纳米与粉体材料
- 格式:pdf
- 大小:97.31 KB
- 文档页数:3
纳米粉体材料简介纳米材料分为纳米粉体材料、纳米固体材料、纳米组装体系三类。
纳米粉体材料是纳米材料中最基本的一类。
纳米固体是由分体材料聚集,组合而成。
而纳米组装体系则是纳米粉体材料的变形。
纳米粉体也叫纳米颗粒,一般指尺寸在1-100nm之间的超细粒子,有人称它是超微粒子。
它的尺度大于原子簇而又小于一般的微粒。
按照它的尺寸计算,假设每个原子尺寸为1埃,那么它所含原子数在1000个-10亿个之间。
它小于一般生物细胞,和病毒的尺寸相当。
细微颗粒一般不具有量子效应,而纳米颗粒具有量子效应;一般原子团簇具有量子效应和幻数效应,而纳米颗粒不具有幻数效应。
纳米颗粒的形态有球形、板状、棒状、角状、海绵状等,制成纳米颗粒的成分可以是金属,可以是氧化物,还可以是其他各种化合物。
纳米粉体材料的基本性质它的性质与以下几个效应有很大的关系:(1).小尺寸效应随着颗粒的量变,当纳米颗粒的尺寸与光波、传导电子德布罗意波长以及超导态的相干长度或透射深度等物理尺寸特征相当或更小时,周期边界性条件将被破坏,声、光、电、磁、热、力等特性均会出现质变。
由于颗粒尺寸变小所引起的宏观物理性质的变化成为小尺寸效应。
(2).表面与界面效应纳米微粒尺寸小、表面大、位于表面的原子占相当大的比例。
由于纳米粒径的减小,最终会引起表面原子活性增大,从而不但引起纳米粒子表面原子输送和构型的变化,同时也引起表面电子自旋构象和电子能谱的变化。
以上的这些性质被称为“表面与界面效应”。
(3)量子尺寸效应当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变成离散能级的现象成为量子尺寸效应。
具体从各方面说来有以下特性:(1)热学特性纳米微粒的熔点,烧结温度比常规粉体要低得多。
这是由于表面与界面效应引起的。
比如:大块的pb的熔点600k,而20nm球形pb微粒熔点降低288k,纳米Ag微粒在低于373k时开始融化,常规Ag的熔点远高于1173k。
还有,纳米TiO2在773k加热出现明显致密化,而大晶粒样品要出现同样的致密化需要再升温873k才能达到,这和烧结温度有很大关系。
纳米粉体的制备材料的开发与应用在人类社会进步上起了极为关键的作用。
人类文明史上的石器时代、铜器朝代、铁器时代的划分就是以所用材料命名的。
材料与能源、资讯为当代技术的三大支柱,而且资讯与能源技术的发展也离不一材料技术的支援。
纳米材料指的是颗粒尺寸为1~100nm的粒子组成的新型材料。
由于它的尺寸小、比表面大及量子尺寸效应,使之具有常规粗晶材料不具备的特殊性能,在光吸收、敏感、催化及其它功能特性等方面展现出引人注目的应用前景。
早在1861年,随着胶体化学的建立,科学家就开始对直径为1~100nm的粒子的体系进行研究。
真正有意识地研究纳米粒子可追溯到30年代的日本,当时为了军事需要而开展了“沉烟试验”,但受到实验水平和条件限制,虽用真空蒸发法制成世界上第一批超微铅粉,但光吸收性能很不稳定。
直到本世纪60年代人们才开始对分立的纳米粒子进行研究。
1963年,Uyeda用气体蒸发冷凝法制得金属纳米微粒,对其形貌和晶体结构进行了电镜和电子衍射研究。
1984年,德国的H.Gleiter等人将气体蒸发冷凝获得的纳米铁粒子,在真空下原位压制成纳米固体材料,使纳米材料研究成为材料科学中的热点。
国际上发达国家对这一新的纳米材料研究领域极为重视,日本的纳米材料的研究经历了二个七年计画,已形成二个纳米材料研究制备中心。
德国也在Auburg建立了纳米材料制备中心,发展纳米复合材料和金属氧化物纳米材料。
1992年,美国将纳米材料列入“先进材料与加工总统计画”,将用于此专案的研究经费增加10%,增加资金1.63亿美元。
美国Illinoi大学和纳米技术公司建立了纳米材料制备基地。
我国近年来在纳米材料的制备、表征、性能及理论研究方面取得了国际水平的创新成果,已形成一些具有物色的研究集体和研究基地,在国际纳米材料研究领域占有一席之地。
在纳米制备科学中纳米粉体的制备由于其显著的应用前景发展得较快。
1.化学制备法1.1化学沉淀法沉淀法主要包括共沉淀法、均匀沉淀法、多元醇为介质的沉淀法、沉淀转化化、直接沉淀法等。
纳米TiO粉体的制备与表征2一:引言•纳米材料是指在三维空间中至少在一维方向上尺寸在1-100nm 之间并具有特殊性能的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
由于纳米材料至少在一维方向上为纳米尺度,所以纳米材料具有普通材料所不具背的性能,如表面效应、小体积效应、量子尺寸效应、宏观量子隧道效应等。
因此纳米TiO 2粉体具备许多特殊的功能比如性能稳定、无毒、光催化活性高、价格低廉、耐化学腐蚀性好,是良好的光催化剂、消毒剂杀菌剂。
•光催化作为一种新型环境净化技术引起人们越来越多的关注。
纳米TiO2以良好的性能稳定、效率高、无二次污染、成本低廉等优点,在光催化降解废水中的有机物方面具有广阔的应用。
面临的问题:催化的效率比较低,而且对太阳能的利用率比较低。
二:TiO简介21:TiO2特性纳米TiO2作为一种新型的功能材料,是目前应用最广泛的一种纳米材料。
纳米二氧化钛具有粒径小、吸收紫外光能力强以及良好的随角异色、光催化和抗菌杀毒等优点。
纳米TiO2晶体主要有锐钛型和金红石型两种晶型。
金红石型晶体则主要用于防紫外线、增强、增韧、降解有机污染物,是一种环保型产品;锐钛型晶体的主要作用有抗菌,分解有机物。
锐钛型纳米TiO2是一种新型抗菌剂,具有良好的杀菌效用、耐热性好、安全性能佳、持续性长、使用方便;在抗菌过程中可以生成具有很强化学活性的自由基,因此能有效地分解空气中多种有毒气体。
金红石型纳米TiO2具有高光催化活性,抗紫外线能力强等优点。
对长波区紫外线的阻隔以散射为主,对中波区紫外线的阻隔则以吸收为主。
2:TiO2的光催化机理当能量大于TiO2禁带宽度的光照射半导体时,光激发电子跃迁到导带,形成导带电子(矿),同时在价带留下空穴(矿)。
由于半导体能带的不连续性,电子和空穴的寿命较长,它们能够在电场作用下或通过扩散的方式运动,与吸附在半导体催化剂粒子表面上的物质发生氧化还原反应,或者被表面晶格缺陷俘获。
纳米技术在纸张中的应用纳米科技是20世纪80年代末诞生并迅速崛起的高新科技,它的基本含义是在纳米尺寸(即0.1-100nm)范围内认识和改造自然,通过直接操作和安排原子、分子运动规律和特性而创造新物质的技术方法。
在印刷领域,纳米材料的应用主要以纳米粉体为主,应用范围有纳米油墨涂料、纳米纸、纳米网纹辊、纳米零件等。
下面介绍印刷和包装中已开发应用的米纸的特性和应用。
一、纳米粉体在纸张制造中的作用在印刷领域中,与油墨涂料一样,纳米粉体材料在纸张上的应用也已呈现出良好的效果。
我们知道,纸张是印刷和包装中最常用的材料,其品质的优劣是印刷品质量的最佳体现。
由于传统纸张所用的树木、竹、麻等纤维物的纤维较粗,而涂料(如碳酸钙等)、充填物(如高岭土等)的颗粒较大,还有一些胶等配料的性能不好等原因,使传统的纸张存在着一些缺陷,如普通纸具有怕水、怕潮等缺点,胶版印刷纸和静电复印纸虽然有防水、防潮等功能,但书写不方便,还有一些特殊的性能无法实现等,从而影响了印刷品的品质。
近年随着纳米材料学的迅速发展,纳米技术在造纸工业的应用领域愈来愈广,新成果不断涌现。
和制浆造纸中有关的是纳米化学和纳米材料学,它可能会对造纸工业的发展造成新的飞跃,使印刷品的品质将再次提高。
根据目前的技术水准和纸张的实际应用,木纤维只能加工到微米(100-1000nm)的水准,由于木材的细胞直径相对较粗,通过木材纳米技术可以改变木材的细胞结构和控制细胞的生长,就可能改变木材的特性。
对于绝大多数木材来说,当纤维加工到微米级后,木材细胞的胞管已经全部破开,胞管内的粘性液体可以容易地流出。
机械制浆后就可以不必再用化学方法提取胞管内的有害液体和分离纤维,而若将木材加工到纳米级,木材原来的细胞结构将被破坏,纤维组织结构发生变化,纤维素、半纤维素和木素可在加工过程中用机械方法分离,这样就可以大大提高制浆率和降低制浆造纸工业对环境的污染。
此外,在科技高速发展的今天,人们对纸张性能、品质等将有更高的要求,除了常规的印刷、书写纸张外,对于具有特殊功能纸张的需求也不断增多。
作者简介:刘剑,女,1972年生,硕士研究生。
1996~2001年就职于中国兵器工业第二一三研究所,担任国家“九五”重点预研项目“激光引爆控制技术”主要完成人之一,及该项目“十五”预研立项人,并获得所级“科技进步三等奖”。
此外还担任数个军品项目研制工作的课题负责人。
2001年在理学院应用化学系功能材料专业深造,现在主要从事生物医学材料的表面改性研究。
曹瑞军,博士,硕士导师。
开发应用表面活性剂在纳米粉体制备中的应用刘 剑 曹瑞军 郗英欣(西安交通大学理学院应用化学系,西安710049)摘 要 本文论述了表面活性剂在Al 2O 3纳米粉体制备、改性等方面的应用,并简要介绍表面活性剂在纳米粉体修饰中的作用。
关键词 表面活性剂,纳米微粒,Al 2O 3纳米粉体,表面修饰Application of surfactants in preparation of nano 2particlesLiou Jian Cao Ruijun Xi Y ingxin(School of Science ,Xi ’an Jiaotong University ,Xi ’an 710049)Abstract The functions of surfactants during the preparation ,modification and storage of nano 2particle Al 2O 3werediscussed in this paper ,and application of surfactant in nano 2particles surface modification were brief described.K ey w ords surfactant ,nano 2particles ,nano -particles Al 2O 3,surface modification 纳米材料和技术是纳米科技领域富有活力、研究内涵十分丰富的分支学科。
63中国粉体工业 2019 No.4粉体材料相关知识(一)纳米纤维素是通过化学、物理、生物或者几者相结合的手段处理纤维得到的直径<100nm,长度可到微米的纤维聚集体。
1.纳米纤维素简介纳米纤维素是通过化学、物理、生物或者几者相结合的手段处理纤维得到的直径<100nm,长度可到微米的纤维聚集体。
它们具有优异的机械性能、巨大的比表面积、高结晶度、良好的亲水性、高透明度、低密度、良好的生物可降解性与生物相容性以及稳定的化学性质,纤维素表面裸露出大量羟基,使纳米纤维素具有巨大的化学改性潜力。
因此,纳米纤维素在生物制药、食品加工、造纸、能源材料、功能材料等领域的应用研究日益受到人们的重视。
纳米纤维素通常还被称为纤维素纳米晶体(cellulose nanocrystals,CNCs;canocrystalline cellulose,NCC)、纳米纤丝纤维素(nanofibrillated cellulose,NFC)、纤维素纳米晶须(cellulose nanowhisker,CNW)、纤维素纳米颗粒(cellulose nanoparticle,CNP)等。
图1 自然界中几种纤维素来源图2 纤维素化学结构式按照纳米纤维素的形貌、粒径大小及原料来源的不同,纳米纤维素主要分为3种类别,如表1所示。
如果在分子水平上对纤维素纳米结构进行设计与剪裁,调控纤维素纳米结构的形成,选择性构筑并组装出纳米结构的纤维素功能材料,发展可控制造纤维素材料纳米结构的定向设计与构筑的理论和方法,在此基础上研发出绿色、高效制备纤维素高值化材料的方法具有重要的研究意义。
中国粉体工业 2019 No.464图3 纳米纤维素制备的两种主要方法图4 制备纳米纤维素的机械处理方法2.2 化学法纤维原料来源不同,得到的纳米纤维素尺寸分布也不同:以棉花、木材、微晶纤维素为原料制备的纳米纤维素粒径分布较窄,宽度5~10 nm,长度100~300 nm,结晶度较高;以细菌、被囊类动物纤维为原料制备的纳米纤维素粒径分布较宽,宽度5~60 nm,长度几微米。
锂电池隔膜用纳米陶瓷粉体材料的生产开发与应用方案从产业结构改革的角度来看,锂电池隔膜用纳米陶瓷粉体材料的生产开发与应用方案是一种具有重要意义的创新。
以下是该方案的详细总结:一、实施背景随着电动汽车、便携式电子设备、航空航天等领域的发展,对锂电池的需求不断增加。
作为锂电池关键组成部分的隔膜,其性能对锂电池的能量密度、安全性、循环寿命等具有重要影响。
目前,市场上主要的锂电池隔膜材料为聚烯烃(POE)和聚丙烯(PP),其性能已接近极限,难以满足日益提高的性能要求。
因此,开发新型锂电池隔膜材料成为当前产业发展的迫切需求。
二、工作原理纳米陶瓷粉体材料是一种新型材料,具有优异的热稳定性、化学稳定性、机械强度、电绝缘性等特性。
将其添加到锂电池隔膜中,可有效提高隔膜的孔径分布、透气性、力学性能等,从而提高锂电池的能量密度、循环寿命和安全性。
三、实施计划步骤纳米陶瓷粉体材料制备:采用先进的喷雾热解法或溶胶-凝胶法等制备纳米陶瓷粉体材料。
纳米陶瓷粉体材料表征:通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)等手段对纳米陶瓷粉体材料进行表征,确定其晶体结构、形貌、粒径分布等性质。
纳米陶瓷粉体材料添加:将纳米陶瓷粉体材料按一定比例添加到聚烯烃或聚丙烯等隔膜材料中,制备出复合隔膜。
复合隔膜性能测试:通过电池测试系统对复合隔膜的性能进行测试,包括透气性、力学性能、孔径分布等。
优化工艺参数:根据测试结果调整纳米陶瓷粉体材料的添加量、制备工艺等参数,优化复合隔膜的性能。
工业化生产:将优化后的复合隔膜材料进行工业化生产,并应用于锂电池的生产。
四、适用范围本方案适用于电动汽车、便携式电子设备、航空航天等领域锂电池的生产。
同时,也可应用于储能电站、电动工具等其他领域。
五、创新要点采用了先进的制备方法:采用喷雾热解法或溶胶-凝胶法等先进的制备方法,可实现纳米陶瓷粉体材料的批量生产。
纳米尺度的材料应用:将纳米陶瓷粉体材料应用于锂电池隔膜中,可实现锂电池性能的突破性提升。