《灰色预测》PPT课件
- 格式:ppt
- 大小:3.71 MB
- 文档页数:10
一、什么是灰色预测灰色预测是就对灰色系统所做的预测。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如:一个商店可看作是一个系统,在人员、资金、损耗、销售信息完全明确的情况下,可算出该店的盈利大小、库存多少,可以判断商店的销售态势、资金的周转速度等,这样的系统是白色系统。
遥远的某个星球,也可以看作一个系统,虽然知道其存在,但体积多大,质量多少,距离地球多远,这些信息完全不知道,这样的系统是黑色系统。
人体是一个系统,人体的一些外部参数(如身高、体温、脉搏等)是已知的,而其他一些参数,如人体的穴位有多少,穴位的生物、化学、物理性能,生物的信息传递等尚未知道透彻,这样的系统是灰色系统。
再如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
显然,黑色、灰色、白色都是一种相对的概念。
世界上没有绝对的白色系统,因为任何系统总有未确知的部分,也没有绝对的黑色系统,因为既然一无所知,也就无所谓该系统的存在了。
灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具有潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
常用的灰色时间序列预测;即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
二、灰色预测的步骤若给定原始数据序列)](),......2(),1([)0()0()0()0(n X X X X =可分别从)0(X 序列中,选取不同长度的连续数据作为子序列.对于子序列建立GM(1,1)模型的步骤可以概括为: 第一步:写出原始数据列(0)X(0)(0)(0)(0)(){(1),(2),......,()}X i X X X n =为了弱化原始时间序列的随机性 在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。