常用离散分布
- 格式:ppt
- 大小:726.00 KB
- 文档页数:52
3种常用离散型分布的公式嘿,咱们来聊聊 3 种常用的离散型分布公式。
先来说说二项分布。
这二项分布啊,就好比你扔硬币。
假设你扔 10 次硬币,每次都只有正面和反面两种可能,而且每次扔硬币正面朝上的概率都一样。
那在这10 次中,出现正面的次数就可能符合二项分布。
我记得之前教过一个学生,他特别纠结这个二项分布的公式。
我就跟他说:“你就想象成你去抽奖,每次抽奖中奖的概率是固定的,抽了特定的次数,算一下总共中奖几次的可能性。
”他还是一脸懵。
于是我就给他举了个例子,假设抽奖中奖概率是 0.2,一共抽 5 次,那中奖 2次的概率咋算呢?这时候二项分布公式就派上用场啦。
二项分布的公式是:P(X = k) = C(n, k) * p^k * (1 - p)^(n - k) 。
这里的 n 就是试验次数,k 就是成功的次数,p 是每次试验成功的概率。
再讲讲泊松分布。
泊松分布就像是在一段时间或者一个区域内,某种事件发生的次数。
比如说,在一个小时内,某个路口发生交通事故的次数。
我曾经观察过我们学校门口的交通情况。
有一天,我特意在那站了一个小时,想看看大概会有多少起小的交通摩擦。
结果发现,差不多平均下来,一个小时会有那么两三起。
这其实就有点像泊松分布的情况。
泊松分布的公式是:P(X = k) = (λ^k * e^(-λ)) / k! ,这里的λ是单位时间或者单位面积内事件发生的平均次数。
最后说说几何分布。
几何分布就好像是你不断尝试做一件事,直到第一次成功为止,所需要的尝试次数。
有次我陪我家孩子玩猜谜语,他一直猜不对,我就告诉他,你猜猜看,平均几次能猜对一个。
这其实就和几何分布有点关系。
几何分布的公式是:P(X = k) = (1 - p)^(k - 1) * p ,其中 p 是每次试验成功的概率。
总之,这三种离散型分布公式在生活和学习中都有很多用处。
咱们多观察、多思考,就能更好地理解和运用它们啦!。
(一)常用离散分布这里将给出三个常用的离散分布:二项分布、泊松分布与超几何分布。
1 .二项分布我们来考察由n次随机试验组成的随机现象,它满足如下条件:⑴重复进行n次随机试验。
比如,把一枚硬币连抛n次,检验n个产品的质量,对一个目标连续射击n次等。
2 2) n次试验间相互独立,即任何一次试验结果不会对其他次试验结果产生影响。
⑶每次试验仅有两个可能的结果,比如,正面与反面、合格与不合格、命中与不命中、具有某特性与不具有某特性,以下统称为“成功”与“失败工(4)每次试验成功的概率均为p,失败的概率均为1-p。
在上述四个条件下,设X表示n次独立重复试验中成功出现的次数,显然X是可以取0,1,..., n等n+1个值的离散随机变量,且它的概率函数为:n= x) = /(1一。
)1 , x=O,l,…3(1.2-4)W'G这个分布称为二项分布,记为父乩,),其中是从n个不同元素中取出/个的蛆合数,它的计算公式为:\X)G、_ n\㈤%!(« - x)!二项分布的均值、方差与标准差分别为:E(X) = npVar{X}-4>(1 - p)—=加(1-0)特例:n=i的二项分布称为二点分布。
它的概率函数为:产= —, x = O,l或列表如下:x | 0 1 ____________P P它的均值、方差与标准差分别为跃© = P,gr(X) = Hl-⑼,6X)=[pQ-p)[例1.2-10]在一个制造过程中,不合格品率为0.1,如今从成品中随机取出6个,记X为6个成品中的不合格品数,则x服从二项分布8(6 ,0.1),简记为X〜堆,0.1) o现研究如下几个问题:(1)恰有1个不合格品的概率是多少?这里规定抽到不合格品为“成功” > 则事件XE的概率为:P{X = 1) = x0.1x(l-0.1)6-i = 6x0.1x0.95 =0.3543Uz这表明, 6个成品中恰有一个不合格品的概率为0. 3543-类似可计算X=0 , X=1 ,…'X=6的概率,计算结果可列出一张分布列,具体如下:X 0 1 2 3 4 5 6P 0.5314~0.3543 0.0984 0.0146 0.0012 0.0001 0.0000这里0. 0000表示X=6的概率取前4位小数的有效数字为零,实际上,它的概率为P 0(=6)=0. 000001 ,并不严格为零。
概率论常见分布性质及应用概率论是研究随机现象的规律性及概率性问题的数学分支。
常见的概率论分布有离散分布和连续分布两种。
下面将对常见的概率论分布性质及其应用进行详细阐述。
一、离散分布:1. 伯努利分布(Bernoulli Distribution):伯努利分布是最简单的离散分布,它只有两个取值0和1,其中0发生的概率为p,1发生的概率为q=1-p。
伯努利分布通常用来表示只有两个可能结果的试验,如掷硬币的结果。
应用:伯努利分布可以用于模拟二项分布的单次试验结果,也可以用于描述二分类问题的概率分布。
2. 二项分布(Binomial Distribution):二项分布描述了一系列独立重复的伯努利试验,在每次试验中,都有成功的概率p,失败的概率q=1-p。
将n次伯努利试验的成功次数定义为X,X的取值为0到n。
二项分布的概率质量函数可以表示为P(X=k) = C(n,k) * p^k * q^(n-k)。
应用:二项分布可以用于模拟多次试验的结果,如投掷硬币、扔骰子等。
在实际应用中,二项分布也可以用于描述二分类问题的概率分布,如判断客户是否购买某个产品。
3. 泊松分布(Poisson Distribution):泊松分布描述了在一个固定时间间隔内某个事件发生的次数的概率分布。
泊松分布的概率质量函数可以表示为P(X=k) = (lambda^k * e^(-lambda)) / k!,其中lambda为事件发生的平均次数。
应用:泊松分布广泛应用于描述实际生活中的随机事件,如交通事故发生的次数、电话呼叫的次数等。
此外,泊松分布还可以用于模拟排队论中的到达与服务过程。
二、连续分布:1. 均匀分布(Uniform Distribution):均匀分布是最简单的连续分布,它的概率密度函数在一个有限区间内是常数,而在区间外为零。
均匀分布的概率密度函数可以表示为f(x) = 1/(b-a),其中a和b为区间的起始和结束点。
常⽤离散分布⼆项分布⼆项分布就是重复 n 次独⽴的伯努利试验,在每次试验中只有两种可能的结果,⽽且两种结果发⽣与否互相对⽴,并且相互独⽴,与其它各次试验结果⽆关,事件发⽣与否的概率在每⼀次独⽴试验中都保持不变。
即⼀枚硬币扔 n 次,扔出正⾯概率为 p ,得到 k 次正⾯的概率:P(X=k)=\binom{n}{k}p^k(1-p)^{n-k},k=0,1,\cdots,n这个分布称为⼆项分布,记为 X\sim b(n,p) .n=1 时的⼆项分布 b(1,p) 称为⼆点分布,或称0-1分布,或称伯努利分布,其分布列为P(X=x)=p^{x}(1-p)^{1-x}, x=0,1.⼆项分布的数学期望和⽅差设随机变量 X\sim b(n,p) ,则\begin{aligned} E(X) &=\sum_{k=0}^{n} k\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k}=n p \sum_{k=1}^{n}\left(\begin{array}{l} n-1 \\ k-1 \end{array}\right) p^{k-1}(1-p)^{(n-1)-(k-1)} \\ &=n p[p+(1-p)]^{n-1}=n p \end{aligned}⼜因为\begin{aligned} E\left(X^{2}\right) &=\sum_{k=0}^{n} k^{2}\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k}=\sum_{k=1}^{n}(k-1+1) k\left(\begin{array}{l} n \\ k\end{array}\right) p^{k}(1-p)^{n-k} \\ &=\sum_{k=1}^{n} k(k-1)\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k}+\sum_{k=1}^{n} k\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k} \\ &=\sum_{k=2}^{n} k(k-1)\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k}+n p \\ &=n(n-1) p^{2} \sum_{k=2}^{n}\left(\begin{array}{l} n-2 \\ k-2\end{array}\right) p^{k-2}(1-p)^{(n-2)-(k-2)}+n p \\ &=n(n-1) p^{2}+n p \end{aligned}由此得 X 的⽅差为\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=n(n-1) p^{2}+n p-(n p)^{2}=n p(1-p)泊松分布泊松分布的概率分布列是P(X=k)=\frac{\lambda^{k}}{k !} \mathrm{e}^{-\lambda}, k=0,1,2, \cdots其中参数 \lambda>0 ,记为 X\sim P(\lambda) .泊松分布的数学期望和⽅差设随机变量 X\sim P(\lambda) ,则E(X)=\sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k !} \mathrm{e}^{-\lambda}=\lambda \mathrm{e}^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1) !}=\lambda \mathrm{e}^{-\lambda} \mathrm{e}^{\lambda}=\lambda⼜因为\begin{aligned} E\left(X^{2}\right) &=\sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k !} \mathrm{e}^{-\lambda}=\sum_{k=1}^{\infty} k \frac{\lambda^{k}}{(k-1) !} \mathrm{e}^{-\lambda} \\ &=\sum_{k=1}^{\infty}[(k-1)+1] \frac{\lambda^{k}}{(k-1) !} \mathrm{e}^{-\lambda} \\ &=\lambda^{2} \mathrm{e}^{-\lambda} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2) !}+\lambda\mathrm{e}^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1) !} \\ &=\lambda^{2}+\lambda \end{aligned}由此得 X 的⽅差为\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda⼆项分布的泊松近似(泊松定理) 在 n 重伯努利试验中,记事件 A 在⼀次试验中发⽣的概率为 p_n (与试验次数 n 有关),如果当 b\to\infty 时,有 np_n\to\lambda , 则\lim _{n \rightarrow \infty}\left(\begin{array}{l} n \\ k \end{array}\right) p_{n}^{k}\left(1-p_{n}\right)^{n-k}=\frac{\lambda^{k}}{k !} \mathrm{e}^{-\lambda}证明: 记 np_n=\lambda_n , 可得\begin{aligned} \left(\begin{array}{l} n \\ k \end{array}\right) p_{n}^{k}\left(1-p_{n}\right)^{n-k} &=\frac{n(n-1) \cdots(n-k+1)}{k !}\left(\frac{\lambda_{n}}{n}\right)^{k}\left(1-\frac{\lambda_{n}}{n}\right)^{n-k} \\ &=\frac{\lambda_{n}^{k}}{k !}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)\left(1-\frac{\lambda_{n}}{n}\right)^{n-k} \end{aligned}对固定的 k 有\lim _{n \rightarrow \infty} \lambda_{n}=\lambda\lim _{n \rightarrow \infty}\left(1-\frac{\lambda_{n}}{n}\right)^{n-k}=\mathrm{e}^{-\lambda}\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)=1从⽽\lim _{n \rightarrow \infty}\left(\begin{array}{l} n \\ k \end{array}\right) p_{n}^{k}\left(1-p_{n}\right)^{n-k}=\frac{\lambda^{k}}{k !} \mathrm{e}^{-\lambda}对任意的 k=0,1,\cdots 成⽴.定理得证.由于泊松定理是在条件 np_n\to\lambda 下得到的,故在计算⼆项分布 b(n,p) 时,当 n 很⼤, p 很⼩,⽽ \lambda=np ⼤⼩适中时,可以⽤泊松公式近似,即\left(\begin{array}{l} n \\ k \end{array}\right) p_{n}^{k}\left(1-p_{n}\right)^{n-k} \approx \frac{(n p)^{k}}{k !} \mathrm{e}^{-n p}, k=0,1,2, \cdotsLoading [MathJax]/extensions/TeX/mathchoice.js通常当 n\geqslant20,p\leqslant0.05 时,就可以⽤泊松公式近似得计算。