电动汽车高压电气讲课教案
- 格式:pptx
- 大小:1.86 MB
- 文档页数:3
《新能源汽车高压安全与防护》教案《新能源汽车高压安全与防护》教案1. 引言随着人们对环保意识的增强,新能源汽车逐渐成为汽车市场的一个热门话题。
然而,与传统燃油汽车相比,新能源汽车所搭载的高压电池系统给汽车安全提出了新的挑战。
本文将从高压安全与防护的角度出发,撰写教案,帮助读者了解新能源汽车高压系统的安全问题以及如何进行有效的防护。
2. 新能源汽车高压系统概述2.1 高压电池系统组成新能源汽车的高压电池系统由电池单体、电池管理系统、高压连接器等组成。
其中,电池单体是整个系统的核心部件,承担着能量存储和释放的功能。
2.2 高压系统工作原理高压电池通过控制电池单体之间的放电和充电过程,提供动力支持给汽车电动机,驱动汽车行驶。
3. 高压安全隐患分析3.1 短路事故可能性高压电池系统中,一旦发生短路,将会引发爆炸等严重后果。
3.2 碰撞事故风险在发生碰撞事故时,高压电池系统有可能遭受严重损坏,导致高压电池短路和漏电。
4. 高压安全与防护措施4.1 高压电池系统防护措施在设计和制造新能源汽车时,应当加强高压电池的外壳设计,提高其抗压和防护能力,减少碰撞事故的损害。
4.2 安全教育与培训对新能源汽车驾驶员和维修人员进行专业的安全培训,加强其对高压系统的认知和防护意识。
5. 个人观点与总结新能源汽车高压安全与防护是一个值得深入研究的领域,只有充分认识并有效防护高压系统的安全隐患,才能够更好地推动新能源汽车的发展。
在未来的发展中,我们需要不断完善相关安全标准和法规,增加对新能源汽车高压系统安全性的监管力度。
总结:本文针对新能源汽车高压安全与防护的问题进行了全面的分析和探讨,希望能够为相关行业人士提供一定的参考和建议,推动新能源汽车行业的发展。
也希望该教案能够加强社会对新能源汽车高压系统安全问题的关注,为行业的可持续发展提供保障。
6. 高压系统故障诊断与处理6.1 定期检查与维护针对新能源汽车高压系统,定期进行系统的检查与维护是非常重要的。
新能源汽车高压安全与防护教案一、引言随着环境保护意识的增强和能源危机的日益严重,新能源汽车已成为汽车行业的发展趋势。
作为一种高科技产品,新能源汽车在使用过程中需要考虑更多的安全因素。
其中,高压安全与防护是新能源汽车安全的重要组成部分。
本教案旨在介绍新能源汽车高压安全与防护知识,帮助学习者了解新能源汽车高压系统的原理、安全措施和故障处理方法,提高他们的汽车安全意识和应对突发情况的能力。
二、新能源汽车高压系统概述1.高压电池新能源汽车的高压系统主要包括高压电池、高压电机及其控制系统。
其中,高压电池是整个高压系统的核心部件,通常采用锂电池作为能量储存装置。
高压电池的电压通常在300V以上,甚至可达600V 或更高。
因此,高压电池的安全性尤为重要。
2.高压电机高压电机是新能源汽车的动力源,通常采用永磁同步电机或异步电机。
其工作电压也较高,需要与高压电池相匹配。
3.控制系统高压系统的控制系统包括电池管理系统(BMS)、电机控制器、电子稳定系统、动力电池充电系统等。
这些控制系统需要保证高压系统的稳定运行和安全控制。
三、高压系统的安全隐患1.高压系统电气安全隐患高压电池、电机及其控制系统都存在电气安全隐患,如短路、绝缘故障、过电压等。
一旦发生电气故障,可能造成严重的安全事故。
2.高压系统热安全隐患高压系统在工作过程中会产生大量热量,需要进行有效的散热和温度监控,以防止过热引发安全事故。
3.高压系统机械安全隐患高压系统的各部件需要承受较大的机械压力和振动,需要保证结构的牢固和可靠。
四、新能源汽车高压安全与防护知识1.高压系统安全防护装置高压系统需要配备相应的安全防护装置,包括绝缘保护装置、安全开关、高压隔离开关、过电压保护装置等。
这些装置可以有效地保障高压系统的安全运行。
2.高压系统安全操作规程驾驶人员在操作新能源汽车时,需要遵守高压系统的安全操作规程,包括正确操作高压系统的开关和控制器、禁止私自拆卸高压系统零部件、避免在高压系统附近进行金属导体的维修等。
新能源汽车高压安全与防护教案教案名称:新能源汽车高压安全与防护教案教学目标:1.了解新能源汽车高压系统的基本原理和构成。
2.掌握新能源汽车高压系统的安全性能与防护措施。
3.掌握故障排查与处理的基本方法。
教学重点:1.新能源汽车高压系统的安全性能与防护措施。
2.故障排查与处理的基本方法。
教学难点:1.新能源汽车高压系统的安全性能。
2.故障排查与处理的技能。
教学准备:1.电子白板或投影仪。
2. PPT或教学视频。
3.新能源汽车高压系统模型。
教学步骤:第一步:导入(5分钟)介绍新能源汽车高压系统的重要性和普及情况,引起学生对本节课内容的兴趣。
第二步:理论讲解(20分钟)1.展示PPT或播放教学视频,通过对新能源汽车高压系统的构成和工作原理进行详细讲解,让学生了解其基本原理。
2.介绍新能源汽车高压系统的安全性能,包括高压电缆的绝缘性能、高压接触器的开关性能等。
第三步:实际操作(30分钟)1.准备新能源汽车高压系统模型,让学生进行实际操作体验。
教师示范如何正确连接和断开高压电缆,以及如何操作高压接触器。
2.学生分组进行实际操作,相互协助并指导正确操作步骤。
3.强调操作过程中的安全性要求,例如佩戴绝缘手套、避免短路等。
第四步:故障排查与处理(20分钟)1.介绍新能源汽车高压系统常见的故障情况,如线路短路、电池过热等,并讲解故障排查的基本方法。
2.针对不同故障情况,教师作示范,并和学生一起讨论如何正确处理故障。
第五步:总结与评价(10分钟)1.对本节课的教学内容进行总结,并强调重点。
2.对学生的实际操作表现进行评价,并鼓励其积极参与讨论和提问。
教学延伸:1.鼓励学生进一步了解和研究新能源汽车高压系统的发展趋势与新技术。
2.培养学生的安全意识和创新能力,让他们更好地应对新能源汽车高压安全与防护方面的挑战。
教学反思:通过本节课的教学,学生能够全面了解新能源汽车高压系统的基本原理和构成,掌握新能源汽车高压系统的安全性能与防护措施,并能够进行故障排查与处理。
任务一纯电动汽车高压安全防护一、教学目标(一)知识目标1.能够通过与客户交流和查阅相关维修技术资料获取车辆信息。
2.能够独立制订工作计划并按计划实施。
3.高压安全防护装备的检查。
4.高压安全防护及触电急救。
(二)能力目标将系统复杂的知识图表化——对知识进行加工提炼,绘制图表,便于理解、记忆和复习,提高自学能力。
(三)素质目标1.在学习和检修过程中,遵守汽车维修安全操作规程,并养成 7S 现场管理的工作习惯。
2.能与小组成员顺畅沟通、通力协作,共同完成任务。
3.能客观进行自评、互评,具备接受他人的评价的承受力。
二、教学重难点高压安全防护装备的检查、个人及车辆的高压安全防护,触电急救三、教学内容1.作业前准备工作维修工作人员对纯电动汽车进行维护时,一定要穿好绝缘鞋,身上不要携带金属物品,如项链、戒指、口袋里不要装硬币等。
使用至少1000V 耐久性的绝缘手套,并在使用前确认是否破损,在未佩戴绝缘手套的情况下不要直接接触高压电部分。
进行场地检查,在比较明显的位置使用三角警示牌提醒其他人员“高电压作业中触模危险”。
将维修车辆停放在维修工作区域时,先确认地面和发动机舱内没水,不允许在潮湿的环境下作业。
确认工作区域内配有二氧化碳灭火器。
准备所需维修工具,确认维修工具经过绝缘处理。
切忌手上沾有水时进行高压作业或在高压部件沾有水的状态下作业。
在地面或周围湿度过高时,须停止作业。
切断高压系统电源,首先切断手动维修开关。
2.人身安全防护装备(1)绝缘手套绝缘手套是用天然橡胶制成的,用绝缘橡胶或乳胶经压片、模压、硫化或浸模成型的五指手套,主要用于电工作业,是个体防护装备中绝缘防护的重要组成部分。
在使用前必须对绝缘手套进行充气检验,若发现有破损则不能使用。
(2)绝缘鞋绝缘鞋的作用是使人体与地面绝缘,防止电流通过人体与大地之间构成通路,对人体造成电击伤害,使触电时的危险降低到最小程度,所以电气作业时不仅要戴绝缘手套,还要穿绝缘鞋。
新能源汽车高压安全与防护教案一、前言随着全球能源危机的日益凸显和环境问题的日益严重,新能源汽车作为替代传统燃油车的重要选择,受到了广泛关注。
新能源汽车搭载的高压电池和电动机成为了车辆的核心部件,然而高压电池的安全问题一直备受关注。
因此,了解新能源汽车高压安全与防护至关重要,本教案旨在为学生提供必要的知识和技能,保障他们未来工作中的安全。
二、新能源汽车高压安全知识1.高压电池组件(1)高压电池是新能源汽车的动力来源,主要由电池单体、电池模组和电池管理系统组成。
电池单体是电池的最小组成单元,电池模组是由多个电池单体组成的较大单元,电池管理系统则是用于监控和管理电池充放电过程的系统。
(2)高压电池的工作原理和特点,了解高压电池的内部结构和化学原理,以及其在汽车中的作用和特点。
2.高压电池的安全问题(1)高压电池可能存在的安全隐患,例如过充、过放、短路等问题,导致可能发生的安全事故。
(2)高压电池的热失控问题,了解高压电池在异常情况下可能出现的温升过高、灼烧等情况。
3.高压电池的保护措施(1)隔离与绝缘措施,了解高压电池与汽车其他部件的隔离和绝缘措施。
(2)防护措施,包括高压电池的外壳结构设计、散热系统设计等。
三、新能源汽车高压安全与防护实践1.高压电池组件的检查与维护(1)学习高压电池组件的外观检查方法,了解电池外壳的形态、结构和损坏情况检查。
(2)学习高压电池组件的维护方法,掌握清洁、保养和更换电池的基本技能。
2.高压电池的安全操作(1)学习高压电池的安全操作流程和方法,包括上下电池操作、紧急事故处理等。
(2)学习高压电池的维修操作流程和方法,了解高压电池的拆装与更换操作。
3.高压电池事故应急处理(1)学习高压电池事故的应急处理流程和方法,掌握事故发生时的紧急处理技能。
(2)学习高压电池事故的现场处置方法和安全防护知识,了解高压电池事故的处理原则和注意事项。
四、实践案例分析通过对新能源汽车高压安全与防护知识的学习和实践,结合实际案例进行分析,例如曾经发生的高压电池事故案例,分析其原因和教训,以及类似事故的预防措施和处理方法。
《新能源汽车原理与检修》教案之高压安全操作教学目标:1.了解新能源汽车高压电气系统的结构和工作原理;2.掌握高压安全操作规程和注意事项;3.能够正确使用相关工具和设备进行高压电气系统检修。
教学重点:1.高压电气系统的结构和工作原理;2.高压安全操作规程和注意事项。
教学难点:1.高压电气系统的工作原理;2.高压安全操作规程的理解和应用。
教学准备:1.课件、电子板书等教学工具;2.相关图纸、电气图纸等教学辅助材料;3.相关实物和设备。
教学流程:Step 1:导入(5分钟)利用课件和电子板书简要介绍新能源汽车和高压电气系统的重要性和发展情况,引导学生了解高压电气系统的概念。
Step 2:讲解高压电气系统的工作原理(20分钟)使用课件和电子板书,结合相关图纸和电气图纸,向学生详细介绍高压电气系统的结构和工作原理,包括高压电池、控制器、电机等组成部分的功能和相互作用,以及电力流动的路径和原理。
Step 3:讲解高压安全操作规程和注意事项(30分钟)通过课件和电子板书,向学生讲解高压安全操作规程和注意事项,包括:1.高压电气系统的检修前准备工作,如穿戴必要的防护装备、确保工具和设备的完好性等;2.高压电气系统的操作流程,如切断电源、松开电气连接件、绝缘操作等;3.高压电气系统的故障排除方法,如如何判断故障、如何使用相关工具和设备进行检修等。
Step 4:案例分析和讨论(25分钟)结合实际案例,引导学生分析和讨论高压电气系统的故障原因和解决方法,加深对高压安全操作规程和注意事项的理解和应用能力。
Step 5:小结和回顾(10分钟)总结本节课的内容,重点回顾高压电气系统的工作原理和高压安全操作规程和注意事项,以及相关故障排除方法。
Step 6:作业布置(5分钟)布置相关作业,要求学生通过查阅资料和实践操作,总结高压电气系统的工作原理和高压安全操作规程,并掌握相关故障排除方法。
教学反思:本节课侧重介绍高压电气系统的工作原理和高压安全操作规程,结合实际案例进行分析和讨论。
《新能源汽车电子电气系统检修》课程授课教案一、课程简介1.1 课程背景随着全球能源危机和环境问题日益严重,新能源汽车作为替代传统燃油车的重要选择,其发展势头迅猛。
新能源汽车的电子电气系统是其核心组成部分,对其进行检修和维护是保证新能源汽车正常运行的关键。
1.2 课程目标通过本课程的学习,使学生掌握新能源汽车电子电气系统的基本原理、检修方法和操作技能,培养学生具备新能源汽车电子电气系统检修的能力。
1.3 适用对象本课程适用于新能源汽车维修技术人员、汽车检测技术人员、汽车相关专业学生等。
二、教学内容2.1 新能源汽车电子电气系统概述介绍新能源汽车电子电气系统的基本组成、工作原理和特点。
2.2 新能源汽车高压电源检修讲解新能源汽车高压电源的基本原理、检修方法和操作技能。
2.3 新能源汽车动力电池检修介绍新能源汽车动力电池的基本原理、检修方法和操作技能。
2.4 新能源汽车电机控制器检修讲解新能源汽车电机控制器的基本原理、检修方法和操作技能。
2.5 新能源汽车电子控制单元检修介绍新能源汽车电子控制单元的基本原理、检修方法和操作技能。
三、教学方法3.1 理论教学通过PPT、视频等辅助工具,讲解新能源汽车电子电气系统的基本原理、检修方法和操作技能。
3.2 实践教学安排实训课程,让学生在实际操作中掌握新能源汽车电子电气系统的检修技能。
3.3 互动教学鼓励学生提问、发表见解,增强课堂互动,提高学生学习兴趣。
四、教学评价4.1 课堂表现评价学生在课堂上的出勤、发言、提问等参与程度。
4.2 实训报告评价学生在实训课程中的操作技能和检修能力。
4.3 课程考试设置课程考试,检验学生对新能源汽车电子电气系统检修知识的掌握程度。
五、教学资源5.1 教材推荐使用《新能源汽车电子电气系统检修》等相关教材。
5.2 课件制作新能源汽车电子电气系统检修相关课件,辅助教学。
5.3 实训设备准备新能源汽车电子电气系统检修所需的实训设备,如高压电源、动力电池、电机控制器等。
新能源汽车高压安全与防护教案一、前言随着新能源汽车的不断普及和发展,高压电池系统作为其核心部件之一,对于新能源汽车的性能和安全性起着至关重要的作用。
因此,如何正确地使用和维护新能源汽车的高压电池系统,是新能源汽车驾驶员和维修人员需要掌握的重要知识和技能。
本教案旨在通过系统地介绍新能源汽车高压安全与防护知识,帮助驾驶员和维修人员全面了解和掌握相关安全技能,确保新能源汽车的安全驾驶和维护。
二、新能源汽车高压电池系统概述1.高压电池系统的组成高压电池系统是新能源汽车的动力源,主要由电池组、电池管理系统(BMS)、高压控制器和高压配电系统等组件构成。
其中,电池组是高压电池系统的核心部件,是由若干个单体电池组成的高压电源,通过BMS进行管理和控制。
高压控制器则负责控制电池的充放电过程,确保高压电池系统的稳定运行。
高压配电系统则负责将高压电池系统的电能输出到驱动电机和其他功耗设备。
2.高压电池系统的特点高压电池系统具有高能量密度、高电压、高安全风险等特点。
高能量密度使得高压电池系统存储了大量的电能,具有较高的动力性能;高电压则增加了使用过程中的安全风险,要求使用者必须严格遵循相关安全规定和标准。
三、新能源汽车高压安全与防护知识1.高压安全意识首先,驾驶员和维修人员需要时刻保持高压安全意识,认识到高压电池系统具有潜在的安全风险,必须严格遵循相关操作规程和操作步骤,以确保自身安全和车辆安全。
2.高压安全规程(1)驾驶员应遵守相关驾驶规定,并接受针对高压电池系统的专业培训,了解高压电池系统的工作原理和特点,熟悉高压电池系统的相关操作规程和应急处理流程;(2)维修人员应在接触高压电池系统前,确保车辆已切断高压电源,并佩戴绝缘手套和其他相关防护用具,确保自身安全。
3.高压电池系统的应急处理一旦发生高压电池系统的故障或事故,驾驶员和维修人员应迅速采取应急措施,如远离车辆、切断高压电源、联系专业人员处理等,杜绝事故的扩大和二次伤害。
《新能源汽车高压安全与防护》教案•课程介绍与目标•新能源汽车高压系统概述•高压系统安全操作规范•高压系统安全防护技术目录•高压系统安全防护实践•课程总结与展望01课程介绍与目标新能源汽车行业快速发展,高压安全成为重要关注点。
提高从业人员对新能源汽车高压系统的认识和安全防护能力。
培养具备高压安全操作和维护能力的专业人才,促进行业健康发展。
课程背景与意义010204教学目标与要求掌握新能源汽车高压系统基本知识和安全规范。
能够正确操作和维护高压系统,确保人员和设备安全。
了解高压事故应急处理措施,提高应对突发情况的能力。
培养安全意识,形成严谨的工作态度和良好的职业习惯。
03课程安排考核方式课程时间授课教师课程安排与考核方式01020304理论授课、实验操作、案例分析、小组讨论等。
笔试、实验操作考试、课堂表现等综合评定。
共计32学时,其中理论授课20学时,实验操作12学时。
具有丰富教学经验和行业背景的专业教师团队。
02新能源汽车高压系统概述充电接口用于连接外部充电设备,为高压电池组充电。
分配高压电能,保护电路和电器设备。
驱动电机将电能转换为机械能,驱动汽车行驶。
高压电池组提供驱动电机所需的高电压电能,通常采用锂离子电池。
电机控制器控制驱动电机的运转,实现能量的转换和传递。
高压系统组成及工作原理03行业标准由汽车制造商和相关行业协会共同制定的安全标准,用于指导新能源汽车的设计、生产和使用。
01国际电工委员会(IEC )标准针对电动汽车高压系统的安全要求、测试方法和评估标准。
02国家标准各国制定的适用于本国或本地区的新能源汽车高压系统安全标准。
高压系统安全标准与规范漏电保护当检测到漏电时,自动切断电源,保护人身安全和设备完好。
高压互锁确保高压系统在异常情况下能够自动断开,避免电击和火灾等危险。
绝缘监测实时监测高压系统的绝缘状况,防止漏电和短路等故障。
过流保护限制电流过大,防止电器设备过载和损坏。
温度控制通过散热设计和温度传感器等方式,控制高压系统的工作温度,避免过热引发安全事故。
新能源汽车高压安全与防护教案随着新能源汽车技术的迅速发展,电动汽车和混合动力汽车已成为现代交通领域的重要组成部分。
然而,这些车辆的高压系统,如电池、电机等,也带来了一些特殊的安全问题。
因此,为了确保驾驶员和乘客的安全,进行新能源汽车高压安全与防护的培训和教育变得至关重要。
以下是一份针对新能源汽车高压安全与防护的教案。
一、教学目标1、了解新能源汽车的高压系统及其工作原理。
2、掌握新能源汽车高压安全操作规程。
3、学会在高压系统故障时进行应急处理和自我保护。
4、培养学员的环保意识和节能意识。
二、教学内容1、新能源汽车高压系统的组成和原理2、新能源汽车高压安全操作规程3、高压系统故障的应急处理方法4、高压系统的日常维护和保养三、教学方法1、理论教学:通过讲解、演示和多媒体教学,使学员了解新能源汽车高压系统的组成和原理,以及高压安全操作规程。
2、实践教学:进行模拟故障排除和应急处理,使学员掌握实际操作技能。
3、案例分析:通过分析实际案例,使学员了解高压系统故障可能带来的后果,以及如何进行应急处理。
4、小组讨论:鼓励学员进行小组讨论,分享经验和看法,提高教学效果。
四、教学评估1、课堂表现:观察学员的课堂表现,包括参与度、专注度等。
2、作业:布置相关作业,如论文、报告等,以检验学员的学习效果。
3、模拟考试:进行模拟考试,评估学员对知识的掌握程度。
4、反馈调查:对学员进行反馈调查,了解他们对教学的评价和建议。
五、教学反思1、对教学内容进行反思,看是否符合教学目标和学员需求。
2、对教学方法进行反思,看是否有效提高了学员的学习效果。
3、对教学评估进行反思,看是否能够准确评估学员的学习效果。
4、对学员反馈进行反思,看是否能够满足学员的学习需求和提高教学质量。
六、总结通过本教案的实施,我们希望能够提高学员对新能源汽车高压安全与防护的认识和掌握程度,使他们能够安全、有效地使用新能源汽车,同时培养他们的环保意识和节能意识。
新能源汽车高压安全与防护教案一、教学目标1.了解新能源汽车高压系统的基本构成和特点;2.掌握新能源汽车高压安全防护的基本知识和技能;3.培养学生安全意识,提高应对高压安全事故的能力。
二、教学内容1.新能源汽车高压系统的基本构成和特点;2.新能源汽车高压安全防护的基本知识和技能;3.高压安全事故的应对措施。
三、教学步骤1.引入:介绍新能源汽车高压系统的基本构成和特点,引起学生对高压安全的关注。
2.讲解:讲解新能源汽车高压安全防护的基本知识和技能,包括:a.高压系统的绝缘检测和保护;b.高压系统的短路保护和过压保护;c.高压系统的漏电保护和接地保护;d.高压系统的安全操作和维护。
3.案例分析:分析高压安全事故的典型案例,引导学生了解高压安全事故的危害和原因。
4.实践操作:组织学生进行高压安全防护的实践操作,提高学生的实际操作能力。
5.总结:总结新能源汽车高压安全与防护的重点内容,强调学生安全意识的重要性。
四、教学方法1.讲授法:讲解新能源汽车高压系统的基本构成和特点,以及高压安全防护的基本知识和技能。
2.案例分析法:分析高压安全事故的典型案例,引导学生了解高压安全事故的危害和原因。
3.实践操作法:组织学生进行高压安全防护的实践操作,提高学生的实际操作能力。
4.讨论法:组织学生进行讨论,引导学生主动思考和交流,加深对高压安全与防护的理解。
五、教学评价1.学生对新能源汽车高压系统的基本构成和特点的了解程度;2.学生对新能源汽车高压安全防护的基本知识和技能的掌握程度;3.学生对高压安全事故的应对措施的了解程度;4.学生安全意识的提高程度。
六、教学资源1.新能源汽车高压系统的图片和资料;2.高压安全事故的典型案例;3.高压安全防护的实践操作设备。
七、教学建议1.在讲解高压安全防护的基本知识和技能时,结合实际情况进行讲解,使学生更好地理解和掌握;2.在实践操作环节,加强对学生的指导和监督,确保学生的安全;3.在教学过程中,注重培养学生的安全意识,提高学生的安全素养;4.鼓励学生积极参与讨论和交流,促进学生的主动学习和思考。
理实一体化课程教案(首页)JWC001-3-1 课程名称:新能源汽车技术理实一体化课程教学过程JWC001-3-2教学环节教学过程和内容备注任务1 纯电动汽车高压系统的认识▲学习目标1. 了解纯电动汽车与常规能源汽车的区别;2. 了解纯电动汽车的高压系统结构;3. 认识纯电动汽车各高压组成部件;4. 掌握对纯电动汽车高压系统的安全操作。
▲学习能力1. 知识能力:掌握纯电动汽车高压系统的组成结构;2. 技能能力:掌握高压绝缘工具的正确使用方法;掌握对纯电动汽车高压系统断电操作;3. 社会能力:具备安全操作的能力及职业素养。
▲任务要求了解纯电动汽车高压系统的各组成部件,认识各高压部件及其作用。
▲知识内容一、常规能源汽车与纯电动汽车的结构的区别1. 汽车动力系统常规能源汽车与新能源汽车的动力系统发生了变化:由四冲程机械发动机转变成电动机。
由此结构也发生了很大的变化。
如图1-1-1所示。
2. 汽车能源供给系统教学环节教学过程和内容备注3.汽车动力源4. 汽车底盘结构综上所述,纯电动汽车与常规能源汽车之间发生了较大的变化,主要体现在大三电的变化当中,如图1-1-5所示。
二、电动汽车高压系统的结构如图1-1-6所示为比亚迪E6高压部件的分布,教学环节教学过程和内容备注如图1-1-8 所示为高压系统电路原理三、高压安全部件的介绍1. 动力电池作为车载电源,用周期性的充电来补充电能。
动力电池是电动汽车中能源供给装置,需要给整车所有系统提供能源。
当电量消耗后,也需要对其进行充电。
因此其能源流动既有流出,也有流入。
2. 高压分配盒/器高压分配盒可以认为是一个电源中转分配的地方,主要把动力电池的高压分配到每个高压用电器上, 如驱动电机、电机控制器、车载充电器、高压空调及PTC等,同时也包括给动力电池充电时进行高压的分配统筹。
教学环节教学过程和内容备注3. 驱动电机+电机控制器驱动电机系统作为电动汽车三大核心构成之一,是车辆行驶的主要执行机构,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。