苏教版2-1排列组合与概率--9.10排列组合综合问题(第一课时)
- 格式:ppt
- 大小:623.50 KB
- 文档页数:39
第十三章 排列组合与概率一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。
2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。
3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,mn A =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m ≤n,注:一般地0n A =1,0!=1,nn A =n!。
4.N 个不同元素的圆周排列数为nA nn =(n-1)!。
5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。
从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--=6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)knk n C C kn =--11;(4)n nk kn n nn n C C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。
3.排列(2)(理科)教学目标:1.熟练掌握排列数公式.2.能运用排列数公式解决一些简单的应用问题,使学生逐步学会分析问题的方法,提高解决问题的能力.教学重点:分析和解决排列问题的基本方法.教学难点:排列数公式应用的切入点分析.教学过程:一、问题情境1.问题情境.前面我们认识了分类加法计数原理与分步乘法计数原理及从n个不同元素取出m(m≤n)个不同元素的排列数,运用这些知识方法可以较好地解决一些计数问题.二、数学应用例1(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?例2某足球联赛共有12只球队参加,每对都要与其余各队在主、客场分别比赛1次,共要进行多少场比赛?例3用0到9这10个数字,可以组成多少个没有重复数字的三位数?课堂练习1.(1)有4种不同品种的梨树苗,从中选出2种进行种植试验,共有多少种不同选法?(2)有4种不同的蔬菜,从中选出3种,分别种在不同土质的3块土地上进行试验,有多少种不同的种植方法?2.从0,1,2,3,4,5,6这7个数字中取4个数字,试问:(1)有多少个无重复数字的排列?(2)能组成多少个无重复数字四位数?三、回顾反思要点归纳与方法小结:基本的解题方法:1.有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先法;2.某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;3.某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空隙”法.排列(2)作业11、从6人中选4人分别到上海、苏州、无锡、南京四个城市游览。
要求每个城市有一人游览,每人只游览一个城市,且这6个人中,甲、乙两人不去南京游览。
则不同的选择方案共有种。
2、用1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有种。
江苏省白蒲中学2013高一数学 排列、组合和概率教案10 苏教版二项式定理---2通项应用---求指定项一、复习填空:(a+b) n = (n N ∈),这个公式表示的定理叫做二项式定理,公式右边的多项式叫做 (a+b) n 的 ,其中rn C (r=0,1,2,……,n )叫做 , 叫做二项展开式的通项,通项是指展开式的第 项,展开式共有 个项.二、应用举例:1.62)x a a x(-的展开式中,第五项是…………………………………………( )A .x 15-B .32a x 6-C .x 20D .x15 2.153)a 1a (-的展开式中,不含a 的项是第……………………………( )项A .7B .8C .9D .63.二项式(z-2)6的展开式中第5项是-480,求复数z .4.求二项式73)213(+的展开式中的有理项.三、练习及课后检测1. 9)x1x (-的展开式中含x 3的项是 . 2.二项式10)x i 3(-的展开式中的第八项是………………………………( )A .-135x 3B .3645x 2C .7ix 3360D . 3ix 33240 3.2475)53(+的展开式中的整数项是…………………………………( )A .第12项B . 第13项C . 第14项D . 第15项4.n )22x 3(-展开式中第9项是常数项,则n 的值是………………… ( )A .13B .12C .11D .105.9)di 2(-的展开式中的第7项是………………………………………( )A .2d 2288B . -2d 2288 C .-672d 3i D .672d 3i 6.1023)x 1x 2(+展开式的常数项是 . 7.3)2|x |1|x (|-+ 展开式的常数项是 . 8.在183)xb b x (+的展开式中,第 项是中间项,中间项是 . 9.已知(10+x lgx )5的展开式中第4项为106,求x 的值.*10.若(1-2x )5展开式中的第2项小于第1项,且不小于第3项,求实数x 的取值范围.。