PMSAP温度应力分析讲解
- 格式:ppt
- 大小:242.01 KB
- 文档页数:39
超长结构温度应力计算探讨一、温度作用的特点:温度作用是在规定时期内结构或结构构件由于温度场变化所引起的作用,具有以下特点:1)温度作用是由结构材料“热胀冷缩”效应被结构内、外约束阻碍而在结构内产生的内力作用,属于间接作用;2)温度作用随外界环境的变化而变化,有明显的时间性,属于可变作用;3)建筑结构从开始建造到拆除都会受到所处温度场影响,因而温度作用伴随着结构的生命全周期过程;4)引起结构温度变化因素很多,有气候季节变化、太阳暴晒辐射和其它人为因素(如火灾)等,诱因多样性使温度作用有别于其它(荷载)作用。
二、温度作用的规范规定:2.1什么时候需要进行温度作用计算根据温度作用的特点可知,结构中产生的温度作用大小主要与结构材料线膨胀系数和结构长度有关。
表1为常用材料线膨胀系数αT,可见结构钢和混凝土的线膨胀系数非常接近。
正因为如此,在计算钢筋混凝土结构的温度作用时才可以只按混凝土一种材料近似考虑。
材料确定的情况下,长度越长,温度作用越大。
在完全没有约束的情况下,总长为100m、截面为600x600的普通混凝土梁温度每升高或降低20℃,梁长度将增加或减少20mm;如果端部的变形完全受到约束,将在梁内部产生约2160KN(按强度等级为C30计算)的轴向压力或拉力,该力约为混凝土轴向抗拉强度标准值的3倍。
T实际结构不可能没有约束,总会在结构中产生温度应力,当结构长度较小时,可忽略温度应力和温度变形对结构的影响。
现行规范根据不同的结构形式给出该长度(温度区段长度)经验值,详见表2,当结构超出该长度时才有必要进行温度作用计算。
表2: 钢筋混凝土结构伸缩缝最大间距(m)建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。
当结构或构件在温度作用和其他可能组合的荷载共同作用下产生的效应(应力或变形)可能超过承载能力极限状态或正常使用极限状态时,比如结构某一方向平面尺寸超过伸缩缝最大间距或温度区段长度、结构约束较大、房屋高度较高等,结构设计中一般应考虑温度作用。
超长结构温度应力计算探讨一、温度作用的特点:温度作用是在规定时期内结构或结构构件由于温度场变化所引起的作用,具有以下特点:1)温度作用是由结构材料“热胀冷缩”效应被结构内、外约束阻碍而在结构内产生的内力作用,属于间接作用;2)温度作用随外界环境的变化而变化,有明显的时间性,属于可变作用;3)建筑结构从开始建造到拆除都会受到所处温度场影响,因而温度作用伴随着结构的生命全周期过程;4)引起结构温度变化因素很多,有气候季节变化、太阳暴晒辐射和其它人为因素(如火灾)等,诱因多样性使温度作用有别于其它(荷载)作用。
二、温度作用的规范规定:2.1什么时候需要进行温度作用计算根据温度作用的特点可知,结构中产生的温度作用大小主要与结构材料线膨胀系数和结构长度有关。
表1为常用材料线膨胀系数αT,可见结构钢和混凝土的线膨胀系数非常接近。
正因为如此,在计算钢筋混凝土结构的温度作用时才可以只按混凝土一种材料近似考虑。
材料确定的情况下,长度越长,温度作用越大。
在完全没有约束的情况下,总长为100m、截面为600x600的普通混凝土梁温度每升高或降低20℃,梁长度将增加或减少20mm;如果端部的变形完全受到约束,将在梁内部产生约2160KN(按强度等级为C30计算)的轴向压力或拉力,该力约为混凝土轴向抗拉强度标准值的3倍。
表1: 常用材料的线膨胀系数αT实际结构不可能没有约束,总会在结构中产生温度应力,当结构长度较小时,可忽略温度应力和温度变形对结构的影响。
现行规范根据不同的结构形式给出该长度(温度区段长度)经验值,详见表2,当结构超出该长度时才有必要进行温度作用计算。
建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。
当结构或构件在温度作用和其他可能组合的荷载共同作用下产生的效应(应力或变形)可能超过承载能力极限状态或正常使用极限状态时,比如结构某一方向平面尺寸超过伸缩缝最大间距或温度区段长度、结构约束较大、房屋高度较高等,结构设计中一般应考虑温度作用。
一、温差效应理论1,局部温差不对整体结构产生影响,只考虑整体温差。
2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。
3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。
二、温差取值对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2:1,施工阶段最低或最高温度(T2)选取:A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影响,一般不需要计算)。
B,对地上结构,可以认为完全暴露在室外。
可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。
2,施工阶段基准温度(T1)选取:结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。
因此后浇带浇注时的温度作为温差效应里的基准温度T1。
当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月份时候,这里的基准温度可取当季或当月的近十年平均气温。
当施工进度无法掌握时,基准温度可取近十年月平均气温值T1=(0.0+2.4+6.4+11.9+17.0+20.9+24.4+25.2+22.1+16.9+9.2+3.5)/12=13.3。
因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。
只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。
探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。
超长结构温度应力计算探讨一、温度作用的特点:温度作用是在规定时期内结构或结构构件由于温度场变化所引起的作用,具有以下特点:1)温度作用是由结构材料“热胀冷缩”效应被结构内、外约束阻碍而在结构内产生的内力作用,属于间接作用;2)温度作用随外界环境的变化而变化,有明显的时间性,属于可变作用;3)建筑结构从开始建造到拆除都会受到所处温度场影响,因而温度作用伴随着结构的生命全周期过程;4)引起结构温度变化因素很多,有气候季节变化、太阳暴晒辐射和其它人为因素(如火灾)等,诱因多样性使温度作用有别于其它(荷载)作用。
二、温度作用的规范规定:2.1什么时候需要进行温度作用计算根据温度作用的特点可知,结构中产生的温度作用大小主要与结构材料线膨胀系数和结构长度有关。
表1为常用材料线膨胀系数αT,可见结构钢和混凝土的线膨胀系数非常接近。
正因为如此,在计算钢筋混凝土结构的温度作用时才可以只按混凝土一种材料近似考虑。
材料确定的情况下,长度越长,温度作用越大。
在完全没有约束的情况下,总长为100m、截面为600x600的普通混凝土梁温度每升高或降低20℃,梁长度将增加或减少20mm;如果端部的变形完全受到约束,将在梁内部产生约2160KN(按强度等级为C30计算)的轴向压力或拉力,该力约为混凝土轴向抗拉强度标准值的3倍。
T实际结构不可能没有约束,总会在结构中产生温度应力,当结构长度较小时,可忽略温度应力和温度变形对结构的影响。
现行规范根据不同的结构形式给出该长度(温度区段长度)经验值,详见表2,当结构超出该长度时才有必要进行温度作用计算。
表2: 钢筋混凝土结构伸缩缝最大间距(m)建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。
当结构或构件在温度作用和其他可能组合的荷载共同作用下产生的效应(应力或变形)可能超过承载能力极限状态或正常使用极限状态时,比如结构某一方向平面尺寸超过伸缩缝最大间距或温度区段长度、结构约束较大、房屋高度较高等,结构设计中一般应考虑温度作用。
超长结构温度应力计算探讨一、温度作用的特点:温度作用是在规定时期内结构或结构构件由于温度场变化所引起的作用,具有以下特点:1温度作用是由结构材料“热胀冷缩”效应被结构内、外约束阻碍而在结构内产生的内力作用,属于间接作用;2温度作用随外界环境的变化而变化,有明显的时间性,属于可变作用;3建筑结构从开始建造到拆除都会受到所处温度场影响,因而温度作用伴随着结构的生命全周期过程;4引起结构温度变化因素很多,有气候季节变化、太阳暴晒辐射和其它人为因素(如火灾等,诱因多样性使温度作用有别于其它(荷载作用。
二、温度作用的规范规定:2.1什么时候需要进行温度作用计算根据温度作用的特点可知,结构中产生的温度作用大小主要与结构材料线膨胀系数和结构长度有关。
表1为常用材料线膨胀系数αT,可见结构钢和混凝土的线膨胀系数非常接近。
正因为如此,在计算钢筋混凝土结构的温度作用时才可以只按混凝土一种材料近似考虑。
材料确定的情况下,长度越长,温度作用越大。
在完全没有约束的情况下,总长为100m、截面为600x600的普通混凝土梁温度每升高或降低20℃,梁长度将增加或减少20mm;如果端部的变形完全受到约束,将在梁内部产生约2160KN(按强度等级为C30计算的轴向压力或拉力,该力约为混凝土轴向抗拉强度标准值的3倍。
表1: 常用材料的线膨胀系数αT材料线膨胀系数αT(×10-6/℃轻骨料混凝土7普通混凝土10砌体6~10钢,锻铁,铸铁12不锈钢16铝,铝合金24实际结构不可能没有约束,总会在结构中产生温度应力,当结构长度较小时,可忽略温度应力和温度变形对结构的影响。
现行规范根据不同的结构形式给出该长度(温度区段长度经验值,详见表2,当结构超出该长度时才有必要进行温度作用计算。
表2: 钢筋混凝土结构伸缩缝最大间距(m结构类型室内或土中露天排架结构装配式100 70框架结构装配式75 50 现浇式55 35剪力墙结构装配式65 40 现浇式45 30挡土墙、地下室墙壁等类结构装配式40 30 现浇式30 20建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。
浅谈复杂高层结构经SATWE和PMSPA计算的运用摘要:建筑物就像一尊美丽的艺术品,精美的建筑是设计师把建筑的美观设计与结构设计相互密切配合的结果。
但要分清具体配合的侧重点,有些是着重艺术、美观要求的,有些着重使用功能、生产工艺等等。
总之,建筑师的设计可以将优美的建筑造型,完善的使用功能与结构设计有机地结合,而不能简单地追求奇特。
建筑设计重点是不能离开具体的设计对象。
关键词:复杂高层结构设计抗震一、高层建筑结构设计的意义及依据1、概念设计的意义高层建筑能做到结构功能与外部条件一致,充分展现先进的设计,发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。
2、概念设计的依据高层建筑结构总体系与各分体系的工作原理和力学性质,设计和构造处理原则,计算程序的力学模型和功能,吸取或不断积累的实践经验。
二、高层建筑结构设计方面的原则1、选用适当的计算简图:结构计算式在计算简图的基础上进行的,计算简图选用不当则会导致结构安全的事故常常发生,所以选择适当的计算简图是保证结构安全的重要条件。
计算简图还应有相应的构造措施来保证。
实际结构的节点不可能是纯粹的铰结点和刚结点,但与计算简图的误差应在设计允许范围之内。
2、选择合适的基础方案:基础设计应根据工程地质条件,上部结构类型与载荷分布,相邻建筑物影响及施工条件等多种因素进行综合分析,选择经济合理的基础方案,设计时宜最大限度地发挥地基的潜力,必要时应进行地基变形验算。
基础设计应有详尽的地质勘察报告,对一些缺少地质报告的建筑应进行现场查看和参考临近建筑资料。
通常情况下,同一结构单元不宜用两种不同的类型。
3、合理选择构方案:一个合理的设计必须选择一个经济合理的结构方案,也就是要选择一个切实可行的结构形式和结构体系。
结构体系应受力明确,传力简捷。
同一结构单元不宜混用不同结构体系,地震区应力求平面和竖向规则。
总而言之,必须对工程的设计要求、材料供应、地理环境、施工条件等情况进行综合分析,并与建筑、电、水、暖等专业充分协商,在此基础上进行结构选型,确定结构方案,必要时应进行多方案比较,择优选用。
伊新富:现在的PKPM系列的PMSAP已经具备进行温度应力分析的功能。
我谈一下对超长结构用PMSAP计算要考虑的具体问题,望各位多提意见.砼规范9.1.3-3规定:当增大伸缩缝间距时,尚应考虑温度变化和砼收缩对结构的影响。
5.3.6条文说明:温度应力分析参见《水工混凝土结构设计规范》。
其第11.3.1规定:钢筋混凝土框架计算时,应考虑框架封闭时的温度与运用期可能遇到的最高或最低多年月平均温度之间的均匀温差。
必要时,考虑结构在运用间的内外温差。
11.3.3规定:分析钢筋混凝土框架在温度作用下的内力时,杆件的刚度应取用开裂后的实际刚度。
目前,温度应力可用PMSAP计算,刚度按"王铁梦:工程结构裂缝控制"折减为0.25~0.3,但折减后对其它所有的工况都有影响,水平位移增大几倍,所以计算时直接把温差折减到0.3倍,刚度不折减,以方便和竖向,水平荷载组合;组合系数按 "樊小卿:温度作用与结构设计",取1.3(分项系数)X0.6(组合系数)。
温度应力计算1、构筑物抗震规范,钢结构设计手册(沈祖炎等编写),烟囱设计规范等都把温度荷载作为可变荷载。
2、温度荷载效应的分项系数等于1.0,组合系数取1.0。
钢筋及混凝土材料特性有所改变(常温下基本上没变);钢结构设计手册特别说明,当温度荷载与其他荷载组合时,钢材的强度设计值可提高25%。
烟囱设计规范限制混凝土最高温度不大于150度。
3、仅考虑大气温度变化的计算温度差值(摘自钢结构设计手册) 1)采暖房屋25~35度2)非采暖房屋:北方地区35~45度;中部地区25~35度;南方地区20~25度3)热加工车间约40度4)露天结构:北方地区55~60度;南方地区45~50度4、详细的温度差可参考《民用建筑热工设计规范》GB50176-93该工程是一个非常大的平面尺寸了,建议至少设后浇带三道以上才行。
1、现在的PKPM系列的PMSAP已经具备进行温度应力分析的功能。
超长结构温度应力计算探讨一、温度作用的特点:温度作用是在规定时期内结构或结构构件由于温度场变化所引起的作用,具有以下特点:1温度作用是由结构材料“热胀冷缩”效应被结构内、外约束阻碍而在结构内产生的内力作用,属于间接作用;2温度作用随外界环境的变化而变化,有明显的时间性,属于可变作用;3建筑结构从开始建造到拆除都会受到所处温度场影响,因而温度作用伴随着结构的生命全周期过程;4引起结构温度变化因素很多,有气候季节变化、太阳暴晒辐射和其它人为因素(如火灾等,诱因多样性使温度作用有别于其它(荷载作用。
二、温度作用的规范规定:2.1什么时候需要进行温度作用计算根据温度作用的特点可知,结构中产生的温度作用大小主要与结构材料线膨胀系数和结构长度有关。
表1为常用材料线膨胀系数αT,可见结构钢和混凝土的线膨胀系数非常接近。
正因为如此,在计算钢筋混凝土结构的温度作用时才可以只按混凝土一种材料近似考虑。
材料确定的情况下,长度越长,温度作用越大。
在完全没有约束的情况下,总长为100m、截面为600x600的普通混凝土梁温度每升高或降低20℃,梁长度将增加或减少20mm;如果端部的变形完全受到约束,将在梁内部产生约2160KN(按强度等级为C30计算的轴向压力或拉力,该力约为混凝土轴向抗拉强度标准值的3倍。
表1: 常用材料的线膨胀系数αT材料线膨胀系数αT(×10-6/℃轻骨料混凝土7普通混凝土10砌体6~10钢,锻铁,铸铁12不锈钢16铝,铝合金24实际结构不可能没有约束,总会在结构中产生温度应力,当结构长度较小时,可忽略温度应力和温度变形对结构的影响。
现行规范根据不同的结构形式给出该长度(温度区段长度经验值,详见表2,当结构超出该长度时才有必要进行温度作用计算。
表2: 钢筋混凝土结构伸缩缝最大间距(m结构类型室内或土中露天排架结构装配式100 70框架结构装配式75 50 现浇式55 35剪力墙结构装配式65 40 现浇式45 30挡土墙、地下室墙壁等类结构装配式40 30 现浇式30 20建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。