中考数学二次函数知识点总结
- 格式:docx
- 大小:10.86 KB
- 文档页数:4
中考数学二次函数基础知识
二次函数
正比例函数是:y=kx(k≠0) 两个数的商是常数(x/y=k,k≠0)一次函数是:y=kx+b(k≠0)
反比例函数: 两个数的积是常数(xy=k,k≠0)二次函数:y=ax 2+bx+c
1、二次函数y=ax 2+bx+c 一些基本概念①
二次函数是一条关于 x=- 对称的抛物线。
此抛物线有三大特征:有开口方向,有对称轴,有顶点。
考点一、 二次函数的概念
a
b
2
考点五、二次函数的解析式的几种应用例1
例2例3
解法1用一般式方法,由于顶点D点的横坐标为-1,所以是以 x=- = -1为对称轴的
解法2知道顶点和交点就可利用顶点式方法:再把BC点代入
a
b
2
解法
知道和x轴的两个交点,可直接用交点式方法:
3
解析:由于抛物线是以D为顶点(-1,?)为对称轴的,又和x轴交于两点AB,因为B点坐标是(-3,0),就可推出A的坐标是(1,0)
例4知道最值和对称轴,可直接用顶点法。
中考数学复习专项知识总结—二次函数(中考必备)1、定义:一般的,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做二次函数。
其中x是自变量,a、b、c分别是函数解析式的二次项系数、一次项系数、常数项。
2、二次函数的图象是一条抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
|a|越大,抛物线的开口越小;|a|越小,抛物线的开口越大。
3、二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0的联系:(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数值是0,因此x=x0是方程ax2+bx+c=0的一个根;(2)抛物线与x轴的交点和一元二次方程的根的关系1、通过对实际问题的分析,体会二次函数的意义。
2、会用描点法画出二次函数的图象,通过图象了解二次函数的性质。
3、会用配方法将数字系数的二次函数的表达式化为y=a(x-h)2+k的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单实际问题。
4、会利用二次函数的图象求一元二次方程的近似解。
1、二次函数的基本概念。
2、结合已知条件确定二次函数的表达式,利用待定系数法求二次函数的解析式。
3、根据二次函数的图象及性质解决相关问题,如不等式、一元二次方程。
4、二次函数图象的平移。
5、二次函数与实际问题,二次函数与综合问题(与几何、函数、方程等的综合)。
1、下列各点中,在函数y =-x 2图象上的点是( )A 、(-2,4)B 、(2,-4)C 、(-4,2)D 、(4,-2)2、二次函数y =(3m -2)x 2+mx +1的图象开口向上,则m 的取值范围是 。
3、抛物线21(3)52y x =---的开口方向 ,对称轴是 ,顶点坐标是 ,与x 轴的交点个数是 个。
4、二次函数21522y x x =+-的图象的顶点坐标是 。
5、二次函数y =2(x -1)2+5图象的对称轴和顶点P 的坐标分别是( ) A 、直线x =-1,P(-1,5) B 、直线x =-1,P(1,5) C 、直线x =1,P(1,5) D 、直线x =1,P(-1,5) 6、把抛物线y =-4x 2向上平移2个单位,再向左平移3个单位,得到的抛物线是( )A 、y =-4(x +3)2+2B 、y =-4(x +3)2-2C 、y =-4(x -3)2+2D 、y =-4(x -3)2-27、在平面直角坐标系中,将二次函数y =-2(x -1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点变为( )A 、(0,0)B 、(1,-2)C 、(0,-1)D 、(-2,1)8、二次函数y=(x-1)2+2的最小值是()A、2B、1C、-1D、-29、已知二次函数y=3x2+2x+a与x轴没有交点,则a的取值范围是。
二次函数知识点总结二次函数是初中数学的重要内容之一,也是中考数学的重点和难点。
它不仅在数学领域有着广泛的应用,在物理、经济等其他学科中也经常出现。
下面我们来详细总结一下二次函数的相关知识点。
一、二次函数的定义一般地,形如\(y = ax^2 + bx + c\)(\(a\)、\(b\)、\(c\)是常数,\(a ≠ 0\))的函数,叫做二次函数。
其中\(x\)是自变量,\(a\)叫做二次项系数,\(b\)叫做一次项系数,\(c\)叫做常数项。
需要注意的是,二次函数的最高次必须是二次,并且二次项系数\(a\)不能为\(0\)。
如果\(a = 0\),那么函数就变成了一次函数。
二、二次函数的图象二次函数的图象是一条抛物线。
抛物线的形状由二次项系数\(a\)决定:1、当\(a > 0\)时,抛物线开口向上;当\(a < 0\)时,抛物线开口向下。
2、\(|a|\)越大,抛物线的开口越窄;\(|a|\)越小,抛物线的开口越宽。
抛物线是轴对称图形,对称轴为直线\(x =\frac{b}{2a}\)。
二次函数的顶点式为\(y = a(x h)^2 + k\),其中\((h, k)\)是抛物线的顶点坐标。
当抛物线的顶点坐标已知时,通常使用顶点式来表示二次函数,这样可以更方便地求出函数的最值等性质。
四、二次函数的一般式与顶点式的转化由一般式\(y = ax^2 + bx + c\)通过配方法可以转化为顶点式:\\begin{align}y&=ax^2 + bx + c\\&=a(x^2 +\frac{b}{a}x) + c\\&=a(x^2 +\frac{b}{a}x +\frac{b^2}{4a^2} \frac{b^2}{4a^2})+ c\\&=a(x +\frac{b}{2a})^2 \frac{b^2}{4a} + c\\&=a(x +\frac{b}{2a})^2 +\frac{4ac b^2}{4a}\end{align}\所以顶点坐标为\((\frac{b}{2a},\frac{4ac b^2}{4a})\)。
初中数学中考复习二次函数知识点总结归纳整理二次函数是指形如y=ax²+bx+c的函数,其中a、b、c为常数且a ≠ 0。
二次函数是初中数学中的重要内容,掌握了二次函数的知识,能够帮助我们理解函数的基本概念、图像和性质,同时也是后续学习函数、解析几何和微积分等内容的基础。
一、二次函数的定义和基本性质1.二次函数是一个以抛物线形状为特征的函数,其图像在平面直角坐标系中呈现出对称轴和顶点。
2.对于任意的a、b、c,二次函数的图像都存在对称轴,并且过对称轴的顶点。
3.当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
4. 当Δ=b²-4ac>0时,二次函数的图像与x轴有两个不同的交点,即该二次函数的解存在两个不同的实根;当Δ=0时,二次函数的图像与x轴有一个交点,即该二次函数的解存在一个实根;当Δ<0时,二次函数的图像与x轴没有交点,即该二次函数无实根。
5. 二次函数的顶点坐标为(-b/2a, f(-b/2a)),其中f(x) =ax²+bx+c。
二、二次函数的图像与平移1. 对于y=ax²+bx+c,当a>0时,整个二次函数图像上移a个单位;当a<0时,整个二次函数图像下移a个单位。
2. 对于y=ax²+bx+c,当c>0时,整个二次函数图像上移c个单位;当c<0时,整个二次函数图像下移c个单位。
3. 对于y=ax²+bx+c,当b>0时,整个二次函数图像向左平移b个单位;当b<0时,整个二次函数图像向右平移b个单位。
三、二次函数的解和性质1.根据二次函数的定义,可以用求根公式计算二次函数的解,即x=(-b±√Δ)/(2a)。
2.根据二次函数的判别式Δ的大小,可以判断二次函数的解的情况,进而判断图像的开口方向和顶点的位置。
3.根据二次函数的顶点坐标和开口方向,可以确定二次函数的整个图像。
中考二次函数知识点汇总二次函数是一种常见的数学函数,它的形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0。
在中考中,掌握二次函数的相关知识点及其应用是非常重要的。
下面是关于中考二次函数的知识点的详细汇总。
一、二次函数的图像特点1.开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
2.对称轴:二次函数的对称轴为直线x=-b/2a。
3.最值:当a>0时,二次函数的最小值为y=f(-b/2a);当a<0时,二次函数的最大值为y=f(-b/2a)。
4. 零点:二次函数的零点是使f(x) = 0的x值,可通过求解二次方程ax^2 + bx + c = 0来得到。
二、二次函数的性质1.单调性:当a>0时,二次函数是开口向上的,即可知函数在开区间(-∞,-b/2a)上是递增的,在开区间(-b/2a,+∞)上是递减的;当a<0时,二次函数是开口向下的,即可知函数在开区间(-∞,-b/2a)上是递减的,在开区间(-b/2a,+∞)上是递增的。
2. 零点:根据二次函数的定义,可求出二次函数的零点为x = (-b± √(b^2-4ac))/2a。
当判别式(即b^2-4ac)大于零时,二次函数有两个不相等的实根;当判别式等于零时,二次函数有两个相等的实根;当判别式小于零时,二次函数没有实根。
3.达到最值的条件:当a>0时,二次函数取得最小值的横坐标是x=-b/2a;当a<0时,二次函数取得最大值的横坐标是x=-b/2a。
三、二次函数与一次函数的关系1. 平移:二次函数f(x) = ax^2 + bx + c可以通过平移来得到一次函数g(x) = mx + n。
二次函数f(x)与一次函数g(x)的图像关系为:将二次函数的图像向上平移c个单位,然后将平移后的图像沿y轴方向压缩或拉伸,直到到达一次函数g(x)的图像。
中考数学二次函数超全知识点记忆口诀二次函数是中考数学的重点内容之一,掌握二次函数的知识点对于解题非常重要。
下面是二次函数的超全知识点记忆口诀:一、二次函数的定义:二次函数ax^2 + bx + c (a≠0)二次项的系数a必定不为零。
二、二次函数的图像:对于二次函数抛物线开口向上会往上抛物线开口向下会往下。
三、二次函数的对称轴:对称轴方程形如x=k(k为常数)k代表横坐标的平移,可随意。
四、二次函数的顶点坐标:顶点坐标是(h,k)h=k值的相反数这一点是要记牢的。
五、二次函数的平移:纵坐标加减h,横坐标加减k这样可以让函数平移动。
六、二次函数的判别式:Δ=b^2-4acΔ大于零,则两根实数Δ等于零,有相同根Δ小于零,则无实根。
七、二次函数的根公式:x1,x2=(-b±√(b^2-4ac))/2a这个公式是非常重要的。
八、二次函数的零点:根就是函数与x轴的交点交点的个数和Δ有关。
九、二次函数的单调性:(a>0)函数开口朝上(a<0)函数开口朝下。
十、二次函数的最值:(a>0)最小值在顶点处(a<0)最大值就能看出。
十一、二次函数的增减性:判断增减很简单大于发散,小于集中。
十二、二次函数的平行与垂直关系:两二次函数平行斜率a相等;两二次函数垂直倒数互为相等。
十三、二次函数与轴交点:与x轴交点,就是求解方程ax^2+bx+c=0;与y轴交点,就是求函数的常数项c。
十四、二次函数的最后性质:函数图像至少有一个对称中心这个中心是顶点。
十五、二次函数的图象变换:求法很简单向下平移,顶点往下移;向上平移,顶点往上飞;向左平移,顶点往左飞;向右平移,顶点往右眯。
十六、二次函数图像的缩放:记住就好系数a的绝对值在接近0时会减小即图像变窄;系数a的绝对值大于1时会增大即图像变胖。
总结:以上是二次函数口诀掌握了这些基本没错。
记住平移和缩放的特点解题顺利不费力。
忘了记不住的可以偷懒做题时再仔细分析。
二次函数知识点总结及相关典型题目第一部分 二次函数基础知识✧ 相关概念及定义➢ 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.➢ 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ✧ 二次函数各种形式之间的变换➢ 二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.➢ 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.✧ 二次函数解析式的表示方法➢ 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);➢ 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);➢ 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).➢ 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. ➢ 二次函数2ax y =的性质✧ 二次函数2y ax c =+的性质✧ 二次函数y a x h =-的性质:✧ ✧ 二次函数()2y a x h k =-+的性质✧ 抛物线2y ax bx c =++的三要素:开口方向、对称轴、顶点.➢a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.➢ 对称轴:平行于y 轴(或重合)的直线记作2bx a=-.特别地,y 轴记作直线0=x . ➢ 顶点坐标坐标:),(ab ac a b 4422--➢ 顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. ✧ 抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系 ➢ 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大 小.➢ 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. 总结:➢ 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. ✧ 求抛物线的顶点、对称轴的方法➢ 公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.➢ 配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.➢ 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. ✧ 用待定系数法求二次函数的解析式➢ 一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. ➢ 顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.➢ 交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. ✧ 直线与抛物线的交点➢y 轴与抛物线c bx ax y ++=2得交点为(0, c ).➢ 与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).➢ 抛物线与x 轴的交点:二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.➢ 平行于x 轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.➢ 一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx ny ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.➢ 抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故a cx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121✧ 二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达➢ 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;➢ 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;➢ 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;➢ 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.➢ 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-➢ 总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.✧ 二次函数图象的平移➢ 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: ➢【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.✧ 根据条件确定二次函数表达式的几种基本思路。
中考数学常考易错点《二次函数》知识点梳理一、基本概念1. 二次函数的定义:二次函数是形如y=ax²+bx+c(a≠0)的函数。
2.二次函数的系数a与开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
3. 二次函数的零点:二次函数的零点即函数的解,即满足方程y=ax²+bx+c=0的x的值。
4.二次函数的顶点:二次函数的顶点是函数图像的最低点(a>0,开口向上)或最高点(a<0,开口向下)。
二、图像与性质1. 平移变换:对于二次函数y=ax²+bx+c,若将函数向左平移h个单位,记作y=a(x-h)²+bx+c;向上平移k个单位,记作y=a(x-h)²+bx+(c+k)。
2. 对称轴:对于二次函数y=a(x-h)²+bx+c,其对称轴为x=h。
3.最值:当二次函数开口向上时,最小值等于顶点的纵坐标;当二次函数开口向下时,最大值等于顶点的纵坐标。
4.单调性:若a>0,则二次函数是单调递增的;若a<0,则二次函数是单调递减的。
1. 因式分解:二次函数可以通过因式分解的方法求解,对于形如y=x²+bx+c的二次函数,可以通过找到满足(x+p)(x+q)=0的p和q来求解。
2. 二次方程的解与二次函数的零点:对于二次函数y=ax²+bx+c,当y=0时,可以得到ax²+bx+c=0,即二次方程。
所以二次函数的零点就是二次方程的根。
3.二次函数与坐标变换:二次函数可以通过坐标变换的方法进行图像的绘制与分析。
根据函数中的系数和平移变化,我们可以找到相关的坐标点,进而绘制出图像。
四、易错点1.没有注意二次函数系数与开口方向之间的关系,导致图像的绘制错误。
2.对于二次函数的平移变换不够熟练,不能正确确定平移的方向和单位。
3.没有理解二次函数的最值和单调性,导致在题目中的应用出现错误。
初中数学二次函数知识点总结I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y 轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
中考数学二次函数知识点总结
I. 定义与定义表达式
一般地,自变量x和因变量y之间存有如下关系:y=ax^2+bx+c
(a, b, c为常数,a z0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,lal还能够决定开口大小,lal越大开口就越小,IaI 越小开口就越大. )则称y 为x 的二次函数。
二次函数表达式的右边通常为二次三项式。
II. 二次函数的三种表达式
一般式:y=ax A2+bx+c (a, b, c 为常数,a z0)
顶点式:y=a(x-hF2+k[抛物线的顶点P (h, k)]
交点式:y=a(x-x)(x-x)[ 仅限于与x 轴有交点A(x, 0)和B( x, 0) 的抛物线]
注:在 3 种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-bA2)/4a x,x=(- b±V bA2-4ac)/2a
III. 二次函数的图像
在平面直角坐标系中作出二次函数y=xA2 的图像,能够看出,二次函数的图像是一条抛物线。
IV. 抛物线的性质
1. 抛物线是轴对称图形。
对称轴为直线x=-b/2a 。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物
线的对称轴是y 轴(即直线x=0)
2. 抛物线有一个顶点P,坐标为:P(-b/2a , (4ac-"2)/4a)当-b/2a=0 时,P在y轴上;当△二b^2-4ac=0时,P在x轴上。
3. 二次项系数a 决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a v0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4. 一次项系数b 和二次项系数a 共同决定对称轴的位置。
当a与b同号时(即ab> 0),对称轴在y轴左;
当a与b异号时(即ab v 0),对称轴在y轴右。
5. 常数项c 决定抛物线与y 轴交点。
抛物线与y 轴交于(0, c)
6. 抛物线与x 轴交点个数
△=b A2-4ac >0时,抛物线与x轴有2个交点。
△=bA2-4ac=0时,抛物线与x轴有1个交点。
△=bA2-4ac v 0时,抛物线与x轴没有交点。
X的取值是虚数(x=-b±V bA2 —4ac的值的相反数,乘上虚数i,整个式子除以2a)
V. 二次函数与一元二次方程
特别地,二次函数(以下称函数)y=axA2+bx+c,
当y=0 时,二次函数为关于x 的一元二次方程(以下称方程),即
axA2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1 .二次函数y=axT, y=a(x-h)八
2 , y=a(x-h)八2+k , y=ax A2+bx+c(各
式中,0)的图象形状相同,仅仅位置不同,它们的顶点坐标及对称轴如下表:
当h>0时,y=a(x-hF2的图象可由抛物线y=axA2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0 时,将抛物线y=axA2 向右平行移动h 个单位,再向上移动k 个单位,就能够得到y=a(x-h)A2+k 的图象;
当h>0,k<0 时,将抛物线y=axA2 向右平行移动h 个单位,再向下移动|k|个单位可得到y=a(x-hF2+k的图象;
当h<0,k>0 时,将抛物线向左平行移动|h| 个单位,再向上移动k 个单位可得到y=a(x-h)A2+k 的图象;
当h<0,k<0 时,将抛物线向左平行移动|h| 个单位,再向下移动|k| 个单位可得到y=a(x-h)A2+k 的图象;
所以,研究抛物线y=ax“2+bx+c(a工0)的图象,通过配方,将一般式化为y=a(x-h)A2+k 的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2 .抛物线y=axA2+bx+c(a工0)的图象:当a>0时,开口向上,当a<0 时开口向下,对称轴是直线x=-b/2a ,顶点坐标是(-b/2a ,[4ac- bA2]/4a) .
3 .抛物线y=axA2+bx+c(a 工0),若a>0,当x< -b/2a 时,y 随x 的增
大而减小;当x>-b/2a时,y随x的增大而增大.若a<0,当x<- b/2a时,y随x的增大而增大;当x>-b/2a时,y随x的增大而减小.
4 .抛物线y=axA2+bx+c 的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0, c);
(2)当厶=b A2-4ac>0,图象与x轴交于两点A(x, 0)和B(x, 0),其中的
x1,x2是一元二次方程axA2+bx+c=0
(a工0)的两根.这两点间的距离AB=|x-x|
当厶=0.图象与x轴只有一个交点;
当厶<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x 为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5 .抛物线y=axA2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y 最小(大)值=(4ac-bA2)/4a .
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6 .用待定系数法求二次函数的解析式
(1) 当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=axA2+bx+c(a 工0).
(2) 当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h) A2+k(a 工0).
⑶当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x- x)(a 工0).
7 .二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
所以,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.。