抗滑桩设计与计算-简化
- 格式:pdf
- 大小:742.83 KB
- 文档页数:96
4.3.3 1-1′剖面抗滑桩设计(1)抗滑桩各参数的确定或选取在滑坡力最大处即边坡1-1′剖面潜在变形区滑面条块21(剩余下滑力828.7KN )附近处设置一排钢筋混凝土抗滑桩,间距为6m ,共布置8根抗滑桩。
初拟抗滑桩桩身尺寸为b×h=1.5m×2.0m。
桩长12m ,自由段h 1为6m ,锚固段h 2为6m 。
采用C30混凝土,查资料得,C30混凝土,423.0010/c E N mm =⨯。
桩的截面惯性矩3341.5 2.011212bh I m ⨯===。
桩的钢筋混凝土弹性模量770.80.8 3.0010 2.4010c E E KPa ==⨯⨯=⨯。
桩的计算宽度 1.51 2.5p B m =+=。
1-1剖面滑动面以下为较完整的岩层(泥灰岩),对于较完整的岩层,其地基系数的选取参考下表(表4-1):H V H V 剖面处滑面以下是泥灰岩,岩石饱和单轴抗压强度标准值为16.85MPa ,根据上表侧向K H 可取:K H =2.7×105kN/m3按K 法计算,桩的变形系数β为:所以抗滑桩属于刚性桩,所谓刚性桩是指桩的位置发生了偏离,但桩轴线仍保持原有线型,变形是由于桩周土的变形所致。
这时,桩犹如刚体一样,仅发生了转动的桩。
桩底边界条件:按自由端考虑。
(2)外力计算每根桩的滑坡推力:kN L 2.497267.828E n r =⨯=⨯=E ,按三角形分布,其kN h E P r 4.165765.02.49725.01=⨯=⨯=桩前被动土压力计算:抗滑桩自由段长度h 1=6m,自由段桩前土为块石土,按勘察报告提高的参数,块石土的c=8.81kP a ψ=15.4O γ=15.4kN/m 3128.01104.24.52107.24417541<=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛⋅=EI B k p H βp K =2(45)2otg ϕ+=215.4(45)2otg ο+=1.662211112h 20.5 6.0 1.6628.816748.75/22p p E h K c kN m =γ+=⨯⨯⨯+⨯=(3)桩身内力计算 ①剪力221p A y 2.7752675.7484.16572)E -(P Q =⨯-=⨯⨯=y y y h ②弯矩23A 75.72y 25.2433y y M Q y y =⋅=⋅= 各截面计算结果见下表(表4-2):(4)锚固段桩侧应力和桩身内力计算 ①滑动面至桩的转动中心的距离该滑面地基系数随深度为常数,K=A=K v =K s =2.7×105kN/m 3滑动面至桩的转动中心的距离为:()()()()m 6.36.927258.54512369.272528.54513623232A A 2A A 20=⨯+⨯⨯⨯⨯+⨯⨯=++=h Q M h Q M h y ②桩的转角()()rad Ah B h Q M p 00112.06107.25.269.27258.5451262635322A A =⨯⨯⨯⨯+⨯⨯=+=∆ϕ③桩侧应力()()()()2550y 112.8y 10064.108800112.0y .6310107.2y y y y my A -+=⨯-+⨯=∆-+=∆ϕδ④最大侧应力位置 令0yd dyσ=,则 100.8224y 0-= y =0.45m⑤剪力()()y y y m B y y y A B Q p p A 2361221Q 020y -∆--∆-=ϕϕ ()y y -⨯⨯⨯⨯⨯⨯⨯-=6.3200112.0107.25.2219.27255 ()y y 26.3200112.0105.26125-⨯⨯⨯⨯⨯- 9.27256.27214.9312632+-+-=y y y 0=yy d dQ ,则06.27212524.932=--y ym y 6.3=⑥弯矩()()[]y y my y y A y B y Q M p A A y -+-∆-+=002232121.M ϕ ()()[]y y y y y -⨯+-⨯⨯⨯⨯⨯⨯-+=6.32106.3310.72200112.05.2121.82725.85451552 8.54518.272513604233.23234++--=y y y y 锚固段桩侧应力、桩身剪力及弯矩计算汇总如下()KN y Q -4347.15 -4198.90 -3561.73 -2357.10 -514.97 2034.70()m y 00.511.522.53()m KN .M y5451.80 6470.91 6798.93 6456.86 5500.68 4021.38 2144.93()m y 3.6 4 4.5 5 5.5 6 ()m KN .M y32.31-2120.52-4082.59-5587.95-6335.64-5989.72根据桩的应力和内力的计算结果,绘出桩的受力图,如下所示:图4-2桩侧应力图图4-3 桩身剪力图图4-4 桩身弯矩图(5)桩侧应力复核比较完整的岩质、半岩质地层桩身对围岩的侧压应力max σ(a kP )应符合下列条件:max 120K K σ≤⋅⋅´´R 式中 1K ´——折减系数,根据岩层产状的倾角大小,取0.5~1.0;2K ´——折减系数,根据岩层破碎和软化程度,取0.3~0.5; 0R ——岩石单轴抗压极限强度,a kP由式得,a a kP kP 25.41281085.1635.07.064.10883=⨯⨯⨯<满足要求(6)桩的结构设计 ①基本指标 混凝土C 25:C25混凝土的轴心抗压强度设计值为211.9/c f N mm =,轴心抗拉强度设计值21.27/t f N mm =。
抗滑桩设计盐酸步骤一. 采用传递乘数法计算划破推力:下坡推力:ψϕαα1tan cos sin -+-+-=i i i i i i i E L C W KW i Ei ; 传递乘数:i i i i i ϕααααψtan )sin()cos(11---=-- ; 第一块下滑推力:KNL C W KW E i 94.24640517tan 5.60cos 5005.60sin 5002.1tan cos sin 1111111=⨯-⨯-⨯⨯=--=︒ ϕαα 第二块下滑推力:5386.017tan )5.185.60sin()5.185.60cos(tan )sin()(221212=---=---= ϕααααψCOS KNE L C W KW E 63.4235386.094.24658.3117tan 5.18cos 49505.18sin 49502.1tan cos sin 2122222222=⨯+⨯-⨯⨯-⨯⨯=+--⨯= ψϕαα 第三块下滑推力:0168.117tan )225.18sin()225.18cos(tan )sin()cos(332323=---=---= ϕααααψ KNE L C W KW E 74.134163.4230168.137517tan 22cos 660022sin 66002.1tan cos sin 3233333333=⨯+⨯-⨯⨯-⨯⨯=+--⨯= ψϕαα 第四块下滑推力:965.017tan )1722sin()1722cos(tan )sin()cos(443434=---=---= ϕααααψ KNE L C W KW E 60.147874.13419695.058.4217tan 17cos 670017sin 67002.1tan cos sin 4344444444=⨯+⨯-⨯⨯-⨯⨯=+--⨯= ψϕαα第五块下滑推力:9438.017tan )5.817sin()5.817cos(tan )sin()cos(554545=---=---= ϕααααψ KNE L C W KW E 50.89460.14789438.055.1817tan 5.8cos 32805.8sin 32802.1tan cos sin 5455555555=⨯+⨯-⨯⨯-⨯⨯=+--⨯= ψϕαα 二. 拟定桩身截面尺寸与平面布置主滑面抗滑桩全长19.0m ,滑面上受荷段长9m ,滑面之下的嵌固段长10.0m ,桩间距S=6.0m ,截面尺寸2.0 ⨯2.5m (人工控孔桩),截面模量32208.265.20.26m bh W =⨯==,截面对桩中上部惯性矩4336.2125.20.212m bh I =⨯==。
预应力锚索抗滑桩简单的设计计算方法预应力锚索抗滑桩简单的设计计算方法一.引言本文档旨在介绍预应力锚索抗滑桩的简单设计计算方法。
预应力锚索抗滑桩是一种用于基础工程中增加地基抗滑能力的常用技术,通过预应力锚索的作用,能够有效地提高地基的稳定性和承载力。
本文将依次介绍预应力锚索抗滑桩的设计原理、计算方法以及实际案例分析。
二.设计原理2.1 预应力锚索的作用原理在地基工程中,由于土壤的自然力和外界荷载的作用,地基可能会发生滑动。
预应力锚索的作用是通过施加预应力,产生锚固力,抵抗地基滑动的力。
预应力锚索的锚固长度、预应力力值和预应力锚索的布置间距等参数将直接影响到抗滑桩的设计效果。
2.2 抗滑桩的设计要求根据地基的情况和设计要求,预应力锚索抗滑桩的设计需满足以下要求:(1)盐分浓度(2)安全系数(3)锚索的数量和布置(4)材料的选用三.计算方法3.1 地基力学分析在进行预应力锚索抗滑桩的设计计算之前,需要对地基的力学性质进行分析,包括地基的强度、稳定性等参数,这些参数将是后续设计计算的基础。
3.2 预应力锚索的设计3.2.1 锚固长度的确定根据地基的稳定性要求和预应力锚索的材料性能,可以通过一定的计算方法确定锚固长度。
3.2.2 预应力力值的确定根据设计要求和地基的力学性质,可以计算出预应力锚索的力值。
力值的确定应考虑荷载的作用和设计要求的安全系数。
3.2.3 锚索的布置根据地基的情况和设计要求,可以合理布置预应力锚索的数量和间距。
布置应满足均匀、合理和有效的原则。
四.实际案例分析本章节将以实际工程案例为例,对预应力锚索抗滑桩的设计计算方法进行分析和应用。
附录:1. 设计计算表格2. 实际工程案例图片法律名词及注释:1. 预应力锚索——指通过施加预应力力量的方式,使锚索产生锚固效果。
2. 抗滑桩——用于增加地基抗滑能力的桩基础工程。
3. 地基——指建筑物或工程的基础部分,承受和传递荷载的土层或岩石层。
4. 锚固长度——预应力锚索固定在地基中的长度。
边坡防护之抗滑桩类型、设计及计算一、概述抗滑桩是将桩插入滑面以下的稳固地层内,利用稳定地层岩土的锚固作用以平衡滑坡推力,从而稳定滑坡的一种结构物。
除边坡加固及滑坡治理工程外,抗滑桩还可用于桥台、隧道等加固工程。
抗滑桩具有以下优点:(1) 抗滑能力强,支挡效果好;(2) 对滑体稳定性扰动小,施工安全;(3) 设桩位置灵活;(4) 能及时增加滑体抗滑力,确保滑体的稳定;(5) 预防滑坡可先做桩后开挖,防止滑坡发生;(6)桩坑可作为勘探井,验证滑面位置和滑动方向,以便调整设计,使其更符合工程实际。
二、抗滑桩类型实际工程应用中,应根据滑坡类型及规模、地质条件、滑床岩土性质、施工条件和工期要求等因素具体选择适宜的桩型。
三、抗滑桩破坏形式总体而言,抗滑桩破坏形式主要包括:(1)抗滑桩间距过大、滑体含水量高并呈流塑状,滑动土体从桩间挤出;(2) 抗滑桩抗剪能力不足,桩身在滑面处被剪断;(3) 抗滑桩抗弯能力不足,桩身在最大弯矩处被拉断;(4) 抗滑桩锚固深度及锚固力不足,桩被推倒;(5)抗滑桩桩前滑面以下岩土体软弱,抗力不足,产生较大塑性变形,使桩体位移过大而超过允许范围;(6)抗滑桩超出滑面的高度不足或桩位选择不合理,桩虽有足够强度,但滑坡从桩顶以上剪出。
对于流塑性地层,滑体介质与抗滑桩的摩阻力低,土体易从桩间挤出。
此时,可在桩间设置连接板或联系梁,或采用小间距、小截面的抗滑桩,因流塑体的自稳性差,当地下水丰富时,开挖截面过大的抗滑桩易造成坍塌,对处于滑移状态的边坡,还可能会加速边坡的滑移速度,甚至造成边坡失稳。
四、抗滑桩设计01基本要求抗滑桩是一种被动抗滑结构,只有当边坡产生一定的变形后,才能充分发挥作用。
因此,抗滑桩宜用于潜在滑面明确、对变形控制要求不高的土质边坡、土石混合边坡和碎裂状、散体结构的岩质边坡。
抗滑桩宜布置在滑体下部且滑面较平缓的地段;当滑面长、滑坡推力大时,可与其它加固措施配合使用,或可沿滑动方向布置多排抗滑桩,多排抗滑桩宜按梅花型布置。
抗滑桩防护方案计算验算抗滑桩原设计长度为15米,桩基埋入承台深度为4.5米,桩基另侧采用万能杆件支撑(见附后图)。
由于承台基坑开挖较深,在承台施工时万能杆件横向支撑干扰较大,给施工带来很大的不便。
为此提出抗滑桩防护修改方案:1、取消万能杆件横向支撑;2、加大抗滑桩入土埋置深度,由4.5米增至9米,总桩长增至19米;3、在桩顶部设1.2m×0.8m系梁连接所有抗滑桩,加强桩顶部的整体稳定性。
具体验算如下:一、桩长及桩身最大弯矩计算开挖深度10米,桩下土层为新黄土和圆砾土,土的内摩擦角取35°,土的重度γ=18KN/m3,无地下水,采用人工挖孔灌注桩支护。
取1米为计算单元,计算桩入土深度及最大弯矩。
顶部车辆荷载P=10KN/m2。
1、桩的入土深度14.06224.0696.64)(67.632/77.284283.1083.010837.0)(49.51271.010271.0181069.3)245(271.0)245(/191056.0101856.0181032'223'''=====-====⨯⨯+⨯⨯⨯==+=+==-==⨯+⨯⨯=⨯+⨯⨯==+==-==+⨯=+⨯====∑∑∑l K E n l K E m r K K K mh m KN K P h K h l E h l rK K e K P K h e tg K tg K m KN h h h m Ph P P aa P γγαγααααααααγμμγϕϕγγγ由m ,n 值查图(布氏理论曲线)得:62.0=ωm x t m l x 89.82.171.662.083.10=+==⨯==μω故挖孔桩总长为10+8.89=18.9m (按19m 施工) 2、桩的最大弯矩计算∑∑•=-=---+==-=m KN x K K x l E M mK K E x mP m P m 8.174607.28185.20276)()(96.2')(23'maxγαγαα设桩中心距按1.5米布置则每根桩最大弯矩为1746.8×1.5=2620KNm 最大弯矩在承台底2.96m 处。
抗滑桩类型、设计及计算,这样讲解容易多了吧!抗滑桩是桩式抗流系统(SLTS)的重要组成部分,其设计的基本目的是抵御水流的滑动作用,从而稳固滩堤或堤坝的结构,避免破坏。
目前,抗滑桩的设计既受到以往经验和研究者实验,也受到工程计算机辅助设计(CAD)技术的影响。
在此基础上,本文将讨论抗滑桩的类型、设计及计算。
一、抗滑桩类型抗滑桩不仅可以根据桩型设计不同,还可以根据是否具有抗滑能力来分类:1.通桩:即普通桩,其包括弯桩、柱桩和坑桩等,用于固结围堰及护坡,其结构物不具有任何抗滑能力,承受水流的滑动作用十分弱,不可以从单一的普通桩上获得足够的抗滑能力。
2.滑桩:即抗滑桩,其结构物具有抗滑能力,抗流形式包括抗滑桩、焊接抗滑桩和砼抗滑桩。
二、抗滑桩设计抗滑桩的设计包括以下方面:1.构物的设计:抗滑桩的结构物应考虑桩头形状、桩身布置形式、抗滑桩间隔、桩径、桩长等,以获得滩堤防护构筑物的最优结构设计。
2.程计算机模拟设计:为了获得有效的抗滑桩设计,当今的设计师们经常使用工程计算机模拟设计。
通过计算机模拟,可以仿真出抗滑桩的水流特性以及水力场,以确保深浅桩形和桩深等确定抗滑桩设计方案的正确性。
三、抗滑桩计算抗滑桩的计算主要围绕抗滑桩的抗滑性能及护坡的稳固性来进行,下面介绍两部分:1.滑性能计算:主要包括水流方向和深浅桩布置对抗滑桩抗滑效能的影响,以及抗滑桩的抗滑系数,并将通过计算机模拟设计仿真抗滑桩的水力场,来评估抗滑桩的抗滑性能。
2.坡稳固性计算:主要包括各种因素对护坡稳定性的影响,结合抗滑桩设计方案,对护坡及其附近的水力场进行计算,根据各种计算结果评估护坡的稳定性。
四、总结抗滑桩的设计与计算关系密切,抗滑桩的性能与滩堤稳定性密不可分,要想获得抗滑桩的最佳效能,就必须考虑桩身布置形式、抗滑桩间隔、桩径、桩长等设计要素,此外,还需要重视有关稳定性的水力场计算和结构安全性。
因此,抗滑桩的设计与计算都需要综合考虑,在此基础上,才能获得抗滑桩的最佳效能,以确保滩堤的安全及稳定。
抗滑桩计算书一、引言抗滑桩是指为了增加桩基与土壤之间的摩擦阻力而采取的一种措施。
它在土壤较松散或地基承载力较低的情况下,能够有效地提高桩基的抗滑性能,确保工程的安全稳定。
本文将详细介绍抗滑桩的计算方法。
二、抗滑桩计算方法1. 确定土壤参数在进行抗滑桩计算之前,首先需要获取相关的土壤参数。
包括土壤的内摩擦角、容重、黏聚力等。
这些参数可以通过现场勘探或室内试验获得。
2. 计算桩基侧阻力桩基侧阻力是抗滑桩的关键参数,可以通过以下公式计算得到:R = (α × β × c + σ × tanφ) × Ap其中,R为桩基侧阻力,α为侧阻力系数,β为土壤侧阻力分担系数,c为土壤黏聚力,σ为土壤有效应力,φ为土壤内摩擦角,Ap 为桩身周边面积。
3. 计算桩基端阻力桩基端阻力主要由桩尖端的摩擦力和端面摩擦力组成。
可通过以下公式计算得到:Qb = (α × β × c + σ × tanφ) × Ap其中,Qb为桩基端阻力。
4. 计算抗滑桩的抗滑安全系数抗滑安全系数是评价抗滑桩抗滑性能的重要指标。
可以通过以下公式计算得到:FS = (Qs + Qb) / R其中,FS为抗滑安全系数,Qs为水平荷载作用下的桩基摩阻力。
5. 判断抗滑桩的安全性当抗滑安全系数FS大于等于1时,表示抗滑桩的抗滑性能满足设计要求,工程可以继续进行;当FS小于1时,表示抗滑桩的抗滑性能不足,需要采取进一步的加固措施。
三、抗滑桩计算实例为了更好地理解抗滑桩的计算方法,下面以一个实际工程为例进行说明。
假设某工程的土壤参数如下:内摩擦角φ = 30°土壤容重γ = 18 kN/m³土壤黏聚力c = 20 kPa桩身周边面积Ap = 0.5 m²桩基水平荷载Qs = 100 kN根据给定的土壤参数,可以计算出桩基侧阻力和桩基端阻力:R = (α × β × c + σ × tanφ) × ApQb = (α × β × c + σ × tanφ) × Ap然后,计算抗滑安全系数:FS = (Qs + Qb) / R判断抗滑桩的安全性:如果FS大于等于1,则抗滑桩的抗滑性能满足设计要求;如果FS 小于1,则需要采取进一步的加固措施。
抗滑桩类型、设计及计算一、概述抗滑桩是将桩插入滑面以下的稳固地层内,利用稳定地层岩土的锚固作用以平衡滑坡推力,从而稳定滑坡的一种结构物。
除边坡加固及滑坡治理工程外,抗滑桩还可用于桥台、隧道等加固工程。
抗滑桩具有以下优点:(1)抗滑能力强,支挡效果好;(2) 对滑体稳定性扰动小,施工安全;(3) 设桩位置灵活;(4) 能及时增加滑体抗滑力,确保滑体的稳定;(5) 预防滑坡可先做桩后开挖,防止滑坡发生;(6)桩坑可作为勘探井,验证滑面位置和滑动方向,以便调整设计,使其更符合工程实际。
二、抗滑桩类型实际工程应用中,应根据滑坡类型及规模、地质条件、滑床岩土性质、施工条件和工期要求等因素具体选择适宜的桩型。
三、抗滑桩破坏形式总体而言,抗滑桩破坏形式主要包括:(1)抗滑桩间距过大、滑体含水量高并呈流塑状,滑动土体从桩间挤出;(2) 抗滑桩抗剪能力不足,桩身在滑面处被剪断;(3) 抗滑桩抗弯能力不足,桩身在最大弯矩处被拉断;(4) 抗滑桩锚固深度及锚固力不足,桩被推倒;(5)抗滑桩桩前滑面以下岩土体软弱,抗力不足,产生较大塑性变形,使桩体位移过大而超过允许范围;(6)抗滑桩超出滑面的高度不足或桩位选择不合理,桩虽有足够强度,但滑坡从桩顶以上剪出。
对于流塑性地层,滑体介质与抗滑桩的摩阻力低,土体易从桩间挤出。
此时,可在桩间设置连接板或联系梁,或采用小间距、小截面的抗滑桩,因流塑体的自稳性差,当地下水丰富时,开挖截面过大的抗滑桩易造成坍塌,对处于滑移状态的边坡,还可能会加速边坡的滑移速度,甚至造成边坡失稳。
四、抗滑桩设计01基本要求抗滑桩是一种被动抗滑结构,只有当边坡产生一定的变形后,才能充分发挥作用。
因此,抗滑桩宜用于潜在滑面明确、对变形控制要求不高的土质边坡、土石混合边坡和碎裂状、散体结构的岩质边坡。
抗滑桩宜布置在滑体下部且滑面较平缓的地段;当滑面长、滑坡推力大时,可与其它加固措施配合使用,或可沿滑动方向布置多排抗滑桩,多排抗滑桩宜按梅花型布置。
图1 主动土压力计算简图 (a ) 无黏性土 (b )黏性土一、计算原理及公式(参照简明施工计算手册)1、朗金理论主动土压力计算当墙背直立,填土水平,不计土与墙间的摩擦力,主动土压力强度按下式计算:无黏性土的主动土压力强度(2/m kN ))245(tan 2ϕγ-= H p a =a HK γ (a K —主动土压力系数)黏性土的主动土压力强度 (2/m kN ))245tan(2)245(tan 2ϕϕγ---= c H p aa a K c HK 2-=γ (a K —主动土压力系数)其中 )245(tan 2ϕ-= a K墙高H ,单位长度总主动土压力a E 按下式计算:无黏性土 )245(tan 2122ϕγ-=H E a a K H 221γ=a E 通过三角形形心,即在离墙底3/H 处 黏性土(a)(b)adγϕϕγ2222)245tan(2)245(tan 21c cH H E a +---=γγ222221c K cH K H a a +-=a E 通过三角形压力分布图abc 的形心,即在离墙底⎪⎭⎫⎝⎛-30Z H 处式中aK ccZ γϕγ2)245tan(20=-=2、朗金理论主动土压力计算当墙背直立,填土水平,不计土与墙间的摩擦力,被动土压力强度p p 可按下式计算:无黏性土的被动土压力强度(2/m kN ))245(tan 2ϕγ+= H p p =p HK γ (p K —被动土压力系数)黏性土的被动土压力强度 (2/m kN ))245tan(2)245(tan 2ϕϕγ+++= c H p pp p K c HK 2-=γ (p K —被动土压力系数)其中 )245(tan 2ϕ+= p Kp(a)(b)p图2 被动土压力计算简图 (b ) 无黏性土 (b )黏性土图3计算简图墙高H ,单位长度总被动土压力p E 按下式计算:无黏性土 )245(tan 2122ϕγ+=H E p p K H 221γ=p E 通过三角形形心,即在离墙底3/H 处 黏性土)245tan(2)245(tan 2122ϕϕγ+++=cH H E p p p K cH K H 2212+=γp E 通过三角形压力分布图的形心,即在离墙底cK H cK H H P p 463++⋅γγ处二、抗滑桩计算(一)基坑开挖深度为8m ,粉质粘土土的内摩擦角ϕ=19 ,土的重度35.18m kN =γ,0,0,0===δβα,采用1.25*1.25m 挖孔桩支护,求桩需埋置深度和最大弯矩。
抗滑桩设计及检算根据框架接长涵开挖深度及现场实际情况,在框架桥墙身两侧各设5根抗滑桩对路基进行防护,见附图,抗滑桩的桩径φ1.2m(其中护壁0.2m,桩1.0m),桩芯间距以对框架桥基础开挖中心向两侧布置,间距1.6m~2.0m。
1、抗滑桩设计根据LDK697+133框架接长涵设计地质资料,地面以下均为细砂,地基承载力210~300kpa,抗滑桩入土深度≮3m,抗滑桩长度取桩长10m。
单侧桩顶面上设盖梁将5根桩联为一体,提高整体抗滑能力,并作为后续现浇框架接长涵支撑模板立柱的基础。
开挖过程须核对地质与设计是否相符,若与地质不符需重新检算抗滑桩抗弯强度。
2、抗滑桩桩身结构抗滑桩桩身设计为钢筋混凝土,C30混凝土。
根据检算及配筋设计,桩身钢筋配置如附图:主筋采用12φ16螺纹钢筋,箍筋采用φ16@300。
灌注时须注意提前预埋长度30cm的φ20螺纹钢筋,伸出护壁10cm,作为后续防护钢筋混凝土挡土板连续钢筋。
3、抗滑桩结构检算根据LDK697+133框架接长涵抗滑桩设计长度分别为10m,按最不利情况下检算,基坑开挖深度为h=5.4m,基坑边距钢轨中心距离为4.5m,高差为7.3m,按《铁路桥涵设计基本规范》附录A主动土压力计算土压力。
主动土压力公式(包括活载):E=1/2γH2λB+γhολBο式中:γ――- 土容量(KN/m 3),经现场土工试验得γ=18.5KN/m3。
H ――― 计算土的厚度(m ),H=7.34m λ――― 主动土压力系数 λ=()()222cos cos cos 1φθθθ-⎛⨯+δ + ⎝,因基坑为垂直开挖,因此取θ=0,上式简化为λ=()22cos cos 1φ⎛δ + ⎝Φ――土的内摩擦角,经现场土工试验得φ=30δ――墩台背与填料之间的外摩擦角,根据《铁路桥涵设计基本规范》第4.2.2条,δ=φ/2=15α=填土表面与水平面的夹角,α=arctg1/1.5=33.7oB ——墩台计算宽度(m ),因挖孔桩间距为2.0m,取B=2.0m H 0――活载换算为当量均布土层厚度(m ),取h 0=q/r+(cos θ×cos α)/cos(θ-α)q ――每单面斜面积上水平投影的活载压力强度(kpa ),取q=55.2kp B 0――台后活载计算宽度(m ),取B 0=2.0m 。
边坡防护之抗滑桩类型、设计及计算一、概述抗滑桩是将桩插入滑面以下的稳固地层内,利用稳定地层岩土的锚固作用以平衡滑坡推力,从而稳定滑坡的一种结构物。
除边坡加固及滑坡治理工程外,抗滑桩还可用于桥台、隧道等加固工程。
抗滑桩具有以下优点:(1) 抗滑能力强,支挡效果好;(2) 对滑体稳定性扰动小,施工安全;(3) 设桩位置灵活;(4) 能及时增加滑体抗滑力,确保滑体的稳定;(5) 预防滑坡可先做桩后开挖,防止滑坡发生;(6)桩坑可作为勘探井,验证滑面位置和滑动方向,以便调整设计,使其更符合工程实际。
二、抗滑桩类型实际工程应用中,应根据滑坡类型及规模、地质条件、滑床岩土性质、施工条件和工期要求等因素具体选择适宜的桩型。
三、抗滑桩破坏形式总体而言,抗滑桩破坏形式主要包括:(1)抗滑桩间距过大、滑体含水量高并呈流塑状,滑动土体从桩间挤出;(2) 抗滑桩抗剪能力不足,桩身在滑面处被剪断;(3) 抗滑桩抗弯能力不足,桩身在最大弯矩处被拉断;(4) 抗滑桩锚固深度及锚固力不足,桩被推倒;(5)抗滑桩桩前滑面以下岩土体软弱,抗力不足,产生较大塑性变形,使桩体位移过大而超过允许范围;(6)抗滑桩超出滑面的高度不足或桩位选择不合理,桩虽有足够强度,但滑坡从桩顶以上剪出。
对于流塑性地层,滑体介质与抗滑桩的摩阻力低,土体易从桩间挤出。
此时,可在桩间设置连接板或联系梁,或采用小间距、小截面的抗滑桩,因流塑体的自稳性差,当地下水丰富时,开挖截面过大的抗滑桩易造成坍塌,对处于滑移状态的边坡,还可能会加速边坡的滑移速度,甚至造成边坡失稳。
四、抗滑桩设计01基本要求抗滑桩是一种被动抗滑结构,只有当边坡产生一定的变形后,才能充分发挥作用。
因此,抗滑桩宜用于潜在滑面明确、对变形控制要求不高的土质边坡、土石混合边坡和碎裂状、散体结构的岩质边坡。
抗滑桩宜布置在滑体下部且滑面较平缓的地段;当滑面长、滑坡推力大时,可与其它加固措施配合使用,或可沿滑动方向布置多排抗滑桩,多排抗滑桩宜按梅花型布置。