柱 锥 台的体积详解
- 格式:ppt
- 大小:1.12 MB
- 文档页数:3
柱体、锥体、台体、球的体积与球的表面积学习目标 1.掌握柱体、锥体、台体的体积公式,会利用它们求有关几何体的体积.2.了解球的表面积与体积公式,并能应用它们求球的表面积及体积.3.会求简单组合体的体积及表面积.知识点一 柱体、锥体、台体的体积公式1.柱体的体积公式V =Sh (S 为底面面积,h 为高); 2.锥体的体积公式V =13Sh (S 为底面面积,h 为高);3.台体的体积公式V =13(S ′+S ′S +S )h (S ′、S 为上、下底面面积,h 为高);4.柱体、锥体、台体的体积公式之间的关系V =ShV =13(S ′+S ′S +S )hV =13Sh .知识点二 球的表面积和体积公式1.球的表面积公式S =4πR 2(R 为球的半径); 2.球的体积公式V =43πR 3.类型一 柱体、锥体、台体的体积例1 (1)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34C.612D.64答案 A解析 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312.(2)现有一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的圆锥形铅锤,铅锤完全浸没在水中.当铅锤从水中取出后,杯里的水将下降( )A .0.6 cmB .0.15 cmC .1.2 cmD .0.3 cm 答案 A解析 设杯里的水下降h cm ,由题意知π(202)2h =13×20×π×32,解得h =0.6 cm.反思与感悟 (1)常见的求几何体体积的方法 ①公式法:直接代入公式求解.②等积法:如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可. ③分割法:将几何体分割成易求解的几部分,分别求体积. (2)求几何体体积时需注意的问题柱、锥、台体的体积的计算,一般要找出相应的底面和高,要充分利用截面、轴截面,求出所需要的量,最后代入公式计算.跟踪训练1 (1)如图所示,在长方体ABCD -A ′B ′C ′D ′中,用截面截下一个棱锥C -A ′DD ′,求棱锥C -A ′DD ′的体积与剩余部分的体积之比.解 设AB =a ,AD =b ,AA ′=c , ∴V C -A ′D ′D =13CD ·S △A ′D ′D =13a ·12bc =16abc ,∴剩余部分的体积为V ABCD -A ′B ′C ′D ′-V C -A ′D ′D =abc -16abc =56abc ,∴棱锥C -A ′DD ′的体积与剩余部分的体积之比为1∶5.(2)已知一个三棱台上、下底面分别是边长为20 cm 和30 cm 的正三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面面积之和,求棱台的高和体积.解 如图,在三棱台ABC -A ′B ′C ′中,取上、下底面的中心分别为O ′,O ,BC ,B ′C ′的中点分别为D ,D ′,则DD ′是梯形BCC ′B ′的高. 所以S 侧=3×12×(20+30)×DD ′=75DD ′.又因为A ′B ′=20 cm ,AB =30 cm ,则上、下底面面积之和为S 上+S 下=34×(202+302)=3253(cm 2).由S 侧=S 上+S 下,得75DD ′=3253,所以DD ′=1333(cm),O ′D ′=36×20=1033(cm),OD =36×30=53(cm), 所以棱台的高h =O ′O =D ′D 2-(OD -O ′D ′)2 =(1333)2-(53-1033)2=43(cm). 由棱台的体积公式,可得棱台的体积为V =h 3(S 上+S 下+S 上·S 下)=433×(34×202+34×302+34×20×30)=1 900(cm 3).类型二 球的表面积与体积命题角度1 与球有关的切、接问题例2 (1)求球与它的外切等边圆锥(轴截面是正三角形的圆锥叫等边圆锥)的体积之比.解 如图等边△ABC 为圆锥的轴截面,截球面得圆O . 设球的半径OE =R , OA =OE sin 30°=2OE =2R ,∴AD =OA +OD =2R +R =3R , BD =AD ·tan 30°=3R , ∴V 球=43πR 3,V 圆锥=13π·BD 2×AD =13π(3R )2×3R =3πR 3,则V 球∶V 圆锥=4∶9.(2)设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 2 答案 B解析 长方体的体对角线是其外接球的直径,由长方体的体对角线为(2a )2+a 2+a 2=6a , 得球的半径为62a ,则球的表面积为4π(62a )2=6πa 2. 反思与感悟 (1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r 1=a2,过在一个平面上的四个切点作截面如图①. (2)球与正方体的各条棱相切球与正方体的各条棱相切于各棱的中点,过球心作正方体的对角面有r 2=22a ,如图②. (3)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为a ,b ,c ,则过球心作长方体的对角面有球的半径为r 3=12a 2+b 2+c 2,如图③.(4)正方体的外接球正方体棱长a 与外接球半径R 的关系为2R =3a . (5)正四面体的外接球正四面体的棱长a 与外接球半径R 的关系为2R =62a . 跟踪训练2 (1)正方体的内切球与其外接球的体积之比为( ) A .1∶ 3 B .1∶3 C .1∶3 3 D .1∶9 答案 C解析 设正方体的棱长为1,则正方体内切球的半径为棱长的一半即为12,外接球的直径为正方体的体对角线, ∴外接球的半径为32, ∴其体积比为43π×(12)3∶43π×(32)3=1∶3 3.(2)长方体的共顶点的三个侧面面积分别为3、5、15,则它的外接球表面积为_______. 答案 9π解析 设长方体共顶点的三条棱长分别为a 、b 、c ,则⎩⎨⎧ab =3,bc =5,ac =15,解得⎩⎨⎧a =3,b =1,c =5,∴外接球半径为a 2+b 2+c 22=32,∴外接球表面积为4π×(32)2=9π.命题角度2 球的截面例3 在球内有相距9 cm 的两个平行截面面积分别为49π cm 2和400π cm 2,求此球的表面积. 解 方法一 (1)若两截面位于球心的同侧,如图(1)所示的是经过球心O 的大圆截面,C ,C 1分别是两平行截面的圆心,设球的半径为R cm ,截面圆的半径分别为r cm ,r 1 cm.由πr 21=49π,得r 1=7(r 1=-7舍去), 由πr 2=400π,得r =20(r =-20舍去).在Rt △OB 1C 1中,OC 1=R 2-r 21=R 2-49,在Rt △OBC 中,OC =R 2-r 2=R 2-400.由题意可知OC 1-OC =9,即R 2-49-R 2-400=9, 解此方程,取正值得R =25.(2)若球心在截面之间,如图(2)所示,OC 1=R 2-49,OC =R 2-400.由题意可知OC 1+OC =9, 即R 2-49+R 2-400=9.整理,得R 2-400=-15,此方程无解,这说明第二种情况不存在.综上所述,此球的半径为25 cm.∴S球=4πR2=4π×252=2 500π(cm2).方法二(1)若截面位于球心的同侧,同方法一,得OC21=R2-49,OC2=R2-400,两式相减,得OC21-OC2=400-49⇔(OC1+OC)(OC1-OC)=351.又OC1-OC=9,∴OC1+OC=39,解得OC1=24,OC=15,∴R2=OC2+r2=152+202=625,∴R=25 cm.(以下略)反思与感悟设球的截面圆上一点A,球心为O,截面圆心为O1,则△AO1O是以O1为直角顶点的直角三角形,解答球的截面问题时,常用该直角三角形求解,并常用过球心和截面圆心的轴截面.跟踪训练3把本例的条件改为“球的半径为5,两个平行截面的周长分别为6π和8π”,则两平行截面间的距离是()A.1 B.2 C.1或7 D.2或6答案 C解析画出球的截面图,如图所示.两平行直线是球的两个平行截面的直径,有两种情形:①两个平行截面在球心的两侧,②两个平行截面在球心的同侧.对于①,m=52-32=4,n=52-42=3,两平行截面间的距离是m+n=7;对于②,两平行截面间的距离是m-n=1.故选C.类型三组合体的体积例4某几何体的三视图如图所示,则该几何体的体积为()A.13+π B.23+π C.13+2π D.23+2π 答案 A解析 由三视图可知该几何体是一个三棱锥与半个圆柱的组合体,V =12π×12×2+13×(12×1×2)×1=π+13.故选A.反思与感悟 此类问题的关键是把三视图还原为空间几何体,再就是代入公式计算,注意锥体与柱体两者的体积公式的区别.解答组合体问题时,要注意知识的横向联系,善于把立体几何问题转化为平面几何问题,运用方程思想与函数思想解决,融计算、推理、想象于一体. 跟踪训练4 如图,是一个奖杯的三视图(单位:cm),底座是正四棱台,求这个奖杯的体积.解 三视图复原的几何体下部是底座是正四棱台,中部是圆柱,上部是球. 这个奖杯的体积V =13h (S 上+S 上S 下+S 下)+22π·16+4π3×33=336+100π(cm 3).1.已知一个铜质的五棱柱的底面积为16 cm 2,高为4 cm ,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是( ) A .2 cm B .3 cm C .4 cm D .8 cm 答案 C解析 ∵铜质的五棱柱的底面积为16 cm 2,高为4 cm , ∴铜质的五棱柱的体积V =16×4=64(cm 3), 设熔化后铸成一个正方体的铜块的棱长为a cm , 则a 3=64,解得a =4 cm ,故选C.2.已知高为3的棱柱ABC —A 1B 1C 1的底面是边长为1的正三角形(如图),则三棱锥B 1—ABC 的体积为( )A.14B.12C.36D.34答案 D解析 V =13Sh =13×34×3=34.3.将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) A .2π B .4π C .8π D .16π答案 B解析 体积最大的球是其内切球,即球的半径为1,所以表面积为S =4π×12=4π.4.如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为________.答案 3∶1∶2解析 设球的半径为R ,则V 柱=πR 2·2R =2πR 3,V 锥=13πR 2·2R =23πR 3,V 球=43πR 3,故V 柱∶V锥∶V 球=2πR 3∶23πR 3∶43πR 3=3∶1∶2.5.某几何体的三视图如图所示,则其表面积为________.答案 3π解析 由三视图可知,该几何体是一个半径为1的半球,其表面积为半个球面面积与截面面积的和,即12×4π+π=3π.1.柱体、锥体、台体的体积之间的内在关系为V 柱体=Sh ←―――S ′=S V 台体=13h (S +SS ′+S ′)――→S ′=0V 锥体=13Sh .2.在三棱锥A -BCD 中,若求点A 到平面BCD 的距离h ,可以先求V A -BCD ,h =3V S △BCD.这种方法就是用等体积法求点到平面的距离,其中V 一般用换顶点法求解,即V A -BCD =V B -ACD =V C -ABD =V D -ABC ,求解的原则是V 易求,且△BCD 的面积易求.3.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.4.利用球的半径、球心到截面圆的距离、截面圆的半径可构成直角三角形,进行相关计算. 5.解决球与其他几何体的切接问题时,通常先作截面,将球与几何体的各量体现在平面图形中,再进行相关计算.课时作业一、选择题1.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( ) A .π B .2π C .4π D .8π 答案 B解析 设圆柱母线长为l ,底面半径为r ,由题意得⎩⎪⎨⎪⎧ l =2r ,2πrl =4π,解得⎩⎪⎨⎪⎧r =1,l =2.∴V 圆柱=πr 2l =2π.2.如图,在正方体中,四棱锥S -ABCD 的体积占正方体体积的( )A.12B.13C.14 D .不确定 答案 B解析 由于四棱锥S -ABCD 的高与正方体的棱长相等,底面是正方形,根据柱体和锥体的体积公式,得四棱锥S -ABCD 的体积占正方体体积的13,故选B.3.如图是某几何体的三视图,则该几何体的体积为( )A.92π+12 B.92π+18 C .9π+42 D .36π+18答案 B解析 由三视图可知该几何体是一个长方体和球构成的组合体,其体积V =43π(32)3+3×3×2=92π+18. 4.如图,ABC -A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34答案 C解析 ∵V C -A ′B ′C ′=13V ABC -A ′B ′C ′=13,∴V C -AA ′B ′B =1-13=23.5.一平面截一球得到直径为6 cm 的圆面,球心到这个圆面的距离是4 cm ,则该球的体积是( ) A.100π3 cm 3B.208π3 cm 3C.500π3 cm 3D.4163π3cm 3答案 C解析 如图,根据题意, |OO 1|=4 cm ,|O 1A |=3 cm ,∴|OA |=R =|OO 1|2+|O 1A |2=5(cm), 故球的体积V =43πR 3=500π3(cm 3).故选C.6.一个正四棱柱的各个顶点都在一个半径为2 cm 的球面上,如果正四棱柱的底面边长为2 cm ,那么该棱柱的表面积为( ) A .(2+42) cm 2 B .(4+82) cm 2 C .(8+162) cm 2 D .(16+322) cm 2答案 C解析 ∵一个正四棱柱的各个顶点都在一个半径为2 cm 的球面上,正四棱柱的底面边长为2 cm ,球的直径为正四棱柱的体对角线,∴正四棱柱的体对角线为4,正四棱柱的底面对角线长为22,∴正四棱柱的高为16-8=22,∴该棱柱的表面积为2×22+4×2×22=8+162,故选C.7.如图,在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.23πB.43πC.53π D .2π答案 C解析由题意,旋转而成的几何体是圆柱,挖去一个圆锥(如图),该几何体的体积为π×12×2-13×π×12×1=53π.8.一个表面积为36π的球外切于一圆柱,则圆柱的表面积为()A.45π B.27π C.36π D.54π答案 D解析因为球的表面积为36π,所以球的半径为3,因为该球外切于圆柱,所以圆柱的底面半径为3,高为6,所以圆柱的表面积S=2π×32+2π×3×6=54π.二、填空题9.如图,三棱柱A1B1C1-ABC中,已知D,E,F分别为AB,AC,AA1的中点,设三棱锥A -FED的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2的值为________.答案124解析设三棱柱的高为h,∵F是AA1的中点,则三棱锥F-ADE的高为h2,∵D,E分别是AB,AC的中点,∴S△ADE=14S△ABC,∵V1=13S△ADE·h2,V2=S△ABC·h,∴V1V2=16S△ADE·hS△ABC·h=124.10.圆锥的侧面展开图为扇形,若其弧长为2π cm,半径为 2 cm,则该圆锥的体积为___ cm3. 答案π3解析∵圆锥的侧面展开图的弧长为2π cm,半径为 2 cm,故圆锥的底面周长为2π cm,母线长为 2 cm ,则圆锥的底面半径为1,高为1,则圆锥的体积V =13·π·12·1=π3.11.已知某几何体的三视图如图所示,其中正视图、侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为________.答案2π6+16解析 由已知的三视图可知原几何体的上方是三棱锥,下方是半球,∴V =13×(12×1×1)×1+[43π(22)3]×12=16+2π6. 12.若一个四面体的四个面中,有两个面都是直角边长为1的等腰直角三角形,另两个面都是直角边长分别为1和2的直角三角形,则该四面体的外接球的表面积为________. 答案 3π解析 满足题意的四面体为如图所示的正方体中的三棱锥V -ABC ,所以VA =AB =BC =1,VB =AC =2,其外接球即为该正方体的外接球,故其半径为R =32, 所以该四面体外接球的表面积为4π×(32)2=3π. 三、解答题13.如图所示,半径为R 的半圆内的阴影部分是以直径AB 所在直线为轴,旋转一周得到的一几何体,求该几何体的表面积和体积.(其中∠BAC =30°)解 过C 作CO 1⊥AB 于点O 1,由已知得∠BCA =90°, ∵∠BAC =30°,AB =2R , ∴AC =3R ,BC =R ,CO 1=32R . ∴S 球=4πR 2,1圆锥侧AO S =π×32R ×3R =32πR 2, 1圆锥侧BO S =π×32R ×R =32πR 2,∴11几何体表球圆锥侧圆锥侧=++AO BO S S S S=4πR 2+32πR 2+32πR 2=11+32πR 2.又∵V 球=43πR 3,1圆锥AO V =13·AO 1·π·CO 21=14πR 2·AO 1, 1圆锥BO V =13·BO 1·π·CO 21=14πR 2·BO 1, ∴V 几何体=V 球-()11圆锥圆锥+AO BO V V =56πR 3.四、探究与拓展14.圆柱形容器内盛有高度为6 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,如图所示.则球的半径是( )A .1 cmB .2 cmC .3 cmD .4 cm答案 C解析 设球半径为r ,则由3V 球+V 水=V 柱,可得 3×43πr 3+πr 2×6=πr 2×6r ,解得r =3. 15.如图所示,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体(不要求写画法); (2)求这个几何体的表面积及体积. 解 (1)这个几何体如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q -A 1D 1P 的组合体. 由P A 1=PD 1= 2 cm ,A 1D 1=AD =2 cm , 可得P A 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),所求几何体的体积V =23+12×(2)2×2=10(cm 3).。
张喜林制1.1.7 柱、锥、台和球的体积教材知识检索考点知识清单1.夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两仓几何体的体积 2.柱体的底面积为S ,高为h ,则体积V = . 3.锥体的底面积为S ,高为危,则体积V = .4.台体的上、下底面面积为,/S S 、高为教材知识检索h ,则体积V= 5.若球的半径为R ,则球的体积V=要点核心解读1.柱体的体积(1)棱柱、圆柱的体积公式.设底面积都等于S ,高都等于^的任意一个棱柱和圆柱,取一个与它们底面积相等,高也相等的长方体如图1-1-7 -1所示,把它们的下底放在同一平面α上,因为它们的上底和下底平行,并且高相等,所以它们的上底在与平面a 平行的平面卢上.用与平面βα、、平行的任意平面γ去截它们时,所得的截面面积都和它们的底面相等,因而这些截面的面积都等于S ,根据祖呕原理,它们的体积相等.由于长方体的体积等于底面积乘以高,于是得到下面的定理及推论:定理:柱体的体积等于它的底面积S 和高h 的积,.Sh V =柱体 推论:底面半径是r ,高是危的圆柱的体积是.2h r V π=圆柱 (2)斜棱柱的体积.采用割补的方法,可推出斜棱柱体积公式的另一种形式:⨯=直截面斜棱柱S V 侧棱长.(3)平行六面体的体积,平行六面体是一种特殊的棱柱,它的各个面都是平行四边形,因此都可作为平行六面体的底面,这样,在求平行六面体的体积时,可根据条件灵活地选择适当的面作为底面,以简化推理与计算 (4)棱柱中的“定高”.“高”在棱柱体积的计算中至关重要,而求高的关键在于确定“垂足”的位置. 2.锥体公式的推导三棱柱的体积V = Sh .锥体的体积公式的推导,分两步进行:(1)证明底面积相等、高也相等的两个锥体的体积相等.如图1-1-7 -2,设有任意一个棱锥和圆锥,它们的底面面积都是s ,高都是h ,把这两个锥体放在同一平面α上,这时它们的顶点都在和平面α相距h 的平行平面上,用任意平行于平面α的平面Q 去截它们,截面分别与底面相似.设截面面积分别为1S 和,2S 截面与顶点距离为,/h 则,,22/222/1hh S S h h S S ==因此,,21SS S S =所以⋅=21S S根据祖咂原理可知这两个锥体体积相等.(2)如图1-1-7 -3所示,利用三棱锥与三棱柱的关系(三个体积相等的三棱锥拼出—个三棱柱),推出三棱锥的体积公式把C 看成三棱锥I 、Ⅱ的公共顶点,因为它们有等底△DBA 、△AD /D 和等高,由祖咂原理得⋅=II I V V 再把A 看成三棱锥Ⅱ、Ⅲ的公共顶点,它们有等底C D C DCD ///∆∆、和等高,所以,III II V V =因此⋅===三棱柱V V V V III II 311由,Sh V =三棱柱得.31Sh V =三棱柱 根据这个定理和前面的有关知识,即得到下面定理:定理l :如果棱锥的底面面积是 s ,高是h ,那么它的体积是.31Sh V =三棱柱定理2:如果圆锥的底面半径是r ,高是h ,那么它的体积是.31V 2h r ⋅=π圆锥 3.台体的体积公式),(31//S SS S h V ++=台体其中S S 、/分别为台体上、下底面面积,h 为台体的高, ),(312//2r rr r h V ++=π圆台其中r r 、/分别为圆台上、下底面半径,h 为圆台的高. [说明]①公式的证明可由两个锥体体积的差来证明,②台体的体积公式中,如果设,/S S =就得到柱体的体积公式;Sh V =柱体如果设,0/=S 就得到锥体的体积公式=椎体V .31Sh 这样,柱体、锥体、台体的体积公式之间的关系,可表示为如图1-1-7 -4所示.可见,柱体、锥体的体积公式是台体的体积公式的特例. 4.球的体积公式(1)球的体积公式的推导.我们取一个底面半径和高都等于R 的圆柱,从圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥,把所得的几何体和半径为R 的半球放在同一个平面α上,如图1 -1 -7 -s 所示.因为圆柱的高等于R ,所以这个几何体和半球都夹在两个平行平面之间.用平行于平面α的任意一个平面去截这两个几何体,截面分别是圆面和圆环面,如果截面与平面α的距离为L ,那么圆面半径,22⋅-=l R r 圆环面的大圆半径为R ,小圆半径为L (因为B O O 1/∆是等腰三角形).因此),(222l R r S -==ππ圆 ),(2222l R l R S -=-=πππ圆环故 ⋅=圆环圆S S根据祖咂原理,这两个几何体的体积相等,即.34,3231213322R V R R R R R V ππππ=∴=⋅-⋅=球球 由此,我们得到下面的定理:定理 如果球的半径是R ,那么它的体积是.343R V π=球 (2)球的体积公式的应用.求球的体积只需一个条件,那就是球的半径.两个球的半径比的平方等于这两个球的大圆面积的比,也等于这两个球的表面积的比;两个球半径比的立方等于这两个球的体积的比.球内切于正方体,球的直径等于正方体的棱长;正方体内接于球,球的半径等于正方体棱长的23倍;棱长为α的正四面体的内切球的半径为,126a 外接球半径为.46a 5.求体积常用的几种方法(1)分割求和法.把不规则的几何体分割成规则的几何体,分别求体积,然后进行求和. (2)补形法,把不规则的几何体补成规则的几何体;把不熟悉的几何体补成熟悉的几何体,便于计算其体积. (3)等积法.通过等底和等高的几何体体积关系,把不容易求的体积转化为容易求的体积. 6.锥体的截面性质如图1-1-7 -6、图1-1-7 -7所示,棱锥、圆锥的横截面(平行于底面的截面)有如下性质:===-ˆ)1(大椎全小椎全大椎体小椎体大椎体小椎体S S S S S S 对应线段的平方之比;=大椎小椎V V )2(对应线段的立方之比典例分类剖析考点1 柱体的体积命题规律 (1)柱体的体积公式.(2)三棱柱体积公式的几种形式.[例1] 如图1-1-7 -8,一个平行六面体的两个对角面都垂直于底面,对角面的面积分别为28cm 和,122cm 底面积是,62cm 底面两条对角线的夹角为,30o 求平行六面体的体积.[答案] 设上、下底面对角线交点分别为/O 和O ,则两对角面交线为,/O O 过/O 作⊥K O /底面ABCD.∵ 对角面⊥/AC 底面ABCD .⊂∴K O /平面//.A ACC同理⊂K O /平面.//B BDDK O /∴与O O /重合. ⊥∴O O /底面ABCD .⊥∴C C C C O O ///,// 底面ABCD .设高为h .底面对角线长分别为.6,21h V l l =则和⎪⎪⎩⎪⎪⎨⎧=⋅==∴③②①.630sin 21,12,82121ol l h l h l 由①×②得,812221⨯=h l l 再由③得.2421=l l 由上面两式得.12,23cm V cm h =∴=[点拨] 求体积时,常需通过方程(组)解决问题,因此,应该注意方程观点的应用,如几个未知数需几个独立条件等,母题迁移 1.棱柱///C B A ABC -的侧面C C AA //的面积为S ,且这个侧面到与它相对的侧棱/BB之间的距离为a ,求这个棱柱的体积. 考点2 锥体与台体的体积 命题规律 (1)椎体的体积公式. (2)台体的体积公式,(3)平行于底面的截面性质.[例2] 如图1-1-7 -9,棱锥的底面ABCD 是一个矩形,AC 与BD 交于M ,VM 是棱锥的高.若==AB cm VM ,4,5,4cm VC cm =求棱锥的体积.[答案] ∵ VM 是棱锥的高,.MC VM ⊥∴在Rt△VMC 中.),(345VM 2222cm VC MC =-=-=.62cm MC AC ==∴在Rt△ABC 中,),(52462222cm AB AC BC =-=-=).(585242cm BC AB S =⨯=⋅=∴底).(353245831313cm h S V =⨯⨯==∴底椎∴ 棱锥的体积为.35323cm [点拨] 利用锥体的体积Sh V 31=求解,由于高VM 已知,故只需求底面矩形的面积,进一步转化为求BC 的长即可.这种直接套用公式求体积的方法是最基本的方法,应熟练掌握.母题迁移 2.三棱台111C B A ABC -中,=11:B A AB ,2:1则三棱锥---C C B A B ABC A 、、111111C B A 的体积之比为( ).1:1:1.A 2:1:1.B 4:2:1.C 4:4:1.D考点3 球及其组合体的体积 命题规律 (1))球的体积公式.(2)与球相关的组合体的元素与球半径R 之间的关系。
柱、锥、台的表面积与体积
要点1 柱体的表面积
棱柱的侧面是平行四边形;圆柱的侧面展开图是矩形. 设柱体的底面周长为c ,高为h ,则S 侧=c·h ,S 表=S 侧+2S 底. 要点2 锥体的表面积
棱锥的侧面展开图是由若干个三角形拼成的,因此侧面积为各三角形面积之和;圆锥的侧面展开图为扇形.表面积公式为:S 表=S 侧+S 底. 要点3 台体的表面积
棱台的侧面展开图为若干个梯形拼接而成,因此侧面积为各梯形的面积之和,而圆台的侧面展开图为扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,它们的表面积公式为:S 表=S 侧+S 上底+S 下底. 要点4 柱体、锥体与台体的体积公式
V 柱体=Sh ,(S 为底面积,h 为柱体的高). V 锥体=1
3Sh ,(S 为底面积,h 为锥体的高). V 台体=1
3(S +SS ′+S ′)h , V 柱――――→S ′=S V 台――――→S ′=0
V 锥
例1 (1)已知棱长为5的各侧面均为正三角形的四棱锥
S -ABCD ,求它的侧面积、表面积.
(2)一个正方体和一个圆柱等高,并且侧面面积相等,求这个正方体和圆柱的体积之比.
例2(1)已知一圆台上底面半径为2,下底面的半径为3,截得此圆台的圆锥的高为6,求此圆台的体积.
例3某几何体的三视图如图所示,该几何体的体积等于________,表面积等于________.
空间几何体体积计算的常见技巧
1.等积变换法
例如图所示,三棱锥的顶点为P,PA、PB、PC为三条侧棱,且PA、PB、PC两两互相垂直,又PA=2,PB=3,PC=4,求三棱锥P -ABC的体积V.。