B.【点睛】本题考查勾股定理.解题的关键是利用平移,将防滑毯的长转化为两条直角边的边长之和.A.13cm B.14cm C.15cm D.16cm【答案】A【分析】根据勾股定理即可得出结论.【详解】如图,由题意得AC=1×5=5(cm),BC=2×6=12(cm),故AB=√122+52=13(cm).故选:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.21.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【答案】C【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【详解】∵△ABC是直角三角形,BC=6m,AC=10m∴AB=√AC2−BC2=√102−62=8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选C【点睛】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.22.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元【答案】C【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为√132−52=12米、5米,∴地毯的长度为12+5=17米,地毯的面积为17×2=34平方米,∴购买这种地毯至少需要80×34=2720元.故选C.【点睛】本题考查的知识点是勾股定理的应用,生活中的平移现象,解题关键是要注意利用平移的知识,把要求的所有线段平移到一条直线上进行计算.23.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【答案】C【详解】楼梯竖面高度之和等于AB的长.由于AB=√AC2−BC2=√52−32=4,所以至少需要地毯长4+3=7(m).故选C24.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m【答案】C【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得AB,然后求得地毯的长度即可.【详解】解:由勾股定理得:AB=√2.52−1.52=2因为地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和所以地毯的长度至少是1.5+2=3.5(m)故选C.【点睛】本题考查了图形平移性质和勾股定理,解决本题的关键是要熟练掌握勾股定理.【类型四最短路径问题】25.如图,透明圆柱的底面半径为6厘米,高为12厘米,蚂蚁在圆柱侧面爬行.从圆柱的内侧点A爬到圆柱的外侧点B处吃食物,那么它爬行最短路程是厘米.(π≈3)【答案】30【分析】把圆柱的侧面展开,根据勾股定理即可得到结论.【详解】解:∵透明圆柱的底面半径为6厘米,∴透明圆柱的底面周长为2×6π=厘米≈36厘米,作点A关于直线EF的对称点A′,连接A′B,则A′B的长度即为它爬行最短路程,×36=18厘米,∴A′A=2AE=24厘米,AB=12∴A′B=√AB2+A′A2=√182+242=30(cm),故答案为:30.【点睛】本题考查平面展开-最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.【答案】10【分析】将圆柱侧面展开,由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,再由勾股定理求出.【详解】解:根据圆柱侧面展开图,cm,高为8cm,∵圆柱的底面半径为6π∴底面圆的周长为2×6×π=12cm,π×12=6cm,∴BC=8cm,AC=12由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,AB=√AC2+BC2=10cm,故答案为:10.【点睛】本题考查了平面展开最短路线问题,勾股定理,将立体图形转化成平面图形求解是解题的关键.27.如图有一个棱长为9cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C点在一条棱上,距离顶点B 3cm处),需爬行的最短路程是cm.【答案】15【分析】首先把正方体展开,然后连接AC,利用勾股定理计算求解即可.【详解】解:如图,连接AC,由勾股定理得,AC=√92+(9+3)2=15,故答案为:15.【点睛】本题考查了正方体的展开图、勾股定理的应用,解题的关键在于明确爬行的最短路线.28.如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【答案】10【分析】将杯子侧面展开,作A关于杯口的对称点A′,根据两点之间线段最短可知A′P的长度即为所求,再结合勾股定理求解即可.【详解】解:如图所示:将杯子侧面展开,作A关于杯口的对称点A′,连接PA′,最短距离为PA′的长度,)2+(6−1.5+1.5)2=10(厘米),PA′=√PE2+EA′2=√(162最短路程为PA ′=10厘米.故答案为:10.【点睛】本题考查了平面展开−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.【答案】20【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可求得AS 的长.【详解】解:如图,∵在圆柱的截面ABCD 中,AB =24π,BC =32,∴AB =12×24π×π=12,BS =12BC =16, ∴AS =√AB 2+BS 2=20,故答案为:20.【点睛】本题考查平面展开图−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解题的关键.30.如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为 cm .(杯壁厚度不计)【答案】10【分析】如图(见解析),将玻璃杯侧面展开,作B关于EF的对称点B′,根据两点之间线段最短可知AB′的长度即为所求,利用勾股定理求解即可得.【详解】解:如图,将玻璃杯侧面展开,作B关于EF的对称点B′,作B′D⊥AE,交AE延长线于点D,连接AB′,BB′=1cm,AE=9−4=5(cm),由题意得:DE=12∴AD=AE+DE=6cm,∵底面周长为16cm,×16=8(cm),∴B′D=12∴AB′=√AD2+B′D2=10cm,由两点之间线段最短可知,蚂蚁从外壁B处到内壁A处所走的最短路程为AB′=10cm,故答案为:10.【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.31.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它要走的路程s取值范围是.【答案】s≥26m【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的长方形长度增加而宽度不变,求出新长方形的对角线长即可得到范围.【详解】解:如图所示,将图展开,图形长度增加4m,原图长度增加4m,则AB=20+4=24m,连接AC,∵四边形ABCD是长方形,AB=24m,宽AD=10m,∴AC=√AB2+BC2=√242+102=26m,∴蚂蚱从A点爬到C点,它要走的路程s≥26m.故答案为:s≥26m.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故答案为5.【点睛】本题考查了平面展开−最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.【类型五旗杆高度问题】【答案】6m【分析】设AD=x,在△ABC中,利用勾股定理列出方程,解之即可.【详解】解:∵BF=2m,∴CE=2m,∵DE=1m,∴CD=CE−DE=1m,设AD=x,则AB=x,AC=AD−CD=x−1,由题意可得:BC⊥AE,在△ABC中,AC2+BC2=AB2,即(x−1)2+32=x2,解得:x=5,即AD=5,∴旗杆AE的高度为:AD+DE=5+1=6m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理的相关知识并在直角三角形中正确运用是解题的关键.34.荡秋千是深受人们喜爱的娱乐项目,如图,小丽发现,秋千静止时踏板离地面的垂直高度DE=0.5m,将它往前推送至点B,测得秋千的踏板离地面的垂直高度BF=1.1m,此时水平距离BC=EF=1.8m,秋千的绳索始终拉的很直,求绳索AD的长度.【答案】3m【分析】设绳索AD的长度为xm=(x−0.6)m,在Rt△ABC中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD长为xm,则AB为xm,∵四边形BCEF是矩形,∴BF=CE=1.1m,∵DE=0.5m,∴CD=0.6m则AC为(x−0.6)m在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即:(x−0.6)2+1.82=x2解得:x=3∴绳索AD的长度为3m.【点睛】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.35.如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=1米,n=5米,求旗杆AB的长.【答案】12米【分析】设旗杆的高为x米,在Rt△ABC中,推出x2+52=(x+1)2,可得x=12,由此解决问题.【详解】解:设AB=x米,因为∠ABC=90°,所以在Rt△ABC中,根据勾股定理,得:x2+52=(x+1)2,解之,得:x=12,所以,AB的长为12米,答:旗杆AB的长为12米.【点睛】本题考查直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程.【答案】风筝的高度CE为61.68米.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【详解】解:在Rt△CDB中,由勾股定理,得CD=√CB2−BD2=√652−252=60(米).∴CE=CD+DE=60+1.68=61.68(米).答:风筝的高度CE为61.68米.【点睛】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.37.看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.【答案】17米【分析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】解:如图所示设旗杆高度为x m,则AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2(x−2)2+82=x2解得:x=17,答:旗杆的高度为17m.【点睛】本题考查了勾股定理的应用,解题的关键是构造直角三角形.38.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2= AF2+EF2,根据AC=AE,得出AB2+12=(AB−1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB−1)2+52,又∵AC=AE,∴AB2+12=(AB−1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12= (AB−1)2+52.39.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).根据以上信息,求旗杆AB的高度.【答案】9米【分析】设AB=x,则AC=x+1,AE=x−1,再根据勾股定理可列出关于x的等式,解出x即得出答案.【详解】解:设AB=x依题意可知:在Rt△ACE中,∠AEC=90°,AC=x+1,AE=x−1,CE=6,根据勾股定理得:AC2=AE2+CE2,即:(x+1)2=(x−1)2+62,解得:x=9答:旗杆AB的高度是9米.【点睛】本题考查勾股定理的实际应用.结合题意,利用勾股定理列出含未知数的等式是解题关键.40.如图,学校要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,求旗杆的高度.【答案】12米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12,答:旗杆的高度为12米.【点睛】本题考查了勾股定理的应用,熟知勾股定理是解题关键.【类型六航海问题】【答案】30海里/小时【分析】先根据题意结合方位角的描述求出∠ABC=90°以及AB、BC的长,再利用勾股定理求出AC的长即可得到答案.【详解】解:如图所示,由题意得,∠HAB=90°−60°=30°,∠MBC=90°−∠EBC=60°,∵AH∥BM,∴∠ABM=∠BAH=30°,∴∠ABC=∠ABM+∠MBC=90°,∵巡逻艇沿直线追赶,半小时后在点C处追上走私船,∴BC=18×0.5=9海里,在Rt△ABC中,∠ABC=90°,AB=12海里,BC=9海里,∴AC=√AB2+BC2=15海里,∴我军巡逻艇的航行速度是15=30海里/小时,0.5答:我军巡逻艇的航行速度是30海里/小时.【点睛】本题主要考查了勾股定理的实际应用,正确理解题意在Rt△ABC中利用勾股定理求出AC的长是解题的关键.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为处有一艘轮船准备沿直线向点多能收到多少次信号?(信号传播的时间忽略不计)【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;。
八年级下册数学《第十七章 勾股定理》专题 利用勾股定理解决折叠问题【例题1】(2021•西城区校级模拟)如图,Rt △ABC 中,AB =18,BC =12,∠B =90°,将△ABC 折叠,使点A 与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .8B .6C .4D .10【变式1-1】如图,△ABC中,∠C=90°,AC=3,AB=5,点D是边BC上一点,若沿将△ACD翻折,点C刚好落在边上点E处,则BD等于( )A.2B.52C.3D.103【变式1-2】如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为( )A.1cm B.2cm C.3cm D.4cm【变式1-3】(2021•鞍山一模)如图的三角形纸片中,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED的周长是( )A.7B.8C.11D.14【变式1-4】(2021秋•高邮市期末)如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm,点D、E 分别在AC、BC边上.现将△DCE沿DE翻折,使点C落在点H处.连接AH,则AH长度的最小值为( )A.0B.2C.4D.6【变式1-5】(2022秋•秦淮区校级月考)如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=12,BE=2,则AB2﹣AC2的值为( )A.20B.22C.24D.26【变式1-6】(2022•天津模拟)如图,Rt△ABC中,AB=8,BC=6,∠B=90°,M,N分别是边AC,AB上的两个动点.将△ABC沿直线MN折叠,使得点A的对应点D落在BC边的三等分点处,则线段BN的长为( )A.3B.53C.3或53D.3或154【变式1-7】(2022•平果市模拟)如图,在△ABC中,AC=5,BC=8,∠C=60°,BD=3,点D在边BC上,连接AD,如果将△ABD沿AD翻折后,点B的对应点为点E,那么点E到直线DC的距离为( )A B.4C D.5 2【变式1-8】(2023•沙坪坝区校级开学)如图,在△ABC中,∠C=90°,AC=BC=6,点D、E分别在AC边和AB边上,沿着直线DE翻折△ADE,点A落在BC边上,记为点F,如果CF=2,则BE的长为( )A.6B.C D【变式1-9】如图,在△ABC中,D为BC中点,连接AD,把△ABD沿着AD折叠得到△AED,连接EC,若DE=5,EC=6,AB=AD的长是( )A.4B.5C.6D.7【变式1-10】(2022秋•南海区校级月考)如图,Rt△ABC中,∠ABC=90°,AB=8,BC=D在AC 上,将△ABD 沿BD 折叠,点A 落在点A '处,A 'B 与AC 相交于点E ,则A 'E 的最大值为( )A .B .83C .163D .8﹣【变式1-11】如图,在△ABC 中,D 是BC 边上的中点,连接AD ,把△ACD 沿AD 翻折,得到△ADC ′,DC ′与AB 交于点E ,连接BC ′,若BD =BC ′=2,AD =3,则点D 到AC ′的距离( )A B C D 【变式1-12】(2020春•沙坪坝区校级月考)如图,在△ABC 中,∠ACB =120°,AC =6,BC =3,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段CF 的长为( )A B C D【例题2】(2021春•东昌府区期末)如图,在矩形ABCD 中,BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上F 处,则EF 的长是( )A .3B .245C .5D .8916【变式2-1】如图,在长方形纸片ABCD 中,AB =12,BC =5,点E 在AB 上,将△DAE 沿DE 折叠,使点A 落在对角线BD 上的点F 处,求AE 的长.【变式2-3】(2021秋•锦江区期末)如图,长方形ABCD 中,AB =5,AD =25,将此长方形折叠,使点D 与点B 重合,折痕为EF ,则BE 的长为( )A .12B .8C .10D .13【变式2-4】(2021春•栾城区期末)如图所示,在矩形ABCD 中,AB =4,AD =8,将矩形沿BD折叠,点A落在点E处,DE与BC交于点F,则重叠部分△BDF的面积是( )A.20B.16C.12D.10【变式2-5】(2021•斗门区一模)如图所示,矩形纸片ABCD中,AB=4cm,BC=8cm,现将其沿EF 对折,使得点C与点A重合,则AF的长为 .【变式2-6】(2021秋•历城区期末)如图,已知长方形纸片ABCD,点E在边AB上,且BE=4,BC=6,将△CBE沿直线CE翻折,使点B落在点G,延长EG交CD于点F,则线段FG的长为 .【变式2-7】如图,在矩形ABCD中,AB=2,BC=4,把矩形折叠,使点D与点B重合,点C落在点E 处,则折痕FG的长为( )A.2.5B.3C D.【变式2-8】如图,在矩形ABCD中,连接BD,将△ABD沿BD进行折叠,使得点A落到点M处,DM 交BC于点N,若AB=2,BD=5,则MN的长度为( )A B C.D.【变式2-9】(2022秋•梅县区校级期末)如图是一张矩形纸片ABCD,点E,G分别在边BC,AB上,把△DCE沿直线DE折叠,使点C落在对角线BD上的点F处;把△DAG沿直线DG折叠,使点A落在线段DF上的点H处,HF=1,BF=8,则矩形ABCD的面积为( )A.420B.360C.D.【变式2-10】(2022春•柯桥区期末)在矩形ABCD中,将边AB翻折到对角线BD上,点A落在点M 处,折痕BE交AD于点E.将边CD翻折到对角线BD上,点C落在点N处,折痕DF交BC于点F.AB=5,MN=3,则BC的长( )A.5B.12或C.12D.12或13【例题3】(2021春•永嘉县校级期末)如图,将边长为8cm正方形纸片ABCD折叠,使点D落在BC 边的中点E处,点A落在点F处,折痕为MN,则线段CN的长是( )A.6cm B.5cm C.4cm D.3cm【变式3-1】(2022•宽城区一模)如图,将正方形纸片ABCD折叠,使顶点B落在边AD上的点E处,折痕交AB于点F,交CD于点G,若AE=1,∠AFE=30°,则AB的长为( )A.2B.1+C.D.2【变式3-2】(2022春•桂林期末)如图,正方形ABCD的边长为4,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH,若BE:EC=3:1,则线段CH的长是( )A.3B.158C.1D.2【变式3-3】(2022春•大连月考)如图,在正方形ABCD 中,AB =4,点E 是CD 边的中点,将该纸片折叠,使点B 与点E 重合,折痕交AD ,BC 边于点M ,N ,连接ME ,NE .则ME 的长为 .【变式3-4】(2022春•荔城区校级月考)如图,在边长为7的正方形ABCD 中,E 为BC 边上一点,F 为AD 边上一点,连接AE 、EF ,将△ABE 沿EF 折叠,使点A 恰好落在CD 边上的A ′处,若A ′D =2,则B ′E 的长度为( )A .2714B .137C .2514D .2【变式3-5】如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若AD =4cm ,则CF 的长为( )cmA .6﹣B .6﹣C .32D .54【变式3-6】(2022春•社旗县期末)如图,点E 和点F 分别在正方形纸片ABCD 的边CD 和AD 上,连接AE ,BF ,沿BF 所在直线折叠该纸片,点A 恰好落在线段AE 上点G 处.若正方形纸片边长12,DE =5,则GE 的长为( )A .4913B .5013C .4D .3【变式3-7】(2022春•长清区期末)如图1,将正方形纸片ABCD 对折,使AB 与CD 重合,折痕为EF 如图2,展开后再折叠一次,使点C 与点E 重合,折痕为GH ,点B 的对应点为点M ,EM 交AB 于N ,AD =4,则CH 的长为( )A .52B .65C .34D .54【变式3-8】(2022秋•和平区期末)如图,已知正方形ABCD 面积为2,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A B.2C.8D.【变式3-9】(2022春•满洲里市校级期末)如图,在正方形ABCD中,E为CD边上一点,将△AED沿着AE翻折得到△AEF,点D的对应点F恰好落在对角线AC上,连接BF.若EF=2,则BF2=( )A.4B.C.12D.【变式3-10】如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.(1)求证:△ABG≌△AFG;(2)求GC的长;(3)求△FGC的面积.。
勾股定理经典例题类型一:勾股定理的直接用法1、在Rt △ABC 中,∠C=90°(1)已知a=6,c=10,求b ,(2)已知a=40,b=9,求c ;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
举一反三【变式】:如图∠B =∠ACD =90°,AD =13,CD =12,BC =3,则AB 的长是多少类型二:勾股定理的构造应用2、如图,已知:在中,,,.求:BC 的长.1、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( )A 、450a 元B 、225a 元C 、150a 元D 、300a 元举一反三【变式1】如图,已知:,,于P .求证:.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD 的面积。
150° 20m 30m类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。
(1)求A、C两点之间的距离。
(2)确定目的地C在营地A的什么方向。
举一反三【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门(二)用勾股定理求最短问题4、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.类型四:利用勾股定理作长为的线段5、作长为、、的线段。
作法:如图所示举一反三【变式】在数轴上表示的点。
解析:可以把看作是直角三角形的斜边,,为了有利于画图让其他两边的长为整数,而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。
小专题(二) 利用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题 1.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为( )A.252 cmB.152 cmC.254 cm D.154cm2.如图所示,有一块直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为( )A .1 cmB .1.5 cmC .2 cmD .3 cm3.(青岛中考)如图,将长方形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上,若AB =6,BC =9,则BF 的长为( )A .4B .3 2C .4.5D .54.如图,长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .65.(铜仁中考)如图,在长方形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C ′处,BC ′交AD 于点E ,则线段DE 的长为( )A .3 B.154 C .5 D.1526.如图,在长方形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是( )A.210-2B.6C.213-2D.47.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE 的周长为________.8.如图,在Rt△ABC中,∠C=90°,BC=6 cm,AC=8 cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB 边的C′点,那么△ADC′的面积是________.9.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的锐角A翻折,使得点A落在BC边的中点D处,折痕交AC边于点E,交AB边于点F,则DE的值为________.10.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________.11.为了向建国六十六周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级(1)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20 cm,宽AB=16 cm的长方形纸片ABCD,②将纸片沿着直线AE折叠,点D恰好落在BC边上的F处,请你根据①②步骤解答下列问题:计算EC,FC的长.类型2 利用勾股定理解决立体图形的展开问题1.如图,一圆柱体的底面周长为24 cm,高AB为5 cm,BC是直径,一只蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是( )A.6 cm B.12 cmC.13 cm D.16 cm2.如图,圆柱形玻璃杯,高为12 cm,底面周长为18 cm,在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm.3.如图,在一个长为2 m,宽为1 m的长方形草地上,放着一根长方体的木块,它的棱和场地宽AD平行且棱长大于AD,木块从正面看是边长为0.2 m的正方形,一只蚂蚁从点A处到达C处需要走的最短路程是________m(精确到0.01 m).4.一位同学要用彩带装饰一个长方体礼盒.长方体高6 cm,底面是边长为4 cm的正方形,从顶点A到顶点C′如何贴彩带用的彩带最短?最短长度是多少?5.如图,一个长方体形状的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.参考答案类型11.D 2.A 3.A 4.D 5.B 6.A 7.7 8.6 cm29.13310.1.511.因为△ADE与△AFE关于AE对称,所以△ADE≌△AFE.所以DE=FE,AD=AF.因为BC=20 cm,AB=16 cm,所以CD=16 cm,AD=AF=20 cm.在Rt△ABF中,由勾股定理,得BF=12 cm.所以CF=20-12=8(cm).因为四边形ABCD是长方形,所以∠C=90°.设CE=x,则DE=EF=16-x,在Rt△CEF中,由勾股定理,得(16-x)2=64+x2.解得:x=6.所以EC=6 cm.答:EC=6 cm,CF=8 cm.类型21.C 2.15 3.2.604.把长方体的面DCC′D′沿棱C′D′展开至面ABCD上,如图.构成矩形ABC′D′,则A到C′的最短距离为AC′的长度,连接AC′交DC于O,易证△AOD≌△C′OC.∴OD=OC.即O为DC的中点,由勾股定理,得AC′2=AD′2+D′C′2=82+62=100,∴AC′=10 cm.即从顶点A沿直线到DC中点O,再沿直线到顶点C′,贴的彩带最短,最短长度为10 cm.5.(1)如图,木柜的表面展开图是两个矩形ABC′1D1和ACC1A1.蚂蚁能够最快到达目的地的可能路径有如图所示的AC′1和AC1两种.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长l1=42+(4+5)2=97.蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长l2=(4+4)2+52=89.∵l1>l2,∴最短路径的长是89.。
勾股定理的应用——折叠问题(专题)一、单选题(共10道,每道10分)1.如图,长方形纸片ABCD中,AB=12,AD=5,折叠纸片使AD边与线段BD重合,折痕为DG,则AG的长为( )A. B.6C. D.答案:D解题思路:由题意得,BD=13;由折叠知D=AD=5,G=AG,∠DA′G=∠A=90°.∴B=8.设AG=x,则,BG=12-x.在Rt△BG中,∠BA′G=90°,由勾股定理得,,即,解得,.故选D.试题难度:三颗星知识点:略2.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则EF=( )A.4cmB.3cmC.5cmD.6cm答案:C解题思路:如图,AF=AD=BC=10,在Rt△ABF中,由勾股定理得,BF=6,所以FC=4,设EF=DE=x,则CE=8-x,在Rt△ECF中,∠C=90°,由勾股定理得,,解得,x=5.故选C.试题难度:三颗星知识点:略3.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则AE的长为____,△ABE的周长为____.( )A.,7B.,7C.,D.,答案:A解题思路:解:由题意知,在Rt△ABC中,∠B=90°,AB=3,AC=5由勾股定理得,BC=4由折叠知,AE=EC设AE=EC=x,则BE=4-x在Rt△ABE中,∠B=90°由勾股定理得,解得,则AE=,BE=∴△ABE的周长为3+x+(4-x) =3+4=7综上,AE的长为,△ABE的周长为7故选A试题难度:三颗星知识点:略4.如图,将一长方形纸片ABCD折叠,使两个顶点A,C重合,折痕为EF.若AB=4,BC=8,则△ABF的面积为( )A.6B.12C.10D.20答案:A解题思路:解:由题意知,将长方形纸片ABCD折叠,使两个顶点A,C重合,折痕为EF,∴AF=CF,∵在长方形ABCD中,AB=4,BC=8∴设BF=x,则AF=FC=8-x,在Rt△ABF中,∠B=90°,AB=4,BF=x,AF=8-x,由勾股定理得,AB2+BF2=AF2,42+x2=(8-x)2,解得,x=3,即BF=3,∴△ABF的面积为故选A.试题难度:三颗星知识点:略5.如图,长方形纸片ABCD中,AD=4,CD=3,折叠纸片使AB边与线段AC重合,折痕为AE,记与点B重合的点为F,则△CEF的面积与纸片ABCD的面积的比为( )A. B.C. D.答案:B解题思路:如图,在长方形ABCD中,AB=CD=AF=3,AD=BC=4,在Rt△ABC中,∠B=90°由勾股定理得,∴∴AC=5由折叠知,EF=BE,∠AFE=∠B=90°,设BE=x,则EF=BE=x在Rt△EFC中,∠CFE=90°,CF=AC-AF=2,EC=4-x,根据勾股定理得,∴解得,x=1.5∴∵∴故选B.试题难度:三颗星知识点:略6.如图,将边长为16cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F 处,折痕为MN,则CN=_____cm,AM=_____cm.( )A.6,2B.8,3C.10,2D.12,3答案:A解题思路:∵点E是BC边的中点,∴EC BC=8,设CN=x,则EN=DN=16-x,在Rt△ECN中,∠C=90°,由勾股定理得,EC2+CN2=EN2解得,x=6如图,连接DM,EM,则DM=EM,设AM=y,则BM=16-y,在Rt△ADM中,∠A=90°,由勾股定理得,在Rt△BEM中,∠B=90°,由勾股定理得,,∵DM=ME,∴解得,y=2故选A.试题难度:三颗星知识点:略7.如图,将边长为12cm的正方形纸片ABCD折叠,使得点A落在边CD上的点E处,折痕为MN.若CE的长为8cm,则AM=_____cm,BN=_____cm.( )A.,1B.,C.,D.,1答案:C解题思路:如图,设AM=x,在Rt△MED中,∠D=90°,由勾股定理,得解得,x=,即AM=,MD=,连接AN,NE,则AN=NE,设BN=y,则CN=12-y,在Rt△ABN中,∠B=90°,由勾股定理,在Rt△CEN中,∠C=90°,由勾股定理,,∵AN=NE,∴解得,故选C.试题难度:三颗星知识点:略8.如图,把长方形ABCD沿AC折叠,AD落在处,交BC于点E,已知AB=2cm,BC=4cm,则EC的长为( )A.2cmB.cmC.5cmD.cm答案:D解题思路:如图,由折叠知,∠DAC=∠EAC,∵AD∥BC,∴∠DAC=∠ECA,∴∠EAC=∠ECA,∴AE=EC设EC=x,则AE=EC=x∵BC=4,∴BE=4-x在Rt△ABE中,∠B=90°,AB=2,BE=4-x,AE=x,由勾股定理得,解得,即EC的长为cm故选D.试题难度:三颗星知识点:略9.把长方形纸片ABCD按如图所示的方式折叠,使点B与点D重合,折痕为EF.若BC=5cm,CD=3cm,则DE=( )cm.A. B.C. D.答案:B解题思路:如图,由折叠知,∠BFE=∠DFE,BF=DF,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF设DF=x,则BF=DF=x∵BC=5,∴CF=5-x在Rt△CDF中,∠C=90°,CD=3,CF=5-x,DF=x,由勾股定理得,解得,∴DE=DF=故选B.试题难度:三颗星知识点:略10.如图,长方形ABCD中,AB=4,BC=3,点E是CD边上一点,连接BE,把∠C沿BE折叠,使点C落在点F处.当△DEF为直角三角形时,DE的长为( )A.1B.1或C. D.3或答案:B解题思路:∵四边形ABCD是长方形,∴AB=CD=4,AD=BC=3,分两种情况讨论:①当∠FED=90°时,如图所示,则∠CEF=90°,由折叠的性质得:CE=FE=BC=3,∴DE=CD-CE=1;②当∠DFE=90°时,如图所示,在Rt△ABD中,∠A=90°,AB=4,AD=3,∴BD=5,由折叠的性质得:∠BFE=∠C=90°,BF=BC=3,EF=EC,∴∠DFE=∠BFE=90°,即点B,F,D三点共线,点F在BD上,∴DF=BD-BF=5-3=2,设DE=x,则EF=CE=4-x在Rt△DEF中,∠EFD=90°,DE=x,EF=4-x,DF=2,由勾股定理得,解得,综上所述,DE的长为1或;故选B.试题难度:三颗星知识点:略第11页共11页。
人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)类型一 利用勾股定理解决三角形的折叠问题1.如图 △ABC 中 ∠ACB =90° AC =8 BC =6 将△ADE 沿DE 翻折使点A 与点B 重合 则CE 的长为 .思路引领:设CE =x 则AE =BE =8﹣x 在Rt △BCE 中 由勾股定理可得62+x 2=(8﹣x )2 即可解得答案.解:设CE =x 则AE =BE =8﹣x在Rt △BCE 中 BC 2+CE 2=BE 2∴62+x 2=(8﹣x )2解得x =74故答案为:74. 总结提升:本题考查直角三角形中的折叠问题 解题的关键是掌握折叠的性质 熟练应用勾股定理列方程解决问题.2.(2021秋•介休市期中)如图所示 有一块直角三角形纸片 ∠C =90° AC =8cm BC =6cm 将斜边AB 翻折 使点B 落在直角边AC 的延长线上的点E 处 折痕为AD 则CE 的长为 cm .思路引领:根据勾股定理可将斜边AB 的长求出 根据折叠的性质知 AE =AB 已知AC 的长 可将CE 的长求出.解:在Rt △ABC 中∵∠C=90°AC=8cm BC=6cm∴AB=√AC2+BC2=10cm根据折叠的性质可知:AE=AB=10cm∵AC=8cm∴CE=AE﹣AC=2cm即CE的长为2cm故答案为:2.总结提升:此题考查翻折问题将图形进行折叠后两个图形全等是解决折叠问题的突破口.3.(2020秋•金台区校级期末)如图在△ABC中∠ACB=90°点E F在边AB上将边AC沿CE翻折使点A落在AB上的点D处再将边BC沿CF翻折使点B落在CD的延长线上的点B′处(1)求∠ECF的度数;(2)若CE=4 B′F=1 求线段BC的长和△ABC的面积.思路引领:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB' 再根据∠ACB=90°即可得出∠ECF=45°;(2)在Rt△BCE中根据勾股定理可得BC=√41设AE=x则AB=x+5 根据勾股定理可得AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41 求得x=165得出AE的长和AB的长再由三角形面积公式即可得出S△ABC.解:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB'又∵∠ACB=90°∴∠ACD+∠BCB'=90°∴∠ECD+∠FCD=12×90°=45°即∠ECF=45°;(2)由折叠可得:∠DEC=∠AEC=90°BF=B'F=1 ∴∠EFC=45°=∠ECF∴CE=EF=4∴BE=4+1=5在Rt△BCE中由勾股定理得:BC=√BE2+CE2=√52+42=√41设AE=x则AB=x+5∵Rt△ACE中AC2=AE2+CE2Rt△ABC中AC2=AB2﹣BC2∴AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41解得:x=16 5∴AE=165AB=AE+BE=165+5=415∴S△ABC=12AB×CE=12×415×4=825.总结提升:本题主要考查了折叠变换的性质、勾股定理、三角形面积等知识;熟练掌握折叠变换的性质由勾股定理得出方程是解题的关键.4.(2022秋•安岳县期末)如图在△ABC中∠C=90°把△ABC沿直线DE折叠使△ADE与△BDE 重合.(1)若∠A=34°则∠CBD的度数为;(2)当AB=m(m>0)△ABC的面积为2m+4时△BCD的周长为(用含m的代数式表示);(3)若AC=8 BC=6 求AD的长.思路引领:(1)根据折叠可得∠1=∠A=34°根据三角形内角和定理可以计算出∠ABC=56°进而得到∠CBD=22°;(2)根据三角形ACB的面积可得12AC•BC=2m+4 进而得到AC•BC=4m+8 再在Rt△CAB中CA2+CB2=BA2再把左边配成完全平方可得CA+CB的长进而得到△BCD的周长;(3)根据折叠可得AD=DB设CD=x则AD=BD=8﹣x再在Rt△CDB中利用勾股定理可得x2+62=(8﹣x)2再解方程可得x的值进而得到AD的长.解:(1)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴∠ABD =∠A =34°∵∠C =90°∴∠ABC =180°﹣90°﹣34°=56°∴∠CBD =56°﹣34°=22°故答案为:22°;(2)∵△ABC 的面积为2m +4∴12AC •BC =2m +4 ∴AC •BC =4m +8∵在Rt △CAB 中 CA 2+CB 2=BA 2 AB =m∴CA 2+CB 2+2AC •BC =BA 2+2AC •BC∴(CA +BC )2=m 2+8m +16=(m +4)2∴CA +CB =m +4∵AD =DB∴CD +DB +BC =m +4.即△BCD 的周长为m +4故答案为:m +4;(3)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴AD =DB设CD =x 则AD =BD =8﹣x在Rt △CDB 中 CD 2+CB 2=BD 2x 2+62=(8﹣x )2解得:x =74AD =8−74=254.总结提升:此题主要考查了图形的翻折变换 以及勾股定理 完全平方公式 关键是掌握勾股定理 以及折叠后哪些是对应角和对应线段.5.(2021秋•章丘区期中)(1)如图① Rt △ABC 的斜边AC 比直角边AB 长2cm 另一直角边BC 长为6cm 求AC 的长.(2)拓展:如图②在图①的△ABC的边AB上取一点D连接CD将△ABC沿CD翻折使点B的对称点E落在边AC上.①AE的长.②求DE的长.思路引领:(1)在Rt△ABC中由勾股定理可求AB的长即可求解;(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm于是得到答案;②在Rt△ADE中由勾股定理可求DE的长.解:(1)设AB=xcm则AC=(x+2)cm∵AC2=AB2+BC2∴(x+2)2=x2+62解得x=8∴AB=8cm∴AC=8+2=10(cm);(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm∴∠AED=90°AE=AC﹣EC=4(cm);②设DE=DB=ycm则AD=AB﹣BD=(8﹣y)cm在Rt△ADE中AD2=AE2+DE2∴(8﹣y)2=42+y2解得:y=3∴DE=3(cm).总结提升:本题考查了翻折变换折叠的性质勾股定理利用勾股定理列出方程是本题的关键.类型二利用勾股定理解决长方形的折叠问题6.(2022•纳溪区模拟)如图在矩形ABCD中AB=5 AD=3 点E为BC上一点把△CDE沿DE翻折 点C 恰好落在AB 边上的F 处 则CE 的长为 .思路引领:利用勾股定理得出AF 的长度 再利用折叠的性质 在△BEF 中求解BE 的长 即可得出CE 的长度.解:在矩形ABCD 中 AB =5 AD =3 由折叠的性质可得:DF =DC =AB =5∴AF =√DF 2−AD 2=√52−32=4∴BF =AB ﹣AF =5﹣4=1设CE =x 则:EF =CE =x BE =BC ﹣CE =3﹣x在Rt △BEF 中 由勾股定理可得:12+(3﹣x )2=x 2解得:x =53∴CE =53故答案为:53. 总结提升:本题考查了折叠的性质、矩形的性质和勾股定理等知识点 解题的关键是利用AF 求出BF 的长度.7.(2021•郯城县校级模拟)如图 在长方形ABCD 中 AB =3cm AD =9cm 将此长方形折叠 使点D 与点B 重合 折痕为EF 则△ABE 的面积为( )cm 2.A .12B .10C .6D .15思路引领:由长方形的性质得BAE =90° 再由折叠的性质得BE =ED 然后在Rt △ABE 中 由勾股定理得32+AE2=(9﹣AE)2解得AE=4(cm)即可求解.解:∵四边形ABCD是长方形∴∠BAE=90°∵将此长方形折叠使点B与点D重合∴BE=ED∵AD=9=AE+DE=AE+BE∴BE=9﹣AE在Rt△ABE中由勾股定理得:AB2+AE2=BE2∴32+AE2=(9﹣AE)2解得:AE=4(cm)∴S△ABE=12AB•AE=12×3×4=6(cm2)故选:C.总结提升:本题考查了翻折变换的性质、矩形的性质以及勾股定理等知识;熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.8.(2020春•余干县校级期末)如图把长方形纸片ABCD沿EF折叠使点B落在边AD上的点B'处点A落在点A'处.(1)试说明B'E=BF;(2)设AE=a AB=b BF=c试猜想a b c之间的关系并说明理由.思路引领:(1)根据折叠的性质、平行的性质及等角对等边即可说明;(2)根据折叠的性质将AE、AB、BF都转化到直角三角形△A'B'E中由勾股定理可得a b c之间的关系.(1)证明:由折叠的性质得:B'F=BF∠B'FE=∠BFE在长方形纸片ABCD中AD∥BC∴∠B'EF=∠BFE∴∠B'FE=∠B'EF∴B'F=B'E∴B'E=BF.(2)解:a b c之间的关系是a2+b2=c2.理由如下:由(1)知B'E=BF=c由折叠的性质得:∠A'=∠A=90°A'E=AE=a A'B'=AB=b.在△A'B'E中∵∠A'=90°∴A'E2+A'B'2=B'E2∴a2+b2=c2.总结提升:本题考查了翻折变换的性质、矩形的性质、等腰三角形的判定、勾股定理等知识;灵活利用折叠的性质进行线段间的转化是解题的关键.9.(2020秋•罗湖区校级期末)如图把一张长方形纸片ABCD折叠起来使其对角顶点A与C重合D 与G重合若长方形的长BC为8 宽AB为4 求:(1)DE的长;(2)求阴影部分△GED的面积.思路引领:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中根据AG2+EG2=AE2构建方程即可解决问题;(2)过G点作GM⊥AD于M根据三角形面积不变性AG×GE=AE×GM求出GM的长根据三角形面积公式计算即可.解:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中AG2+EG2=AE2∴16+x2=(8﹣x)2解得x=3∴DE=3.(2)过G 点作GM ⊥AD 于M则12•AG ×GE =12•AE ×GM AG =AB =4 AE =CF =5 GE =DE =3 ∴GM =125∴S △GED =12GM ×DE =185.总结提升:本题主要考查了折叠的性质、勾股定理以及三角形面积不变性 灵活运用折叠的性质、勾股定理等几何知识点来分析、判断、推理是解题的关键.类型三 利用勾股定理解决正方形的折叠问题10.(2019•黔东南州一模)如图 将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处 点C 落在点Q 处 折痕为FH 则线段AF 的长为( )A .32B .3C .94D .154思路引领:由正方形的性质和折叠的性质可得EF =DE AB =AD =6cm ∠A =90° 由勾股定理可求AF 的长.解:∵将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处∴EF =DE AB =AD =6cm ∠A =90°∵点E 是AB 的中点∴AE =BE =3cm在Rt △AEF 中 EF 2=AF 2+AE 2∴(6﹣AF )2=AF 2+9∴AF=9 4故选:C.总结提升:本题考查了翻折变换正方形的性质勾股定理利用勾股定理求线段的长度是本题的关键.11.如图将边长为8cm的正方形纸片ABCD折叠使点D落在BC边的中点E处点A落在点F处折痕为MN则线段CN的长是()A.3cm B.4cm C.5cm D.6cm思路引领:由折叠的性质可得DN=NE由中点的性质可得EC=4cm结合正方形的性质可得∠BCD=90°;设CN的长度为xcm则EN=DN=(8﹣x)cm接下来在直角△CEN中运用勾股定理就可以求出CN的长度.解:∵四边形MNEF是由四边形ADMN折叠而成的∴DN=NE.∵E是BC的中点且BC=8cm∴EC=4cm.∵四边形ABCD是正方形∴∠BCD=90°.设CN的长度为xcm则EN=DN=(8﹣x)cm由勾股定理NC2+EC2=NE2得x2+42=(8﹣x)2解得x=3.故选:A.总结提升:本题考查翻折变换的问题折叠问题其实质是轴对称对应线段相等对应角相等找到相应的直角三角形利用勾股定理求解是解决本题的关键.第二部分专题提优训练1.(2022秋•慈溪市校级期中)在Rt△ABC中∠B=90°AB=4 BC=8 D、E分别是边AC、BC上的点将△ABC沿着DE进行翻折点A和点C重合则EC=.思路引领:设EC =x 在Rt △ABE 中 由勾股定理得42+(8﹣x )2=x 2 即可解得答案.解:设EC =x 则BE =8﹣x∵将△ABC 沿着DE 进行翻折 点A 和点C 重合∴AE =EC =x在Rt △ABE 中 AB 2+BE 2=AE 242+(8﹣x )2=x 2解得x =5∴EC =5故答案为:5.总结提升:本题考查直角三角形中的翻折问题 解题的关键是掌握翻折的性质 能应用勾股定理列方程解决问题.2.(2021秋•靖江市期中)如图 在Rt △ABC 中 ∠C =90° D 是AB 的中点 AD =5 BC =8 E 是直线BC 上一动点 把△BDE 沿直线ED 翻折后 点B 落在点F 处 当FD ⊥BC 时 线段BE 的长为 .思路引领:分点F 在BC 下方 点F 在BC 上方两种情况讨论 由勾股定理可BC =4 由平行线分线段成比例可得BD AD =BP BC =DP AC =12 求出FP 由勾股定理可求BE 的长. 解:若点F 在BC 下方时 DF 与BC 交于点P 如图1所示:∵D 是AB 的中点∴BD =AD =5∴AB =2AD =10∵∠C =90° BC =8∴AC =√AB 2−BC 2=√102−82=6∵点D 是AB 的中点∵FD ⊥BC ∠C =90°∴FD ∥AC∴BD AD =BP BC =DP AC =12 ∴BP =PC =12BC =4 DP =12AC =3∵△BDE 沿直线ED 翻折∴FD =BD =5 FE =BE∴FP =FD ﹣DP =5﹣3=2在Rt △FPE 中 EF 2=FP 2+PE 2∴BE 2=22+(4﹣BE )2解得:BE =52;若点F 在BC 上方时 FD 的延长线交BC 于点P 如图2所示:FP =DP +FD =3+5=8在Rt △EFP 中 EF 2=FP 2+EP 2∴BE 2=64+(BE ﹣4)2解得:BE =10故答案为:52或10.总结提升:此题考查了折叠的性质、平行线的性质、直角三角形的性质以及勾股定理等知识 熟练掌握翻折变换的性质是解题的关键.3.如图 在Rt △ABC 中 AC =6 BC =8 D 为BC 上一点 将Rt △ABC 沿AD 折磨 点C 恰好落在AB 边上的E 点 求BD 的长.思路引领:由勾股定理求出AB=10 由折叠的性质得出CD=DE∠C=∠AED=90°AE=AC=6 得出BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得出方程解方程即可.解:∵Rt△ABC中AC=6 BC=8∴AB=√62+82=10由折叠的性质得:CD=DE∠C=∠AED=90°AE=AC=6∴BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得:x2+42=(8﹣x)2解得:x=3∴BD=8﹣3=5.总结提升:本题考查了翻折变换的性质、勾股定理等知识;熟练掌握翻折变换的性质由勾股定理得出方程是解题的关键.4.(2018秋•襄汾县校级月考)如图在Rt△ABC中∠C=90°AC=8 BC=6 按图中所示方法将△BCD沿BD折叠使点C落在边AB上的点C'处求AD的长及四边形BCDC′的面积.思路引领:利用勾股定理列式求出AB根据翻折变换的性质可得BC′=BC C′D=CD然后求出AC′设AD=x表示出C′D、AC′然后利用勾股定理列方程求解即可求出AD;然后根据三角形的面积公式计算即可求出四边形BCDC′的面积.解:∵∠C=90°AC=8 BC=6∴AB=√AC2+BC2=10由翻折变换的性质得BC′=BC=6 C′D=CD∴AC′=AB﹣BC′=10﹣6=4设CD=x则C′D=x AD=8﹣x在Rt△AC′D中由勾股定理得AC′2+C′D2=AD2即42+x2=(8﹣x)2解得x=3即CD=3∴AD=8﹣x=5;由折叠可知:S△BCD=S△BC′D∴四边形BCDC′的面积=2S△BCD=2×12×CD•BC=3×6=18.总结提升:本题考查了翻折变换的性质勾股定理此类题目熟记性质并利用勾股定理列出方程是解题的关键.5.(2021春•厦门期中)在矩形ABCD中AB=3 BC=4 E是AB上一个定点点F是BC上一个动点把矩形ABCD沿直线EF折叠点B的对应点B′落在矩形内部.若DB′的最小值为3 则AE=53.思路引领:连接DE则DB′+EB′≥DE由EB′=EB为定值故当D E B′三点共线时DB′最小利用勾股定理建立方程即可求解.解:如图1 连接DE由折叠性质可得:EB′=EB∵DB′+EB′≥DE∴DB′≥DE﹣EB′=DE﹣EB∵点E为定点∴EB为定值∴当D E B′三点共线时DB′最小且最小值为3∴DB′=3如图2∵四边形ABCD 为矩形∴∠A =90° AD =BC =4设AE =x 则:EB ′=EB =AB ﹣AE =3﹣x∴ED =EB ′+DB ′=3﹣x +3=6﹣x在Rt △AED 中 由勾股定理可得:x 2+42=(6﹣x )2解得:x =53∴AE =53故答案为:53. 总结提升:本题考查折叠的性质、矩形的性质、勾股定理等知识点 解题的关键是运用方程思想.6.(2021秋•城阳区校级月考)把一张矩形纸片(矩形ABCD )按如图方式折叠 使顶点B 和点D 重合 折痕为EF .若AB =3cm BC =5cm 则重叠部分△DEF 的面积是( )cm 2.A .2B .3.4C .4D .5.1思路引领:由矩形的性质得AD =BC =5cm CD =AB =3cm ∠A =90° 再由折叠的性质得A 'D =AB =3cm ∠A '=∠A =90° AE '=AE 设AE =xcm 则A ′E =xcm DE =(5﹣x )cm 然后在Rt △A 'DE 中 由勾股定理得出方程 解方程 进而得出DE 的长 即可解决问题.解:∵四边形ABCD 是矩形 AB =3cm BC =5cm∴AD=BC=5cm CD=AB=3cm∠A=90°由折叠的性质得:A'D=AB=3cm∠A'=∠A=90°AE'=AE 设AE=xcm则A′E=xcm DE=(5﹣x)cm在Rt△A'DE中由勾股定理得:A′E2+A′D2=ED2即x2+32=(5﹣x)2解得:x=1.6∴DE=5﹣1.6=3.4(cm)∴△DEF的面积=12DE•CD=12×3.4×3=5.1(cm2)故选:D.总结提升:此题考查了翻折变换的性质、矩形的性质、勾股定理以及三角形面积等知识熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.7.(2017秋•金牛区校级月考)如图在矩形ABCD中E是AD的中点将△ABE沿BE折叠后得到△GBE 延长BG交CD于点F结果发现F点恰好是DC的中点若BC=2√6则AB的长为?思路引领:连接EF由折叠性质得AE=EG∠A=∠EGB=90°BG=AB则∠EGF=90°易证EG=DE由矩形的性质得AB=CD∠C=∠D=90°推出∠EGF=∠D=90°由HL证得Rt△EGF≌Rt△EDF得出FG=FD求得CF=DF=FG=12CD=12AB BF=BG+FG=32AB由勾股定理得出BC2+CF2=BF2即可得出结果.解:连接EF如图所示:由折叠性质得:AE=EG∠A=∠EGB=90°BG=AB ∴∠EGF=90°∵点E是AD的中点∴AE=DE∴EG=DE∵四边形ABCD是矩形∴AB=CD∠C=∠D=90°∴∠EGF =∠D =90°在Rt △EGF 与Rt △EDF 中 {EG =ED EF =EF∴Rt △EGF ≌Rt △EDF (HL )∴FG =FD∵F 点恰好是DC 的中点∴CF =DF =FG =12CD =12AB∴BF =BG +FG =AB +12AB =32AB在Rt △BCF 中 BC 2+CF 2=BF 2即:(2√6)2+(12AB )2=(32AB )2 解得:AB =2√3.总结提升:本题考查了折叠的性质、矩形的性质、全等三角形的判定与性质、勾股定理等知识 熟练掌握折叠的性质 证明三角形全等是解题的关键.8.(2018春•新抚区校级期中)如图 在矩形ABCD 中 已知AD =10 AB =8 将矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处 求CE 的长.思路引领:先根据矩形的性质得AD =BC =10 AB =CD =8 再根据折叠的性质得AF =AD =10 EF =DE 在Rt △ABF 中 利用勾股定理计算出BF =6 则CF =BC ﹣BF =4 设CE =x 则DE =EF =8﹣x 然后在Rt △ECF 中根据勾股定理得到x 2+42=(8﹣x )2 再解方程即可得到CE 的长.解:∵四边形ABCD 为矩形∴AD =BC =10 AB =CD =8∵矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处∴AF=AD=10 EF=DE在Rt△ABF中∵BF=√AF2−AB2=6∴CF=BC﹣BF=10﹣6=4设CE=x则DE=EF=8﹣x在Rt△ECF中∵CE2+FC2=EF2∴x2+42=(8﹣x)2解得x=3即CE=3.总结提升:本题考查了折叠的性质:折叠是一种对称变换它属于轴对称折叠前后图形的形状和大小不变位置变化对应边和对应角相等.也考查了矩形的性质和勾股定理.9.(2018秋•通川区校级期中)将一张边长为2的正方形纸片ABCD对折设折痕为EF(如图(1));再沿过点D的折痕将∠A翻折使得点A落在线段EF上的点H处(如图(2))折痕交AE于点G则EG 的长度是()A.8﹣4√3B.4√3−6C.4﹣2√3D.2√3−3思路引领:由于正方形纸片ABCD的边长为2 所以将正方形ABCD对折后AF=DF=1 由折叠的性质得出AD=DH=2 AG=GH在Rt△DFH中利用勾股定理可求出HF的长进而求出EH的长再设EG=x在Rt△EGH中利用勾股定理即可求解.解:∵正方形纸片ABCD的边长为2∴将正方形ABCD对折后AE=DF=1∵△GDH是△GDA沿直线DG翻折而成∴AD=DH=2 AG=GH在Rt△DFH中HF=√HD2−DF2=√22−12=√3∴EH=2−√3在Rt△EGH中设EG=x则GH=AG=1﹣x∴GH2=EH2+EG2即(1﹣x)2=(2−√3)2+x2解得x=2√3−3.∴EG=2√3−3.故选:D.总结提升:本题考查了正方形的性质折叠的性质勾股定理关键是学会用方程的思想方法解题.10.(2020秋•新都区校级月考)如图AD是△ABC的中线∠ADC=45°把△ADC沿着直线AD对折点C落在点E的位置.如果BC=6 那么以线段BE为边长的正方形的面积为()A.6B.72C.12D.18思路引领:由题意易得BD=CD=DE=3 再求出∠BDE=90°然后根据勾股定理求出BE最后由正方形的面积进行求解即可.解:∵D是BC中点BC=6∴BD=CD=3由折叠的性质得:CD=DE=3 ∠ADC=∠ADE=45°即∠CDE=90°∴BD=DE=3 ∠BDE=90°在Rt△BDE中由勾股定理得:BE=√BD2+DE2=√32+32=3√2∴以BE为边的正方形面积为:(3√2)2=18故选:D.总结提升:本题考查了折叠的性质、勾股定理、正方形的面积计算等知识熟练掌握勾股定理及折叠的性质是解题的关键.。
勾股定理中的折叠问题
1、如图,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,求
线段BN的长.
2、在一张直角三角形纸片中,两条直角边BC等于6,AC等于8,将三角形ABC按如图所示的方式折叠,使点A 和点B重合,折痕为DE,求CD的长
3、如图所示,在△ABC中,AB=20,AC=12,BC=16,把△ABC折叠,使AB落在直线AC上,求重叠部分(阴影部分)
的面积.
变式:如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使AC恰好落在
斜边AB上,且点C与点E重合,求CD的长。
4、如图所示,折叠长方形的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10CM,求DE的长
5、在长方形ABCD中,AB=6,BC=8,将长方形ABCD沿CE折叠后,点D恰好在对角线AC上的点F处、求EF的长。
6、如图,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点B恰好落
在CD边上的点G处,求BE的长.
7、如图,在长方形ABCD中,将△ABC沿AC对折至△AEC位置,CE与AD交于点F.
(1)试说明:AF=FC;
(2)如果AB=3,BC=4,求AF的长.。
勾股定理在折叠问题中的应用(习题)例题示范例1:如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 沿过点A 的直线折叠,使点B 恰好落在AC 边上的点B ′处,若折痕交BC 于点E ,则B′E 的长为_________.思路分析:在Rt △ABC 中,∠B =90°,AB =3,BC =4由勾股定理,得AC =5找折痕,转移,表达设B′E =x ,由折叠,得BE =B′E =x ,AB′=AB =3∴CE =4-x ,B′C =2利用勾股定理列方程在Rt △EB′C 中,由勾股定理,得x 2+22=(4-x )2解得x =32巩固练习1.如图,直角三角形纸片OAB,∠AOB=90°,OA=1,OB=2,折叠该纸片,使点B与点A重合,若折痕交OB于点C,交AB于点D,则OC的长为_________.2.如图,折叠长方形ABCD的一边AD,使点D落在BC边上的点F处,若AB=4cm,BC=5cm,则EF的长为________.3.如图,在长方形纸片ABCD中,AD=8,折叠纸片使点B落在线段AC上的点F处,折痕交BC于点E,若EF=3,则AB 的长为_________.4.如图是一张直角三角形纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,若折痕交BC于点D,交AB于点E,则CD=________,DE=_________.5.如图,将正方形纸片ABCD沿MN折叠,使点D落在边AB上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则DM=________,CN=_________.6.如图,长方形ABCD中,AB=8,BC=4,将长方形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为_________.7.如图,把长方形纸片ABCD折叠,使点C与点A重合,折痕为EF.若BC=8,AB=4,则AE=________,EF=_________.8.如图,将长方形ABCD折叠,使点A与点C重合,折痕分别交AD,BC于点E,F,若AB=3,AD=4,则DE的长为______.9.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,若点D在线段BC上,将△ABC沿AD折叠,使点C的对应点C′恰好落在AB边上,则BD的长为_________.10.如图,长方形ABCD中,AB=12,AD=5,点E是CD边上一点,连接AE,把∠D沿AE折叠,使点D落在点D′处.当△CD′E为直角三角形时,DE的长为____________.思考小结1.请回顾轴对称(折叠)的思考层次(1)全等变换:对应边_______、对应角_______.(2)对称轴性质:①对应点所连线段_____________________;②对称轴上的点_______________________.(3)组合搭配:长方形背景下的折叠常出现______三角形.(4)作图:关注_______和________,有时需要依据不变特征分析转化,补全图形.①当对称轴已知时,直接作_____________找对应点;②当对应点已知时,作__________________________,找对称轴(折痕);③当对称轴过定点时,常作_____找对应点.【参考答案】 例题示范1.32巩固练习1.342.5cm23.64.7cm4,15cm 45.103,4 36.107.5,258.789.5310.103或5思考小结1.(1)相等,相等.(2)①被对称轴垂直平分;②到对应点的距离相等.(3)等腰(4)对称轴、对应点①点的对称点②对应点所连线段的垂直平分线③弧。
几何图形折叠问题【疑难点拨】1.折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2.折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.3.矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4.凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.1.常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【基础篇】一、选择题:1..(2018•四川凉州•3分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()AD=BC′B.∠EBD=∠EDB C.△ABE∽△CBD D.sin∠ABE=A.2. (2017山东烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交于点D,点F是上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为().A.36π-108 B.108-32π C.2πD.π3. (2017浙江衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD 于点F,则DF的长等于()A.B.C.D.4.(2018·山东青岛·3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC的长是()A.B.32C.3 D.335.(2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.二、填空题:6.(2018·辽宁省盘锦市)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC.AB 上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为.7.(2018·山东威海·8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C 与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,则BC的长.8.(2018·湖南省常德·3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= .三、解答与计算题:9.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.10.(2018•山东枣庄•10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【能力篇】一、选择题:11.(2018·辽宁省阜新市)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为( ).A.4 B.5 C.6 D.712.(2018·四川省攀枝花·3分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为()A.1 B.2 C.3 D.413.(2018·湖北省武汉·3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A. B.C.D.二、填空题:14. (2018·辽宁省葫芦岛市) 如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若=,则= .15.(2018·四川宜宾·3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE 折叠,使点B落在矩形内点F处,下列结论正确的是(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=95;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.三、解答与计算题:16.(2018·湖北省宜昌·11分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B 的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.17.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.18.(2018•江苏盐城•10分)如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长.【探究篇】19.(2018年江苏省泰州市•12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)20.(2018年江苏省宿迁)如图,在边长为1的正方形ABCD中,动点E、F分别在边AB、CD上,将正方形ABCD 沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x,(1)当AM= 时,求x的值;(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.几何图形折叠问题【疑难点拨】1.折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2.折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.3.矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4.凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.1.常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【基础篇】一、选择题:1..(2018•四川凉州•3分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A.AD=BC′B.∠EBD=∠EDB C.△ABE∽△CBD D.sin∠ABE=【分析】主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.【解答】解:A、BC=BC′,AD=BC,∴AD=BC′,所以正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB正确.D、∵sin∠ABE=,∴∠EBD=∠EDB∴BE=DE∴sin∠ABE=.故选:C.【点评】本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.2. (2017山东烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交于点D,点F是上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为().A.36π-108 B.108-32π C.2πD.π【考点】MO:扇形面积的计算;P9:剪纸问题.【分析】先求出∠ODC=∠BOD=30°,作DE⊥OB可得DE=OD=3,先根据S弓形BD=S扇形BOD﹣S△BOD求得弓形的面积,再利用折叠的性质求得所有阴影部分面积.【解答】解:如图,∵CD⊥OA,∴∠DCO=∠AOB=90°,∵OA=OD=OB=6,OC=OA=OD,∴∠ODC=∠BOD=30°,作DE⊥OB于点E,则DE=OD=3,∴S弓形BD=S扇形BOD﹣S△BOD=﹣×6×3=3π﹣9,则剪下的纸片面积之和为12×(3π﹣9)=36π﹣108,故答案为:36π﹣108.故选A3. (2017浙江衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD 于点F,则DF的长等于()A.B.C.D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6﹣x)2,解方程求出x.【解答】解:∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,∴AE=AB,∠E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC,∵在△AEF与△CDF中,,∴△AEF≌△CDF(AAS),∴EF=DF;∵四边形ABCD为矩形,∴AD=BC=6,CD=AB=4,∵Rt△AEF≌Rt△CDF,∴FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6﹣x)2,解得x=,则FD=6﹣x=.故选:B.4.(2018·山东青岛·3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC的长是()A.B.32C.3 D.33【分析】由折叠的性质可知∠B=∠EAF=45°,所以可求出∠AFB=90°,再直角三角形的性质可知EF=AB,所以AB=AC的长可求,再利用勾股定理即可求出BC的长.【解答】解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,∴EF=12AB,EF=32,∴AB=AC=3,∵∠BAC=90°,∴BC=2,故选:B.【点评】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.5.(2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠DFE=∠GFE,结合∠AFG=60°即可得出∠GFE=60°,进而可得出△GEF为等边三角形,在Rt△GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC、DC= EC,再由GE=2BG结合矩形面积为4,即可求出EC的长度,根据EF=GE=2EC即可求出结论.【解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE.∵∠GFE+∠DFE=180°﹣∠AFG=120°,∴∠GFE=60°.∵AF∥GE,∠AFG=60°,∴∠FGE=∠AFG=60°,∴△GEF为等边三角形,∴EF=GE.∵∠FGE=60°,∠FGE+∠HGE=90°,∴∠HGE=30°.在Rt△GHE中,∠HGE=30°,∴GE=2HE=CE,∴GH==HE=CE.∵GE=2BG,∴BC=BG+GE+EC=4EC.∵矩形ABCD的面积为4,∴4EC•EC=4,∴EC=1,EF=GE=2.故选C.二、填空题:6.(2018·辽宁省盘锦市)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC.AB 上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=,由折叠可得:∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=.∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得:∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD\1AB=,∴AN=2,BN=,过N作NH⊥AM于H,则∠ANH=30°,∴AH=AN=1,HN=,由折叠可得:∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=.故答案为:或.7.(2018·山东威海·8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C 与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.(2018·湖南省常德·3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= 75°.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答与计算题:9.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE ≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.10.(2018•山东枣庄•10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.【能力篇】一、选择题:11.(2018·辽宁省阜新市)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为( ).A.4 B.5 C.6 D.7【解答】解:由折叠的性质可得AE=A1E.∵△ABC为等腰直角三角形,BC=8,∴AB=8.∵A1为BC的中点,∴A1B=4,设AE=A1E=x,则BE=8﹣x.在Rt△A1BE中,由勾股定理可得42+(8﹣x)2=x2,解得x=5.故答案为:5.故选B12.(2018·四川省攀枝花·3分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为()A.1 B.2 C.3 D.4解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴EC垂直平分BP,∴EP=EB,∴∠EBP=∠EPB.∵点E为AB中点,∴AE=EB,∴AE=EP,∴∠PAB=∠PBA.∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,∴∠PAB+∠PBA=90°,∴AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;②∵∠APB=90°,∴∠APQ+∠BPC=90°,由折叠得:BC=PC,∴∠BPC=∠PBC.∵四边形ABCD是正方形,∴∠ABC=∠ABP+∠PBC=90°,∴∠ABP=∠APQ,故②正确;③∵AF∥EC,∴∠FPC=∠PCE=∠BCE.∵∠PFC是钝角,当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,如右图,△PCF不一定是等腰三角形,故③不正确;④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,∴Rt△EPC≌△FDA(HL).∵∠ADF=∠APB=90°,∠FAD=∠ABP,当BP=AD或△BPC是等边三角形时,△APB≌△FDA,∴△APB≌△EPC,故④不正确;其中正确结论有①②,2个.故选B.13. (2018·湖北省武汉·3分)如图,在⊙O 中,点C 在优弧上,将弧沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为,AB=4,则BC 的长是( )A .B .C .D .【分析】连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,利用垂径定理得到OD ⊥AB ,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC 和弧CD 所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC ,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF 为正方形得到OF=EF=1,然后计算出CF 后得到CE=BE=3,于是得到BC=3 2.【解答】解:连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图, ∵D 为AB 的中点, ∴OD ⊥AB , ∴AD=BD=AB=2,在Rt △OBD 中,OD=22(5)2 =1, ∵将弧沿BC 折叠后刚好经过AB 的中点D .∴弧AC 和弧CD 所在的圆为等圆, ∴=,∴AC=DC , ∴AE=DE=1,易得四边形ODEF 为正方形, ∴OF=EF=1,在Rt △OCF 中,CF=22(5)1 , ∴CE=CF+EF=2+1=3, 而BE=BD+DE=2+1=3, ∴BC=3.故选:B .【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理. 二、填空题:14. (2018·辽宁省葫芦岛市) 如图,在矩形ABCD 中,点E 是CD 的中点,将△BCE 沿BE 折叠后得到△BEF 、且点F 在矩形ABCD 的内部,将BF 延长交AD 于点G .若=,则= .【解答】解:连接GE .∵点E 是CD 的中点,∴EC=DE .∵将△BCE 沿BE 折叠后得到△BEF 、且点F 在矩形ABCD 的内部,∴EF=DE ,∠BFE=90°.在Rt △EDG 和Rt △EFG 中,∴Rt △EDG ≌Rt △EFG (HL ),∴FG=DG .∵=,∴设DG=FG=a,则AG=7a,故AD=BC=8a,则BG=BF+FG=9a,∴AB==4a,故==.故答案为:.15.(2018·四川宜宾·3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE 折叠,使点B落在矩形内点F处,下列结论正确的是①②③(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=95;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.【考点】PB:翻折变换(折叠问题);KB:全等三角形的判定;LB:矩形的性质.【分析】分两种情形分别求解即可解决问题;【解答】解:如图1中,当AE=EB时,∵AE=EB=EF,∴∠EAF=∠EFA,∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,∴∠BEC=∠EAF,∴AF∥EC,故①正确,作EM⊥AF,则AM=FM,在Rt△ECB中,EC==,,∵∠AME=∠B=90°,∠EAM=∠CEB,∴△CEB∽△EAM,∴=,∴=,∴AM=,∴AF=2AM=95,故②正确,如图2中,当A、F、C共线时,设AE=x.则EB=EF=3﹣x,AF=13﹣2,在Rt△AEF中,∵AE2=AF2+EF2,∴x2=(﹣2)2+(3﹣x)2,∴x=,,∴AE=,故③正确,如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,故答案为①②③.【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解答与计算题:16.(2018·湖北省宜昌·11分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B 的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.【分析】(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;(2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB即可得出结论;②判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,进而求出PC,即可得出结论;③判断出△GEF∽△EAB,即可得出结论.【解答】解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);(2)①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,cos∠PCB==;③如图,连接FG,∵∠GEF=∠BAE=90°,∵BF∥PG,BF=PG,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108.【点评】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键.17.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE ≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.18.(2018•江苏盐城•10分)如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长. 【答案】(1)解:连接OC,OD,由翻折可得OD=OC,∵OC是⊙O的半径,∴点D在⊙O上。
利用勾股定理解决折叠问题一、引言折叠问题是指将一张纸片沿着某条线折叠后,能否在某种条件下使得所有的线段重合。
这个问题看似简单,但实际上涉及到了许多数学知识和技巧。
本文将介绍如何利用勾股定理解决折叠问题。
二、勾股定理的基本概念勾股定理是指直角三角形斜边的平方等于直角边两边平方和的定理。
即:设直角三角形ABC,其中∠C为直角,则有AB²+AC²=BC²。
三、折叠问题的基本原理折叠问题可以看作是一个几何变换问题,在几何变换中,保持长度不变是非常重要的条件。
在折叠纸片时,我们需要保证每个线段长度不变。
四、利用勾股定理解决折叠问题的方法1. 假设我们要将一张正方形纸片对折成一个等腰直角三角形。
2. 将正方形沿着对角线对折成两个等腰直角三角形。
3. 将其中一个等腰直角三角形沿着斜边对折,使得斜边与底边重合。
4. 将纸片展开,我们可以发现,原来的正方形纸片已经被折叠成了一个等腰直角三角形。
5. 根据勾股定理,我们可以计算出这个等腰直角三角形的底边和高的长度。
具体而言,设等腰直角三角形的斜边长为c,底边长为a,则有a²=c²÷2。
6. 利用上述结论,我们可以将任何正方形纸片折叠成一个等腰直角三角形。
五、拓展应用1. 利用类似的方法,我们可以将任何矩形折叠成一个等腰直角三角形。
2. 利用勾股定理和相似三角形的性质,我们还可以将任何平行四边形折叠成一个正方形或矩形。
六、总结利用勾股定理解决折叠问题是一种简单而有效的方法。
通过对几何变换和勾股定理的深入理解和应用,我们可以解决更加复杂和有趣的折叠问题。
初二数学下册:勾股定理处理折叠的三种模型01模型一:折叠构造直角三角形折叠构造直角三角形是比较常见的一种模型,将直角三角形沿着某条线段进行折叠,可以得到另外一个直角三角形,然后设未知数,表示出这个三角形的三边长,利用勾股定理列出方程,求出未知数的值。
例题1:如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.分析:先通过勾股定理求出线段AB的长度,将直角边AC沿直线AD 对折,使它落在斜边AB上,得到AE=AC=6。
求线段CD的长度,可设CD=x,那么DE=CD=x,再表示出线段DB的长度,求出线段BE,利用勾股定理得到关于x的方程。
解:∵两直角边AC=6cm,BC=8cm,在Rt△ABC中,由勾股定理可知AB=10,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD=DE,AE=AC=6,∴BE=10-6=4,设DE=CD=x,BD=8-x,在Rt△BDE中,根据勾股定理得:BD^2=DE^2+BE^2,即(8-x)^2=x^2+4^2,解得x=3.即CD的长为3cm.02模型二:折叠构造全等三角形例题2:如图,在平面直角坐标系中,四边形OABC是矩形,点A的坐标为(4,0),点C的坐标为(0,2),把矩形OABC沿OB折叠,点C落在点D处,DB交OA于点E.(1)求证:OE=BE;(2)求△OEB的面积.分析:(1)通过折叠可知:OC=OD,∠D=∠OCB=90°,由于四边形OABC为矩形可得:OC=AB,∠BAO=90°,那么∠D=∠BAO=90°,再加上对顶角∠BEA、∠OED相等,通过“AAS”判定两个三角形全等;(2)可设OE=BE=x,然后表示出线段AE的长度为4-x,在直角三角形ABE中,通过勾股定理得到关于x的方程,求出x的值,然后利用三角形的面积公式求出三角形OEB的面积。
与直角有关的折叠问题 (一)1•如图,将矩形ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形 EFGH,若EH=9厘米,EF=12厘米,则边AD 的长是()2.如图,在矩形ABCD 中,AB=4,BC=8,将矩形ABCD 沿EF 折叠,使点C 与点A 重合, 则折痕EF 的长为().门「 A. 6B. 5C.D.厂斗“ 门Ml3•如图1,四边形 ABCD 是一矩形纸片,AB=8cm ,AD=10cm ,E 是AD 上一点,且图1 图2 图3A. 12 厘米B. 15厘米 C. 20厘米 D. 21厘米向右折 GFC 的AE=8cm .操作:(1) 将厶AFB 以BF 为折痕 过去,得图3 .则厶 面积是()得折痕AF ,如图2 ;(A. ltm 2B. 2cm 2 C . Sen 2 D. 4cm 2 4.如图,已知边长为5的等边三角形 ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上5•如图,在矩形纸片 ABCD 中,AD=6cm ,点E 在BC 上,将纸 片沿AE 折叠,使点B 落在AC 上的点F 处,且ZAEF= /CEF ,则AB 的长是()A. 2 cm6.如图,CD 是Rt △ ABC 斜边AB 上的高,直角边’’ 乙",现将△ BCD 沿CD 折叠,点B 恰好落在AB 的中点E 处,则图中阴影部分的面积为IJA. 2B. 2 屯C.晶D.7.如图,在矩形ABCD 中将厶BCD 沿对角线BD 翻折,点C的点D 的位置,且ED 丄BC ,则CE 的长是()A.- 「B. 10-5^3 C . 5^3-5D. 20-10C. 4cm落在「处,AD 与BC 交于点E ,连接AC',则AC':BD 为()B. 1 -D. -CDAE = -AB8•如图,在矩形ABCD中,点E, F分别在边AB, BC上,且? ,将矩形沿直线EF 折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,有下列结论:①EF=2BE;②PF=2PE :③FQ=4EQ :④厶PBF是等边三角中正确的是()B.②③C.①③D.①④9•如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点上.若AB=16 BC=32 ,则BF的长为()A. 15B.人C. 16D. 1710. 如图,在矩形ABCD中,E是BC的中点,将厶ABE沿AE折叠后得到△ AFE,点F在矩DG k AD形ABCD内部,延长AF交CD于点G.若,则一()12^ + 1气]A.-B. 一C.D. -B E C11. 如图,折叠直角三角形纸片ABC的直角ZC,使点C落在斜边AB上的点E处,已知血=加,/B=30。
勾股定理处理折叠4种模型及求最值3种方法模型1 折叠构造直角三角形1.(2019•保定二模)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为()A.4B.3C.2D.5【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解【解析】设BN=x,由折叠的性质可得DN=AN=9﹣x∵D是BC的中点,∴BD=3在Rt△NBD中,x2+32=(9﹣x)2,解得x=4.即BN=4,选A模型2 折叠构造三垂直图形2.(2019秋•青岛期中)已知,如图,点E是长方形ABCD的边CD上一点,将△ADE沿着AE对折,点D 恰好折叠到边BC上的F点,若AD=10,AB=8,那么AE=5√5.【分析】根据矩形的性质,折叠的性质,勾股定理即可得到结论【解析】∵四边形ABCD是矩形,∴BC=AD=10,CD=AB=8,∠B=C=∠D=90°∵将△ADE沿着AE对折,点D恰好折叠到边BC上的F点∴AF=AD=10,∠AFE=∠D=90°,∴BF=√AF2−AB2=√102−82=6,∴CF=4∵EF=DE=8﹣CE,∴(8﹣CE)2=42+CE2,∴CE=3,∴EF=5∴AE=√AF2+EF2=√102+52=5√53.(2020春•西城区校级期中)如图,长方形ABCD中,AB=8,BC=10,在边CD上取一点E,将△ADE 折叠后点D恰好落在BC边上的点F处(1)求CE的长;(2)在(1)的条件下,BC边上是否存在一点P,使得P A+PE值最小?若存在,请求出最小值:若不存在,请说明理由.【分析】(1)先判断出AF=AD=8,进而利用勾股定理求出BF=6,最后在Rt△ECF,利用勾股定理,即可得出结论(2)先作出点E关于BC的对称点E,进而求出DE',再利用勾股定理即可得出结论【解析】(1)长方形ABCD中,AB=8,BC=10∴∠B=∠BCD=90°,CD=AB=8,AD=BC=10由折叠知,EF=DE,AF=AD=8在Rt△ABF中,根据勾股定理得,BF=√AF2−AB2=6∴CF=BC﹣BF=4设CE=x,则EF=DE=CD﹣CE=8﹣x在Rt△ECF中,根据勾股定理得,CF2+CE2=EF2∴16+x2=(8﹣x)2,∴x=3,∴CE=3(2)如图,延长EC至E'使CE'=CE=3,连接AE'交BC于P此时,P A+PE最小,最小值为AE'∵CD=8,∴DE'=CD+CE'=8+3=11在Rt△ADE'中,根据勾股定理得,AE'=√AD2+DE′2=√221模型3 折叠构造全等三角形4.(2019春•思明区校级期中)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的纵坐标为()A.﹣2B.﹣2.4C.−2√2D.−2√3【分析】由折叠的性质和平行线的性质得出证出∠DBO=∠BOA,证出BE=OE,得到DE=AE,过D作DF⊥OE于F,利用勾股定理及面积法求出DF的长即可.【解析】∵点A的坐标为(8,0),点C的坐标为(0,4),∴OA=8,OC=4由折叠得:∠CBO=∠DBO,OD=OC=4,BD=BC,∠ODB=∠OCB∵四边形ABCO是矩形∴BC∥OA,OC=AB=4,∠OCB=∠BAO=90°,BC=OA=8∴∠CBO=∠BOA,∠ODE=90°,BD=OA,∴∠DBO=∠BOA∴BE=OE,∴DE=AE设AE=x,则BE=OE=8﹣x在Rt△ABE中,根据勾股定理得:42+x2=(8﹣x)2,解得:x=3即OE=5,DE=AE=3过D作DF⊥OA于F∵S△OED=12OD•DE=12OE•DF,∴DF=3×45=125=2.4∴点D的纵坐标为﹣2.4,选B5.(2019春•红河州期末)如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为103.【分析】根据勾股定理可将斜边AB的长求出,根据折叠的性质知,AE=AB,已知AC的长,可将CE的长求出,再根据勾股定理可求BD的长.【解析】在Rt△ABC中,AB=√AC2+BC2=10根据折叠的性质可知:AE=AB=10,DE=BD∵AC=8,∴CE=AE﹣AC=2在Rt△CDE中,DE2=CD2+CE2,∴BD2=(BC﹣BD)2+CE2,∴BD2=(6﹣BD)2+4∴BD=10 36.(2017秋•成华区期末)如图,在长方形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE所在直线折叠,使点B落在矩形内点B′处,连接CB′,则CB′的长为185.【分析】连接BB′,根据三角形的面积公式求出BH,得到BB′,根据直角三角形的判定得到∠BB′C=90°,根据勾股定理求出答案.【解析】连接BB′交AE于H∵BC=6,点E为BC的中点,∴BE=3又∵AB=4,∴AE=√AB2+BE2=√42+32=5,∴BH=125,则BB′=2BH=245∵B′E=BE=EC∴∠BB ′C =90°,根据勾股定理得,CB ′=√BC 2−BB′2=√62+(245)2=1857.(2020•张家港市期末)如图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG (1)求证:△ABG ≌△AFG (2)求∠EAG 的度数 (3)求BG 的长【分析】(1)利用翻折变换对应边关系得出AB =AF ,∠B =∠AFG =90°,利用HL 得△ABG ≌△AFG (2)由(1)可得∠F AG =12∠BAF ,由折叠的性质可得∠EAF =12∠DAF ,继而可得∠EAG =12∠BAD =45° (3)首先设BG =x ,则可得CG =6﹣x ,GE =EF +FG =x +3,然后利用勾股定理GE 2=CG 2+CE 2,得方程:(x +3)2=(6﹣x )2+32,解此方程即可求得答案【解析】(1)证明;在正方形ABCD 中,AD =AB =BC =CD ,∠D =∠B =∠BCD =90° ∵将△ADE 沿AE 对折至△AFE∴AD =AF ,DE =EF ,∠D =∠AFE =90°,∴AB =AF ,∠B =∠AFG =90° 又∵AG =AG在Rt △ABG 和Rt △AFG 中,{AG =AGAB =AF ,∴△ABG ≌△AFG (HL )(2)∵△ABG ≌△AFG ,∴∠BAG =∠F AG ,∴∠F AG =12∠BAF 由折叠的性质可得:∠EAF =∠∠DAE ,∴∠EAF =12∠DAF∴∠EAG =∠EAF +∠F AG =12(∠DAF +∠BAF )=12∠DAB =12×90°=45°(3)∵E是CD的中点,∴DE=CE=12CD=12×6设BG=x,则CG=6﹣x,GE=EF+FG=x+3∵GE2=CG2+CE2,∴(x+3)2=(6﹣x)2+32,解得x=2∴BG=2模型4 折叠构造等腰三角形8.(2020•碑林区校级月考)如图,把长方形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A 落在点A′处(1)试说明:B′E=BF(2)若AE=3,AB=4,求BF的长【分析】(1)由折叠可得BF=B'F,∠B'FE=∠EFB,由AD∥BC可得∠DEF=∠EFB,则∠B'EF=∠B'FE,即结论可得(2)由折叠可得AE=A'E=3,AB=A'B'=4,根据勾股定理可得B'E的长,即可起BF的长【解析】(1)∵折叠,∴∠B'FE=∠EFB,BF=B'F∵AD∥BC∴∠B'EF=∠BFE,∴∠B'EF=∠B'FE∴B'E=B'F,∴BF=B'E(2)∵折叠,∴AE=A'E=3,AB=A'B'=4,∠A=∠A'=90°∴根据勾股定理可得B'E=5∵B'E=BF,∴BF=59.(2019•潮南区一模)如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C恰好落在边AD上的点G处,连接EG.(1)△GEF是等腰三角形吗?请说明理由;(2)若CD=4,GD=8,求HF的长度.【分析】(1)依据平行线的性质以及折叠的性质,即可得到∠GFE=∠GEF,进而得出△GEF是等腰三角形(2)设HF长为x,则GF长为(8﹣x),在Rt△FGH中,依据勾股定理可得x2+42=(8﹣x)2,即可得到HF的长度【解析】(1)∵长方形纸片ABCD∴AD∥BC∴∠GFE=∠FEC∵∠FEC=∠GEF∴∠GFE=∠GEF∴△GEF是等腰三角形(2)∵∠C=∠H=90°,HF=DF,GD=8设HF长为x,则GF长为(8﹣x)在Rt△FGH中,x2+42=(8﹣x)2解得x=3∴HF的长为3利用勾股定理求最值方法1化曲为直求最值1.(2020•历下区期中)葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其茎蔓常绕着附近的树干沿最短路线盘旋而上.如果把树干看成圆柱体,它的底面周长是50cm,当一段葛藤绕树干盘旋2圈升高为2.4m时,这段葛藤的长是()m.A.3B.2.6C.2.8D.2.5【分析】先把树干当作圆柱体从侧面展开,求出葛藤绕树干盘旋1圈时上升的高度,进而可得出结论.【解析】∵葛藤绕树干盘旋2圈升高为2.4m,∴葛藤绕树干盘旋1圈升高为1.2m,如图所示:AC=√AB2+BC2=1.3m,∴这段葛藤的长=2×1.3=2.6m,选B2.(2020•福田区校级期中)如图,一圆柱高BC为20cm,底面周长是10cm,一只蚂蚁从点A爬到点P处吃食,且PC=35BC,则最短路线长为()A.20cm B.13cm C.14cm D.18cm【分析】根据题意画出图形,连接AP,则AP就是蚂蚁爬行的最短路线长,根据勾股定理求出AP即可【解析】如图展开,连接AP,则AP就是蚂蚁爬行的最短路线长则∠C=90°,AC=12×10cm=5cm∵BC=20cm,PC=35BC,∴CP=12cm由勾股定理得:AP=√AC2+CP2=√52+122=13(cm)即蚂蚁爬行的最短路线长是13cm,选B方法2化折为直求最值3.(2020•市北区期中)如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是()cm.A.25B.20C.24D.10√5【分析】分三种情况:把左侧面展开到水平面上,连结AB,如图1;把右侧面展开到正面上,连结AB,如图2;把向上的面展开到正面上,连结AB,如图3,然后利用勾股定理分别计算各情况下AB,再进行比较.【解析】把左侧面展开到水平面上,连结AB,如图1,AB=√(10+20)2+52=√925=5√37(cm)把右侧面展开到正面上,连结AB,如图2,AB=√202+(10+5)2=25(cm)把向上的面展开到正面上,连结AB,如图3,AB=√102+(20+5)2=√725=5√29(cm)∵√925>√725>25所以一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离为25cm,选A4.(2020•开福区校级期末)如图是一个三级台阶,它的每一级的长、宽和高分别为5dm、3dm和1dm,A 和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B点的最短路程是13dm.【分析】此类题目只需要将其展开便可直观的得出解题思路.将台阶展开得到的是一个矩形,蚂蚁要从B 点到A点的最短距离,便是矩形的对角线,利用勾股定理即可解出答案【解析】将台阶展开,如图,因为AC=3×3+1×3=12,BC=5所以AB2=AC2+BC2=169,所以AB=13(dm),所以蚂蚁爬行的最短线路为13dm5.(2020•盐城期末)有一个如图示的长方体的透明玻璃鱼缸,假设其长AD=80cm,高AB=60cm,水深为AE=40cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60cm;一小虫想从鱼缸外的A 点沿壁爬进鱼缸内G处吃鱼饵.(1)小动物应该走怎样的路线才使爬的路线最短呢?请你在图中画出它爬行的路线,并用箭头标注.(2)求小动物爬行的最短路线长?【分析】(1)做出A关于BC的对称点A′,连接A′G,与BC交于点Q,此时AQ+QG最短;(2)A′G为直角△A′EG的斜边,根据勾股定理求解即可【解析】(1)如图所示,AQ+QG为最短路程(2)∵在直角△AEG中,AE=40cm,AA′=120∴A′E=80cm又EG=60cm∴AQ+QG=A′Q+QG=A′G=√A′E2+EG2=100cm∴最短路线长为100cm方法3 利用对称求最值6.(2019秋•秦淮区期中)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( )A .125B .4C .5D .245【分析】过点D 作DE ⊥AB 于点E ,过点E 作EQ ⊥AC 于点Q ,EQ 交AD 于点P ,连接CP ,此时PC +PQ =EQ 取最小值,根据勾股定理可求出AB 的长度,再根据EQ ⊥AC 、∠ACB =90°即可得出EQ ∥BC ,进而可得出AE AB=AQ AC=EQ BC,代入数据即可得出EQ 的长度,此题得解【解析】过点D 作DE ⊥AB 于点E ,过点E 作EQ ⊥AC 于点Q ,EQ 交AD 于点P ,连接CP ,此时PC +PQ =EQ 取最小值,如图所示在Rt △ABC 中,∠ACB =90°,AC =6,BC =8 ∴AB =√AC 2+BC 2=10 ∵AD 是∠BAC 的平分线 ∴∠CAD =∠EAD在△ACD 和△AED 中,{∠CAD =∠EAD∠ACD =∠AED =90°AD =AD ,∴△ACD ≌△AED (AAS ),∴AE =AC =6∵EQ ⊥AC ,∠ACB =90° ∴EQ ∥BC ∴AE AB=AQ AC=EQ BC∴EQ =245 选D7.(2019春•渝中区校级期末)如图,△ABC 中,AC =BC =5,AB =6,CD =4,CD 为△ABC 的中线,点E 、点F 分别为线段CD 、CA 上的动点,连接AE 、EF ,则AE +EF 的最小值为245.【分析】过B 作BF ⊥AC 于F ,交CD 于E ,则BF 的长即为AE +EF 的最小值,根据等腰三角形的性质得到AD =12AB =3,根据三角形的面积公式列方程即可得到结论 【解析】过B 作BF ⊥AC 于F ,交CD 于E则BF 的长即为AE +EF 的最小值 ∵AC =BC =5,CD 为△ABC 的中线 ∴AD =12AB =3∵S △ABC =12AB •CD =12AC •BF ∴BF =6×45=245 ∴AE +EF 的最小值为2458.(2020•清江浦区期中)如图,E为正方形ABCD边AB上一点,BE=3,AE=1,P为对角线BD上一个动点,则P A+PE的最小值是5.【分析】连接EC交BD于点P,此时P A+PE最小,在RT△EBC中求出EC即可解决问题【解析】连接EC交BD于点P,此时P A+PE最小理由:∵四边形ABCD是正方形∴A、C关于直线BD对称∴P A+PE=PC+PE=EC∴此时P A+PE最小(两点之间线段最短)P A+PE最小值=EC=√BC2+BE2=√42+32=5故答案为5.9.(2019秋•攀枝花期末)已知:如图Rt△ABC中,∠B=90°,AB=BC=8,M在BC上,且BM=2,N 是AC上一动点,则BN+MN的最小值为10.【分析】根据平面内线段最短,构建直角三角形,解直角三角形即可【解析】过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N此时MB'=MN+NB'=MN+BN的值最小连接CB'∵BO⊥AC,AB=BC,∠ABC=90°∴∠CBO=12×90°=45°∵BO=OB',BO⊥AC∴CB'=CB∴∠CB'B=∠OBC=45°∴∠B'CB=90°∴CB'⊥BC根据勾股定理可得MB′=1O,MB'的长度就是BN+MN的最小值.。
小专题(二) 利用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题 1.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为( )A.252 cmB.152 cmC.254 cm D.154cm2.如图所示,有一块直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为( )A .1 cmB .1.5 cmC .2 cmD .3 cm3.(青岛中考)如图,将长方形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上,若AB =6,BC =9,则BF 的长为( )A .4B .3 2C .4.5D .54.如图,长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .65.(铜仁中考)如图,在长方形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C ′处,BC ′交AD 于点E ,则线段DE 的长为( )A .3 B.154 C .5 D.1526.如图,在长方形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是( )A.210-2B.6C.213-2D.47.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE 的周长为________.8.如图,在Rt△ABC中,∠C=90°,BC=6 cm,AC=8 cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB 边的C′点,那么△ADC′的面积是________.9.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的锐角A翻折,使得点A落在BC边的中点D处,折痕交AC边于点E,交AB边于点F,则DE的值为________.10.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________.11.为了向建国六十六周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级(1)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20 cm,宽AB=16 cm的长方形纸片ABCD,②将纸片沿着直线AE折叠,点D恰好落在BC边上的F处,请你根据①②步骤解答下列问题:计算EC,FC的长.类型2 利用勾股定理解决立体图形的展开问题1.如图,一圆柱体的底面周长为24 cm,高AB为5 cm,BC是直径,一只蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是( )A.6 cm B.12 cmC.13 cm D.16 cm2.如图,圆柱形玻璃杯,高为12 cm,底面周长为18 cm,在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm.3.如图,在一个长为2 m,宽为1 m的长方形草地上,放着一根长方体的木块,它的棱和场地宽AD平行且棱长大于AD,木块从正面看是边长为0.2 m的正方形,一只蚂蚁从点A处到达C处需要走的最短路程是________m(精确到0.01 m).4.一位同学要用彩带装饰一个长方体礼盒.长方体高6 cm,底面是边长为4 cm的正方形,从顶点A到顶点C′如何贴彩带用的彩带最短?最短长度是多少?5.如图,一个长方体形状的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.参考答案类型11.D 2.A 3.A 4.D 5.B 6.A 7.7 8.6 cm29.13310.1.511.因为△ADE与△AFE关于AE对称,所以△ADE≌△AFE.所以DE=FE,AD=AF.因为BC=20 cm,AB=16 cm,所以CD=16 cm,AD=AF=20 cm.在Rt△ABF中,由勾股定理,得BF=12 cm.所以CF=20-12=8(cm).因为四边形ABCD是长方形,所以∠C=90°.设CE=x,则DE=EF=16-x,在Rt△CEF中,由勾股定理,得(16-x)2=64+x2.解得:x=6.所以EC=6 cm.答:EC=6 cm,CF=8 cm.类型21.C 2.15 3.2.604.把长方体的面DCC′D′沿棱C′D′展开至面ABCD上,如图.构成矩形ABC′D′,则A到C′的最短距离为AC′的长度,连接AC′交DC于O,易证△AOD≌△C′OC.∴OD=OC.即O为DC的中点,由勾股定理,得AC′2=AD′2+D′C′2=82+62=100,∴AC′=10 cm.即从顶点A沿直线到DC中点O,再沿直线到顶点C′,贴的彩带最短,最短长度为10 cm.5.(1)如图,木柜的表面展开图是两个矩形ABC′1D1和ACC1A1.蚂蚁能够最快到达目的地的可能路径有如图所示的AC′1和AC1两种.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长l1=42+(4+5)2=97.蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长l2=(4+4)2+52=89.∵l1>l2,∴最短路径的长是89.。
《勾股定理》典型例题折叠问题1、如图,有一张直角三角形纸片,两直角边A C=6,BC=8,将△AB C折叠,使点B 与点A 重合,折痕为DE,则CD 等于( )A. 425B. 322C. 47D . 352、如图所示,已知△A BC中,∠C=90°,AB 的垂直平分线交BC •于M,交AB 于N,若AC =4,MB=2M C,求AB 的长.3、折叠矩形AB CD 的一边AD,点D 落在BC 边上的点F 处,已知A B=8CM,BC=10C M,求C F 和EC 。
4、如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E,沿直线A E把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AE D的面积B CEDDCBAF E5、如图,矩形纸片ABCD 的长AD =9㎝,宽AB=3㎝,将其折叠,使点D与点B重合,那么折叠后DE 的长是多少?6、如图,在长方形AB CD中,将∆ABC 沿AC 对折至∆AEC 位置,C E与AD 交于点F 。
(1)试说明:AF=FC ;(2)如果AB=3,B C=4,求A F的长7、如图2所示,将长方形ABCD 沿直线A E折叠,顶点D正好落在B C边上F点处,已知CE=3cm ,AB =8cm,则图中阴影部分面积为_______.8、如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C′的位置上,已知AB=•3,BC=7,重合部分△EBD的面积为________.9、如图5,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G。
如果M为CD边的中点,求证:DE:DM:EM=3:4:5。
10、如图2-5,长方形ABCD中,AB=3,BC=4,若将该矩形折叠,使C点与A点重合,•则折叠后痕迹EF的长为( )A.3.74 B.3.75 C.3.76 D.3.772-511、如图1-3-11,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时AP 的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH 始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP 的长;若不能,请你说明理由.12、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。
小专题(二) 利用勾股定理解决折叠与展开问题
类型1 利用勾股定理解决平面图形的折叠问题 1.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为( )
A.252 cm
B.152 cm
C.
254 cm D.154
cm
2.如图所示,有一块直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为( )
A .1 cm
B .1.5 cm
C .2 cm
D .3 cm
3.(青岛中考)如图,将长方形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上,若AB =6,BC =9,则BF 的长为( )
A .4
B .3 2
C .4.5
D .5
4.如图,长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )
A .3
B .4
C .5
D .6
5.(铜仁中考)如图,在长方形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C ′处,BC ′交AD 于点E ,则线段DE 的长为( )
A .3 B.154 C .5 D.15
2
6.如图,在长方形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是( )
A.210-2
B.6
C.213-2
D.4
7.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE 的周长为________.
8.如图,在Rt△ABC中,∠C=90°,BC=6 cm,AC=8 cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB 边的C′点,那么△ADC′的面积是________.
9.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的锐角A翻折,使得点A落在BC边的中点D处,折痕交AC边于点E,交AB边于点F,则DE的值为________.
10.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________.
11.为了向建国六十六周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级(1)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是:
①先裁下了一张长BC=20 cm,宽AB=16 cm的长方形纸片ABCD,
②将纸片沿着直线AE折叠,点D恰好落在BC边上的F处,
请你根据①②步骤解答下列问题:计算EC,FC的长.
类型2 利用勾股定理解决立体图形的展开问题
1.如图,一圆柱体的底面周长为24 cm,高AB为5 cm,BC是直径,一只蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是( )
A.6 cm B.12 cm
C.13 cm D.16 cm
2.如图,圆柱形玻璃杯,高为12 cm,底面周长为18 cm,在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm.
3.如图,在一个长为2 m,宽为1 m的长方形草地上,放着一根长方体的木块,它的棱和场地宽AD平行且棱长大于AD,木块从正面看是边长为0.2 m的正方形,一只蚂蚁从点A处到达C处需要走的最短路程是________m(精确到0.01 m).
4.一位同学要用彩带装饰一个长方体礼盒.长方体高6 cm,底面是边长为4 cm的正方形,从顶点A到顶点C′如何贴彩带用的彩带最短?最短长度是多少?
5.如图,一个长方体形状的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬
(1)请你画出蚂蚁能够最快到达目的地的可能路径;
(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.
参考答案类型1
1.D 2.A 3.A 4.D 5.B 6.A 7.7 8.6 cm29.13
3
10.1.5
11.因为△ADE与△AFE关于AE对称,所以△ADE≌△AFE.
所以DE=FE,AD=AF.因为BC=20 cm,AB=16 cm,
所以CD=16 cm,AD=AF=20 cm.在Rt△ABF中,由勾股定理,得BF=12 cm.所以CF=20-12=8(cm).
因为四边形ABCD是长方形,所以∠C=90°.设CE=x,则DE=EF=16-x,
在Rt△CEF中,由勾股定理,得(16-x)2=64+x2.解得:x=6.所以EC=6 cm.
答:EC=6 cm,CF=8 cm.
类型2
1.C 2.15 3.2.60
4.把长方体的面DCC′D′沿棱C′D′展开至面ABCD上,如图.构成矩形ABC′D′,则A到C′的最短距离为AC′的长度,连接AC′交DC于O,易证△AOD≌△C′OC.∴OD=OC.即O为DC的中点,由勾股定理,得AC′2=AD′2+D′C′2=82+62=100,∴AC′=10 cm.即从顶点A沿直线到DC中点O,再沿直线到顶点C′,贴的彩带最短,最短长度为10 cm.
5.(1)如图,木柜的表面展开图是两个矩形ABC′1D1和ACC1A1.蚂蚁能够最快到达目的地的可能路径有如图所示的AC′1和AC1两种.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长l1=42+(4+5)2=97.蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长l2=(4+4)2+52=89.∵l1>l2,∴最短路径的长是89.。