第十二章 连续变量的统计推断(二)—单因素方差分析
- 格式:ppt
- 大小:502.50 KB
- 文档页数:1
《spss入门》课程教学大纲一、课程的地位、性质和任务课程性质:SPSS入门是一门实践性、应用性很强的课程,它是以多元统计为基础理论,研究如何利用有效的方法收集、整理与分析受到随机因素影响的数据,从而对所涉及问题进行统计推断与预测,为科学决策提供依据和建议。
课程地位:本课程是师范类心理健康专业的职业拓展能力课程。
课程任务:通过本课程的学习,使学生了解SPSS统计软件的使用方法的基本概念、原理、方法和一般的操作程序,使学生在实际工作中具备一定的数据收集、处理、分析能力,并通过数据发现心理现象的一般特征和规律。
这对于提升心理健康专业学生专业能力、科研素养,以及加强学生认识和分析心理事实的能力等具有十分重要的意义。
二、总体教学目标《spss入门》是一门重要专业选修课程,通过本课程学习和操作训练,使学生掌握spss的基本理论,熟悉sps基本概念、基本原理和基本分析方法,能进行心理数据的统计处理分析能力。
三、本课程与其他专业课程的关系学习本课程前,学生应具备统计学、心理测量学、普通心理学和发展心理学等知识基础和能力。
四、各课程教学时间分配参考各章节教学时间分配表五、教学内容及其目的、要求、任务第一章spss入门(2学时)(一)教学目的目的:spss的发展历史、基本操作、窗口及功能和菜单及功能等。
(二)教学内容1、软件概述2、SPSS操作入门3、SPSS的窗口、菜单项和结果输出(三)教学要求1、基本要求(1)了解:spss的发展历史及作用(2)掌握:主要窗口及其功能;菜单(view)的功能及结果输出类型2、重点、难点重点:主要窗口及功能、菜单功能难点:无难点(四)教学建议本章节主要采用讲授法。
(五)作业、实践环节设计1、检查spss共有几个模块,其中包含了哪些功能,并思考平时的统计分析究竟需要哪些模块。
第二章数据录入与数据获取(2学时)(一)教学目的目的:对spss的数据格式、建立数据库、读取外部数据等有了解和进行实践应用。
单因素方差分析1. 引言•单因素方差分析(One-way ANOVA)是一种常用的统计方法,用于比较两个或多个组之间的均值是否存在显著差异。
•在实际研究中,我们经常需要比较不同组之间某个变量的均值差异,例如不同教育水平对收入的影响,不同药物对疾病的治疗效果等。
•单因素方差分析提供了一种统计方法,可以判断不同组之间均值差异是否由随机因素引起,还是由于真正的因素差异引起。
2. 基本概念•因素(Factor):需要比较不同组之间的变量,也称为自变量或分类因素。
•水平(Level):每个因素具有的不同取值或组别,也称为处理或条件。
•观测值(Observation):每个组内的单个实验结果或数据点。
•总平均(Grand Mean):所有组的观测值的平均值。
•组内平均(Group Mean):每个组的观测值的平均值。
•组间平均(Between-group Mean):所有组的观测值的平均值。
3. 假设检验•零假设(H0):不同组的均值之间没有显著差异。
•备择假设(H1):不同组的均值之间存在显著差异。
4. 单因素方差分析的步骤1.收集数据:按照分类因素进行分组,获得每个组的观测值。
2.计算总平均:计算所有观测值的平均值。
3.计算组内平均:计算每个组的观测值的平均值。
4.计算组间平均:计算所有组的观测值的平均值。
5.构造统计模型:建立协方差矩阵和方差矩阵之间的关系。
6.计算平方和:计算组内平方和和组间平方和。
7.计算均方差:计算组内均方差和组间均方差。
8.计算F值:计算F统计量,用于检验组间均值差异是否显著。
9.假设检验:比较F值与临界值,确定是否拒绝零假设。
5. F分布与p值•在单因素方差分析中,我们使用F分布来进行假设检验。
•F分布是一种连续概率分布,取值范围大于等于0,且分布形状根据自由度的不同而变化。
•在单因素方差分析中,我们计算出的F值可以与F分布表中的临界值进行比较,以确定是否拒绝零假设。
•p值是统计假设检验中的一个重要指标,表示在零假设成立的情况下,观察到的样本数据或更极端结果出现的概率。
单因素方差分析(一)单因素方差分析概念理解步骤是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。
这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。
例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇女的生育率,研究学历对工资收入的影响等。
这些问题都可以通过单因素方差分析得到答案。
单因素方差分析的第一步是明确观测变量和控制变量。
例如,上述问题中的观测变量分别是农作物产量、妇女生育率、工资收入;控制变量分别为施肥量、地区、学历。
单因素方差分析的第二步是剖析观测变量的方差。
方差分析认为:观测变量值得变动会受控制变量和随机变量两方面的影响。
据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SS T=SS A+SS E。
单因素方差分析的第三步是通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显著影响。
(二)单因素方差分析原理总结容易理解:在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平方和所占比例小,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同水平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。
(三)单因素方差分析基本步骤• 1、提出原假设:H0——无差异;H1——有显著差异• 2、选择检验统计量:方差分析采用的检验统计量是F统计量,即F值检验。
• 3、计算检验统计量的观测值和概率P值:该步骤的目的就是计算检验统计量的观测值和相应的概率P值。
• 4、给定显著性水平,并作出决策(四)单因素方差分析的进一步分析在完成上述单因素方差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他几个重要分析,主要包括方差齐性检验、多重比较检验。
实例解析单因素的方差分析方法首先在单因素试验结果的基础上,求出总方差V 、组内方差vw、组间方差vB。
总方差 v=()2ijx x -∑组内方差 v w =()2ij x x i-∑ 组间方差 v B=b ()2ix x -∑从公式可以看出,总方差衡量的是所有观测值xij对总均值x 的偏离程度,反映了抽样随机误差的大小,组内方差衡量的是所有观测值xij对组均值x 的偏离程度,而组间方差则衡量的是组均值x i对总均值x 的偏离程度,反映系统的误差。
在此基础上,还可以得到组间均方差和组内均方差: 组间均方差2Bs ∧=1B-a v组内均方差 2ws∧=aab vw-在方差相等的假定下,要检验n 个总体的均值是否相等,须首先给定原假设和备择假设。
原假设 H 0:均值相等即μ1=μ2=…=μn备择假设H 1:均值不完全不相等则可以应用F 统计量进行方差检验:F=)()(b ab a vv w--1B =22∧∧ss WB该统计量服从分子自由度a-1,分母自由度为ab-a 的F 分布。
给定显著性水平a ,如果根据样本计算出的F 统计量的值小于等于临界值)(a ab 1a F --,α,则说明原假设H 0不成立,总体均值不完全相等,差异并非仅由随机因素引起。
下面通过举例说明如何在Excel 中实现单因素方差分析。
例1:单因素方差分析某化肥生产商需要检验三种新产品的效果,在同一地区选取3块同样大小的农田进行试验,甲农田中使用甲化肥,在乙农田使用乙化肥,在丙地使用丙化肥,得到6次试验的结果如表2所示,试在0.05的显著性水平下分析甲乙丙化肥的肥效是否存在差异。
表2 三块农田的产量要检验三种化肥的肥效是否存在显著差异,等同于检验三者产量的均值是否相等:给定原假设H 0:三者产量均值相等;备择假设H 1:三者的产量均不相等,对于影响产量的因素仅化肥种类一项,因此可以采用单因素方差分析进行多总体样本均值检验。
⑴新建工作表“例1”,分别单击B3:D8单元格,输入表2的产量数值。
单因素方差分析原理
单因素方差分析是一种常用的统计方法,用于比较一个因素对于不同组之间的差异是否显著。
其基本原理是利用组内变异与组间变异之间的比较来判断因素对于不同组的影响程度。
在单因素方差分析中,我们将总体的方差分解为两个部分:组间方差和组内方差。
组间方差反映了不同组之间的差异程度,而组内方差反映了同一组内观测值之间的差异。
通过计算组间方差和组内方差的比值,可以得到F值,即F
统计量。
F统计量的大小反映了因素对于不同组之间的差异是
否显著。
如果F值显著大于1,表明组间方差较大,差异显著,因素对于不同组之间的差异有显著影响;反之,如果F值接
近1,则说明组间方差较小,差异不显著,因素对于不同组之
间的差异没有显著影响。
进行单因素方差分析时,需要满足一些基本假设,如观测值之间的独立性、组内方差的同质性等。
此外,还需要使用适当的假设检验方法和确定显著水平,以判断因素对于不同组之间的差异是否显著。
总之,单因素方差分析通过比较组内变异与组间变异,能够帮助我们判断一个因素对于不同组之间的差异是否显著,从而得出相应的结论。
这种统计方法在实验设计和数据分析中经常被应用,对于研究因素的影响具有重要的意义。
单因素方差分析完整实例知识讲解单因素方差分析完整实例什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。
单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。
单因素方差分析相关概念●因素:影响研究对象的某一指标、变量。
●水平:因素变化的各种状态或因素变化所分的等级或组别。
●单因素试验:考虑的因素只有一个的试验叫单因素试验。
单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。
下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。
现需要在显著性水平α = 0.05下检验这些百分比的均值有无显著的差异。
设各总体服从正态分布,且方差相同。
在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。
假定除抗生素这一因素外,其余的一切条件都相同。
这就是单因素试验。
试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。
即考察抗生素这一因素对这些百分比有无显著影响。
这就是一个典型的单因素试验的方差分析问题。
单因素方差分析的基本理论[1]与通常的统计推断问题一样,方差分析的任务也是先根据实际情况提出原假设H0与备择假设H1,然后寻找适当的检验统计量进行假设检验。
本节将借用上面的实例来讨论单因素试验的方差分析问题。
在上例中,因素A(即抗生素)有s(=5)个水平,在每一个水平下进行了n j = 4次独立试验,得到如上表所示的结果。
这些结果是一个随机变量。
表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为,则按题意需检验假设不全相等为了便于讨论,现在引入总平均μ其中:再引入水平A j的效应δj显然有,δj表示水平A j下的总体平均值与总平均的差异。