《图形的相似》复习(精品公开课)
- 格式:ppt
- 大小:1.90 MB
- 文档页数:35
《图形的相似》复习讲义一、线段的比1、比例线段的概念:在四条线α、b 、c 、d 中,如果其中两条线段的比例等于另外两条线段的比,即)::(d c b a dcb a ==或,那么这四条线段α、b 、c 、d 叫做成比例线段,简称比例线段。
2、线段的比例中项:在比例式cbb a =(或c b b a ::=)中,b 叫做α和c 的 。
3、比例的性质①基本性质:。
bd bc ad d cb a 内项之积等于外项之积:)0(≠=⇒= ②合比性质:ddc b b ad c b a ±=±⇒=。
③等比性质:)0(≠+++=++++++⇒===n d b ba n db mc a n md c b a 。
4. 黄金分割如图1,点C 把线段AB 分成两条线段AC 和BC,如果ACBCAB AC =,那么称线段AB 被点C 黄金分割,点C 叫做 线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC 课堂练习1、已知正数a 、b 、c ,且 k ba ca cbc b a =+=+=+ ,则下列四个点中在正比例函数y=kx 图象上的 点的坐标是( )A. (1,21 ) B. (1,2) C. (1,- 21) D.(1,-1) 2、① 在比例尺是1:38000的南京交通游览图上,玄武湖隧道长约7cm ,则它的实际长度约为______Km 。
② 若 b a =32 则 b b a +=__________ ③ 若 b a b a -+22=59 则 a :b=__________④ 已知: 2a =3b =5c且3a+2b-c=14 ,则 a+b+c 的值为_____3、已知75===f e d c b a 则 fd b ec a 7272+-+-=_________,d b c a --22 =___________。
4、已知x :y :z=3:4:5,则 zy x zy x -+++ =________。
《图形的相似》小结与复习课型:复习课教学目标1、使学生对章知识有一个全面,系统的认识。
2、使学生巩固新知识并在平时所学知识的基础上有所提高。
3、培养学生归纳总结的能力。
教学重点:知识的归类整理教学难点:知识的记忆和应用方法。
教学方法:先学后教、合作讨论、讲授相结合教学过程:(一)在现本章主要知识要点:1、复习本章内容:比例线段、相似三角形2、主要概念:(1)线段的比:两条线段的长度比叫做这两条线段的比。
(2)比例线段:在同一单位下,四条线段长度为a、b、c、d,其关系为a:b=c:d,那么,这四条线段叫做成比例线段,简称比例线段。
(3)相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。
(4)相似多边形:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形。
(5)相似比:相似比又名相似系数,相似多边形对应边的比叫做相似比。
3、主要定理:(1)比例的基本性质:。
bd bc ad dc b a 内项之积等于外项之积:)0(≠=⇒= 合比性质:dd c b b a d c b a ±=±⇒= 等比性质:)0(≠+++=++++++⇒===n d b ba n db mc a n md c b a (2)平行线等分线段和平行线分线段成比例定理平行线等分线段定理:如果一组等距的平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
平行线分线段成比例定理:两条直线被一组平行线所截,截得的对应线段的长度成比例。
(3)三角形一边平行线的性质:平行于三角形一边的直线截其他两边所得的对应线段成比例(4)三角形相似的判定方法A 、基础定理:平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。
B 、判定1: 两角对应相等,两个三角形相似。
C 、判定2: 两边对应成比例且夹角相等,两个三角形相似。
D 、判定3: 三边对应成比例的两个三角形相似。
《图形的相似》复习课教学目标:(一)知识与技能1、归纳、总结本章知识,使知识成体系。
2、对成比例线段、相似三角形的知识进行巩固提升。
(二)过程与方法体现研究图形问题的多种方法,培养学生处理图形问题的思维发展水平,加强相关知识之间的联系和综合运用。
(三)情感与价值观要求培养学生对问题的观察、思考、交流、类比、归纳等过程,发展学生的探索精神,合作意识,增强应用数学意识,加深对数学的人文价值的理解和认识。
教学重点:1、归纳、总结本章知识,使知识成体系。
2、掌握相似三角形的知识,并能灵活运用。
教学难点:培养学生处理图形问题的思维发展水平,建立几何模型的解题思考过程。
教学内容:一、线段的比和比的基本性质AB m1、线段比的定义:AB∶CD=m∶n 或写成=,其中,线段AB、CD 分别叫做这两个线段比CD nm AB的前项和后项.如果把表示成比值k,则=k 或AB=kCD.n CDa c2、比例线段的定义:=,那么这四条线段a,b,c,d 叫做成比例线段,简称比例线段.b d3、比例的性质:(1)比例的基本性质:如果a∶b=c∶d,那么a d=bc;a c(2)如果ad=bc(a、b、c、d 都不等于 0),那么=.b d4、在求两条线段的比时,有哪些地方是需要特别留意的?(1)线段的比为正数;(2)单位要统一;(3)线段的比与所采用的长度单位无关.1.已知线段AB=2cm,线段CD=2m,则线段AB∶CD=.2.已知四条线段a、b、c、d 的长度,试判断它们是否成比例?(1)a=16cm,b=8cm,c=5cm,d=10cm;(2)a=8cm,b=5cm,c=6cm,d=10cm.3.已知直角三角形两条直角边长比a∶b=1∶2,斜边长为4 5cm,那么三角形面积是( )A.32cm2 B.16cm2 C.8cm2 D.4cm24.等边三角形的一边与这边上的高的比是( )3A. 3∶2B. 3∶1 C.2∶D.1∶3AE 5. 如图,已知矩形 ABCD (AB <BC ),AB =1.将矩形 ABCD 对折,得到小矩形 ABFE ,如果AB AB 的值恰好与 的值相等,求原矩形 ABCD 的边 AD 的长. AD 二、比例线段与比例的性质 1、比例的基本性质:如果 a ∶b =c ∶d ,那么 ad =bc .a c e m a +c +e +…+m a 2、等比性质:若 = = =…= ,且b +d +f +…+n ≠0,则 = .b d f ac n a ± bc ±d b +d +f +…+n b 3、合(分)比性质:若 = ,则 = .b d ac e 1 bd a +c +e a +2c +3e 1.若 = = = ,且 b +d +f ≠0,则 = ; b d f 3 b d f + + = .a +b a +c b +cb 2d 3f2. 已知 c = b = a=k ,则 k 的值是 2 或-1. a c e 1 3.若 = = = ,b +d +f =30,则 a +c +e =15. b d f 2 a +4 b +3 c +84.已知 a 、b 、c 是△ABC 的三边,满足 3 = 2(1)试求 a ,b ,c 的值;(2) 判断△ABC 的形状. 三、平行线分线段成比例= 4 , 且 a +b +c =12. 1. 平行线等分线段:如果一组平行线在一条直线上截得的线段相等,那么这组平行线在其他直线上截得的线段也相等.2. 平分线分线段成比例:两条直线被一组平行线所截,所得的对应线段成比例.3. 推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例.1. 如图,已知 l 1∥l 2∥l 3,如果 AB ∶BC =2∶3,DE =4,则 EF 的长是( )10A . 3B .6C .4D .25 2. 如图,在四边形 ABCD 中,AD ∥BC ,E 是 AB 上的一点,EF ∥BC ,交 CD 于 F ,若 AE =2,BE =3, CD =4,则 FC = ,DF =. 3.已知,如图,EG ∥BC ,GF ∥DC ,AE =3,EB =2,AF =6,求 AD 的值.四、相似多边形1. 相似多边形的定义:(1) 从图形上讲:一般而言,形状相同的图形称为相似图形;(2) 从边、角上讲:各角对应相等,各边对应成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比;(3) 相似多边形的记法:用“∽”符号表示相似,如四边形 ABCD 与四边形 A 1B 1C 1D 1 相似, 记为“四边形 ABCD ∽四边形 A 1B 1C 1D 1”.2. 相似多边形的性质:相似多边形的对应角相等,对应边成比例.1. 下列结论不正确的是( )A. 所有的矩形都相似 B .所有的正方形都相似+ +C. 2∶1C.所有的等腰直角三角形都相似D.所有的正八边形都相似2.如图,在下面的三个矩形中,相似的是( )A.甲、乙和丙B.甲和乙C.甲和丙D.乙和丙3.如果一个矩形对折后所得到的矩形与原矩形相似,则矩形的长边长与短边长的比是( )A.2∶1 B.4∶1 D.1∶五、探索三角形相似的条件(一)三角形相似的判定定理 11.相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,如△ABC与△DEF 相似,记作△ABC∽△DEF,其中对应顶点要写在相同位置上,如A 与D,B 与E,C 与F 相对应.AB∶DE 等于BC∶EF.2.三角形相似判定定理 1:两角对应相等的两个三角形相似.1.如图,在△ABC 中,∠ACB=90°,CD⊥AB 于点D,则图中相似三角形共有( )A.1对B.2 对C.3 对D.4 对2.如图,D 是直角三角形ABC 直角边AC 上的一点,若过D 点的直线交AB 于E,使得到的三角形与原三角形相似,则这样的直线有( )A.1 条B.2 条C.3 条D.4 条3.已知△ABC 中,AB=AC,∠A=36°,BD 是角平分线,求证:△ABC∽△BDC.(二)两边一夹角判定两个三角形相似三角形相似判定定理 2:两边成比例且夹角相等的两个三角形相似.1.下列条件不能判定△ABC 与△ADE 相似的是( )AE AC AE DEA.=B.∠B=∠ADE C. =D.∠C=∠AEDAD AB AC BC2.下列条件能判断△ABC 和△A′B′C′相似的是( )AB AC AB AC AB A′B′AB ACA. =B. =且∠A=∠C′C. =且∠B=∠A′D. =且∠B=∠B′A′B′A′C′A′B′A′C′BC A′C′A′B′A′C′3.如图,每个小正方形边长均为1,则下列图三角形(阴影部分)与右图△ABC 相似的是( ),A) ,B) ,C) ,D)4.已知:如图,在△ABC 中,CE⊥AB,BF⊥AC.求证:△AEF∽△ACB.(三)三边成比例的两个三角形相似三角形相似判定定理 3:三条边成比例的两个三角形相似.1.下列条件不能判定△ABC 与△ADE 相似的是( )25-1 2 5-1 2 AE AD AD AE DE DE AD A . = ,∠CAE =∠BAD B.∠B =∠ADE ,∠CAE =∠BAD C . = = D . = ,∠C =∠E AC AB AB AC BC BC AB2. 下列四个三角形,与右图中的三角形相似的是( )(四)黄金分割 ,A ) ,B ) ,C ) AC BC 黄金分割的意义:在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC ,如果 = ,那么AB AC称线段 AB 被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割点,AC 与 AB 的比叫做黄金比.5-1 黄金比=,近似数为 0.618. 21. 已知点 C 是线段 AB 的黄金分割点,且 AC >BC ,则下列等式成立的是( )A .AB 2=AC ·CB B .CB 2=AC ·AB C .AC 2=CB ·ABD .AC 2=2AB ·BC2. 已知 C 是线段 AB 的一个黄金分割点,则 AC ∶AB 为( )A. B . 3- 5 2 5+1 C. 2D. 或 3. 下列说法正确的是( )A. 每条线段有且仅有一个黄金分割点B .黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的 0.618 倍C .若点 C 把线段 AB 黄金分割,则 AC 2=AB ·BCD .以上说法都不对六、利用相似三角形测高测量旗杆高度的常见方法有:(1)利用“同一时刻的物高与影长成比例”构造相似三角形;(2) 利用“视线、标杆和物高”构造相似三角形;(3) 利用“平面镜中入射角与反射角相等”构造相似三角形.①利用阳光下的影子来测量旗杆的高度点拨:把太阳的光线看成是平行的.∵太阳的光线是平行的,∴AE ∥CB ,∴∠AEB =∠CBD ,AB BE AB·BD ∵人与旗杆是垂直于地面的,∴∠ABE =∠CDB ,∴△ABE ∽△CDB ,∴ = ,即 CD = ,CD DB BE代入测量数据即可求出旗杆 CD 的高度.②利用镜子的反射点拨:入射角=反射角.∵入射角=反射角,∴∠AEB =∠CED .∵人、旗杆都垂直于地面,AB BE AB·DE ∴∠B =∠D =90°,∴△AEB ∽△CED ,∴ = ,∴CD = .因此,测量出人与镜子的CD DE BE距离 BE ,旗杆与镜子的距离 DE ,再知道人的身高 AB ,就可以求出旗杆 CD 的高度. 1. 某校数学兴趣小组为测量学校旗杆 AC 的高度,在点 F 处竖立一根长为 1.5m 的标杆 DF ,如右图,量出 DF 的影子 EF 的长度为 1m ,同一时刻测量旗杆 AC 的影子 BC 的长度为6m ,那么旗杆 AC 的高度为( )A. 6mB .7mC .8.5mD .9m2. 如图,是小玲设计用手电来测量某古城墙高度的示意图.在点 P 处放一水平的平面镜,,D )3- 5 2光线从点A 出发经平面镜反射后,刚好射到古城墙CD 的顶端C 处.已知AB⊥BD,CD⊥B且D.测得AB=1.2m,BP=1.8m,PD=12m.那么该古城墙CD 的高度是( )A.6m B.8m C.18m D.21m3.小明想知道学校旗杆的高,在他与旗杆之间的地面上直立一根2 米的标竿EF,小明适当调整自己的位置使得旗杆的顶端C、标竿的顶端F 与眼睛D 恰好在一条直线上,量得小明高AD 为 1.6 米,小明脚到标杆底端的距离AE 为0.5 米,小明脚到旗杆底端的距离AB 为8 米.请你根据数据求旗杆BC 的高度.七、相似三角形的性质(一)相似三角形对应线段的比1.相似多边形对应边的比叫做相似比.2.相似三角形的对应角相等,对应边成比例.3.相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比1.如果两个相似三角形对应角平分线之比为1∶2,那么它们对应中线之比为( )A.1∶2 B.1∶3 C.1∶4 D.1∶82.已知△ABC∽△A′B′C′,AD,A′D′是高,且AD=3cm,A′D′=5cm,AE,A′E′分别是BC 和B′C′边上的中线,AE=6cm,则A′E′=.3.如图,在△ABC 是一张锐角三角形硬纸片,AD 是边BC 上的高,BC=40cm,AD=30cm,从这张硬纸片上剪下一个长HG 是宽HE 的2 倍的矩形EFGH,使它的一边EF 在BC 上,顶点G,H 分别在AC,AB 上,AD 与HG 的交点为M.AM HG(1)求证:AD =BC;(2)求矩形EFGH 的周长.(二)相似三角形周长和面积的比相似三角形的周长比等于相似比,面积比等于相似比的平方.1.下列命题中错误的是( )A.相似三角形的周长比等于对应中线的比B.相似三角形对应高的比等于相似比C.相似三角形的面积比等于相似比D.相似三角形对应角平分线的比等于相似比2.若两个相似多边形的面积之比为1∶4,则它们的周长之比为( )A.1∶4 B.1∶2 C.2∶1 D.4∶13.若两个三角形相似,且它们的最大边分别为6cm 和8cm,它们的周长之和为35cm,则较小的三角形的周长为.4.在▱ABCD 中,BE=2AE,若S△AEF=6,求S CDF.八、图形的位似(一)位似变换1.位似多边形的定义:如果两个相似多边形任意一组对应顶点A、A′的连线(或延长线)都经过同一个点O,且有OA′=kOA(k≠0),那么这样的两个多边形叫做位似多边形,点O 叫做位似中心,这时的相似比k 又称为位似比.2.位似多边形的性质:(1)位似多边形一定相似,位似多边形具有相似多边形的一切性质;(2) 位似多边形上任意一对对应点连线(或延长线)都经过位似中心,并且到位似中心的距离之比等于相似比.3.同时满足下面三个条件的两个图形才叫做位似图形.三个条件缺一不可:①两图形相似;②每组对应点所在直线都经过同一点;③对应边互相平行(或在同一直线上).4.画位似图形的方法:①确定位似中心;②找对应点;③连线;④下结论.1.如图所示的每组图中的两个多边形,一定不是位似图形的是( ),A) ,B) ,C) ,D)2.下列说法错误的是( )A.位似多边形对应角相等,对应边成比例B.位似多边形对应点所连的直线一定经过位似中心C.位似多边形上任意一对对应点到位似中心的距离之比等于位似比D.两个位似多边形一定是全等图形1.若五边形ABCDE 3.如图,五边形A′B′C′D′E′与五边形ABCDE 是位似图形,且位似比为2的面积为16cm2,周长为20cm,那么五边形A′B′C′D′E′的面积为,周长为.4.如图,已知四边形ABCD 和点O,请以O 为位似中心,作出四边形ABCD 的位似图形,把四边形ABCD 放大为原来的2 倍.(二)位似变换中的坐标变化1.在平面直角坐标系中,一个多边形每一个顶点的横、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k|.2.我们学习过的图形变换包括:平移、轴对称、旋转和位似.其中经过平移、轴对称、旋转变换前后的两个图形一定是全等的;而经过位似变换前后的两个图形是相似的1.如图,在平面直角坐标系中,以原点O 为位似中心,将△ABO 扩大到原来的2 倍,得到△A′B′O.若点A 的坐标是(1,2),则点A′的坐标是( )A.(2,4) B.(-1,-2) C.(-2,-4) D.(-2,-1)2.在平面直角坐标系中,△ABC 的顶点坐标分别为A(-6,1),B(-3,1),C(-3,3).若将它们的横纵坐标都乘以-3,得到新三角形△A1B1C1,则△A1B1C1与△ABC 是位似关系,位似中心是,位似比等于.3.如图,已知△ABC 在直角坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中每个小正方形的边长是1 个单位长度)(1)画出△ABC 向下平移4 个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B 为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC 位似,且相似比为2∶1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.九、相似三角形的几种基本模型。