机械工程材料
- 格式:docx
- 大小:14.79 KB
- 文档页数:9
机械工程材料机械工程材料是指用于机械制造和工程结构中的材料,它们具有特定的力学性能、物理性能、化学性能和加工性能。
机械工程材料的选择对于机械设计和制造具有至关重要的意义,它直接影响着机械产品的性能、质量和使用寿命。
在机械工程中,常用的材料包括金属材料、塑料材料、陶瓷材料和复合材料等。
金属材料是机械工程中最常用的材料之一,它具有优良的导热性、导电性和可塑性,适用于制造各种零部件和结构件。
常见的金属材料包括钢、铝、铜、铁等。
钢是一种铁碳合金,具有较高的强度和硬度,广泛应用于制造机械零部件和工程结构。
铝具有较低的密度和良好的耐腐蚀性,适用于制造航空器和汽车等轻型结构。
铜具有良好的导电性和导热性,常用于制造电气设备和散热器等。
铁是一种重要的结构材料,广泛应用于桥梁、建筑和机械设备中。
塑料材料是一类轻质、耐腐蚀、绝缘性能良好的材料,适用于制造各种零部件和外壳。
常见的塑料材料包括聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯等。
聚乙烯具有良好的耐磨性和耐冲击性,适用于制造容器和管道等。
聚丙烯具有良好的耐腐蚀性和耐热性,适用于制造化工设备和食品包装等。
聚氯乙烯具有良好的绝缘性能和耐候性,适用于制造电线电缆和建筑材料等。
聚苯乙烯具有良好的隔热性和吸音性,适用于制造保温材料和包装材料等。
陶瓷材料是一类硬度高、耐磨性好、耐高温的材料,适用于制造耐磨零部件和耐火结构。
常见的陶瓷材料包括氧化铝、氮化硅、碳化硅等。
氧化铝具有优良的耐磨性和耐腐蚀性,适用于制造磨料和耐火材料等。
氮化硅具有优良的耐磨性和高温强度,适用于制造刀具和轴承等。
碳化硅具有优良的耐磨性和高温强度,适用于制造耐磨零部件和陶瓷刀具等。
复合材料是由两种或两种以上的材料组成的材料,具有优良的综合性能,适用于制造高性能的结构件和零部件。
常见的复合材料包括玻璃钢、碳纤维复合材料、金属基复合材料等。
玻璃钢具有优良的耐腐蚀性和抗冲击性,适用于制造化工设备和船舶等。
碳纤维复合材料具有优良的强度和刚度,适用于制造航空器和汽车等轻型结构。
机械材料分类机械材料分类是机械工程中的一个重要内容,根据不同的性质和用途,机械材料可以分为金属材料、非金属材料和复合材料三大类。
一、金属材料金属材料是指由金属元素或金属化合物组成的材料。
金属材料具有良好的导电性、导热性和机械性能,广泛应用于机械工程中。
根据金属的化学性质和组织结构,金属材料可以分为以下几类:1.1 铁素体材料铁素体材料是由铁与碳组成的合金,主要包括普通碳素钢和合金钢。
普通碳素钢具有良好的可焊性和加工性能,适用于制造机械零件;合金钢通过添加合金元素来改善钢的性能,如增加硬度、耐磨性等。
1.2 铸铁材料铸铁材料是由铁与碳、硅等元素组成的合金,具有良好的铸造性能和低成本,广泛应用于制造大型机械零件。
根据组织结构的不同,铸铁可以分为灰铸铁、球墨铸铁和白口铸铁等。
1.3 有色金属材料有色金属材料包括铜、铝、镁、锌、铅等金属及其合金。
有色金属材料具有良好的导电性、导热性和耐腐蚀性,适用于制造电气设备、航空航天器件等。
二、非金属材料非金属材料是指除金属材料以外的材料,主要包括塑料、橡胶、陶瓷和复合材料等。
2.1 塑料材料塑料材料是由聚合物组成的高分子材料,具有良好的耐腐蚀性、绝缘性和机械性能。
根据聚合物的来源和性质,塑料材料可以分为热塑性塑料和热固性塑料两大类。
2.2 橡胶材料橡胶是一种高分子弹性体,具有良好的弹性和耐磨性。
根据橡胶的来源和性质,橡胶材料可以分为天然橡胶和合成橡胶两大类。
2.3 陶瓷材料陶瓷材料是由非金属氧化物、碳化物、氮化物等组成的材料,具有良好的耐高温性和耐腐蚀性,广泛应用于制造高温器件和耐酸碱介质的部件。
三、复合材料复合材料是由两种或两种以上的材料组合而成的材料,具有多种材料的优点。
根据复合材料的组成和结构,可以分为颗粒增强复合材料、纤维增强复合材料和层合复合材料等。
3.1 颗粒增强复合材料颗粒增强复合材料是将颗粒状的增强材料嵌入到基体材料中形成的材料,具有良好的耐磨性和耐冲击性,适用于制造摩擦零件和冲击负荷较大的部件。
《机械工程材料》教学教案(一)教学目标:1. 了解机械工程材料的基本概念和分类。
2. 掌握机械工程材料的性能及应用。
3. 理解机械工程材料的选择原则。
教学内容:1. 机械工程材料的基本概念和分类2. 机械工程材料的性能及应用3. 机械工程材料的选择原则教学过程:一、导入(5分钟)1. 引导学生回顾已学的机械工程相关知识,为新课的学习做好铺垫。
2. 提问:什么是机械工程材料?机械工程材料有哪些分类?二、基本概念和分类(10分钟)1. 讲解机械工程材料的基本概念,如金属材料、非金属材料、复合材料等。
2. 介绍各类机械工程材料的特征及应用领域。
三、性能及应用(10分钟)1. 讲解机械工程材料的性能,如力学性能、物理性能、化学性能等。
2. 结合实际案例,阐述各类性能在工程中的应用。
四、选择原则(10分钟)1. 讲解机械工程材料的选择原则,如满足设计要求、经济性、可靠性等。
2. 引导学生学会根据实际工程需求选择合适的材料。
五、小结与作业(5分钟)1. 对本节课的主要内容进行小结。
2. 布置作业:请学生列举常见的机械工程材料,并简要介绍其性能及应用。
教学资源:1. 教材《机械工程材料》2. PPT课件3. 实际工程案例素材教学评价:1. 课堂问答:检查学生对机械工程材料基本概念、性能及应用的掌握情况。
2. 作业:评估学生对课堂所学知识的理解和应用能力。
《机械工程材料》教学教案(二)教学目标:1. 掌握机械工程材料的力学性能测试方法。
2. 了解机械工程材料的热处理工艺及应用。
3. 理解机械工程材料在实际工程中的焊接技术。
教学内容:1. 机械工程材料的力学性能测试方法2. 机械工程材料的热处理工艺及应用3. 机械工程材料在实际工程中的焊接技术教学过程:一、导入(5分钟)1. 回顾上节课的内容,为新课的学习做好铺垫。
2. 提问:机械工程材料的力学性能如何测试?二、力学性能测试方法(10分钟)1. 讲解机械工程材料的力学性能测试方法,如拉伸试验、冲击试验、硬度试验等。
《机械工程材料》教学大纲机械工程材料教学大纲一、课程名称:机械工程材料二、课程性质:专业课三、课程目标:1.理解机械工程材料的基本概念、分类和特点;2.掌握常见的机械工程材料的组织结构、力学性能及其与材料结构的关系;3.熟悉机械工程材料的重要应用和材料选择原则;4.培养学生的创新思维和问题解决能力,提高其对材料科学的研究兴趣。
四、课程内容和教学方法:1.材料的基本概念和分类-材料的定义和基本特点;-材料的分类及其性质;-材料的常见制备方法。
2.金属材料-金属结构与性能;-常见金属材料的组织结构和力学性能;-金属材料的变形与强化机制。
3.陶瓷材料-陶瓷材料的特点和分类;-陶瓷材料的组织结构和性能;-陶瓷材料的制备和应用。
4.高分子材料-高分子材料的基本特点和分类;-高分子材料的组织结构和性能;-高分子材料的制备和应用。
5.复合材料-复合材料的概念和分类;-复合材料的组织结构和力学性能;-复合材料的制备方法和应用。
6.材料选择与设计-材料选择的原则和方法;-材料在工程设计中的应用。
7.环境腐蚀与防护-环境腐蚀的基本原理和分类;-常见环境腐蚀的防护措施。
教学方法:1.以讲授为主,结合案例分析和实例讲解;2.组织学生参观机械工程材料的应用场所,加深对材料的理解;3.进行课堂互动和讨论,提高学生的问题解决能力;4.设计实验,培养学生的实验操作技能和数据处理能力。
五、评估方式:1.平时成绩(包括课堂表现、作业、小组讨论等)占30%;2.期中考试占30%;3.期末考试占40%。
六、参考书目:。
机械设计基础学习机械工程材料的选择与应用机械设计是机械工程学科的核心领域之一,它涉及到机械元件的设计、制造与应用。
而在机械设计的过程中,材料的选择与应用是至关重要的因素之一。
本文将探讨机械设计中常用的工程材料以及它们的特点与应用。
一、金属材料金属材料是机械设计中最常用的材料之一。
常见的金属材料包括钢、铁、铝、铜等。
钢具有高强度、刚性和耐磨性的特点,广泛应用于制造机械零件和结构件。
铝材轻巧、导热性好,常用于制造轻型机械零件和外壳。
铜材具有良好的导电性和导热性,适用于电子元器件的制造。
在选择金属材料时,需要考虑其强度、耐腐蚀性、导电性等特性,以及成本和可加工性等因素。
二、合成材料合成材料是指由两种或两种以上的材料组合而成的材料。
常见的合成材料有复合材料、聚合材料、陶瓷复合材料等。
复合材料由纤维和基质组成,具有高强度、高刚度和低密度的特点,在航空航天、汽车制造等领域得到广泛应用。
聚合材料如塑料、橡胶等具有良好的抗腐蚀性和绝缘性能,常用于制造密封件和电气元件。
陶瓷复合材料具有高温耐磨性和绝缘性能,适用于高温和腐蚀环境下的应用。
三、非金属材料非金属材料包括塑料、橡胶、玻璃等。
塑料具有良好的韧性和绝缘性能,广泛应用于电器、家具等领域。
橡胶具有良好的弹性和耐磨性,适用于制造密封件和减震器等。
玻璃具有透明的特性,适用于制造光学元件和仪器。
四、选材原则在机械设计中,选材的原则是根据机械零件所处的工作环境和工作要求来选择合适的材料。
首先,要考虑材料的强度和刚度,以保证机械零件在工作负荷下不发生变形和破坏。
其次,要考虑材料的耐磨性和耐腐蚀性,以延长机械零件的使用寿命。
同时,还需考虑材料的导热性、导电性和绝缘性能,以满足特定工作要求。
最后,成本和可加工性也是选材的考虑因素之一。
五、材料应用案例1. 在汽车制造领域,使用高强度的钢材制造车身和车架,以提高碰撞安全性能。
2. 在飞机制造领域,使用复合材料制造机翼和机身,以提高飞机的轻量化和燃油效率。
机械工程中常用的材料及其特性分析机械工程是应用物理学和材料科学的领域,其中涉及到广泛的材料选择。
在机械工程中,材料的选择和使用对于提高产品性能和延长寿命至关重要。
本文将分析机械工程中常用的几种材料及其特性。
1. 金属材料金属材料是机械工程中最常见的材料之一。
金属具有良好的导电性、热传导性和可塑性。
常用的金属材料包括钢、铝、铜和铁等。
- 钢:钢具有强度高、硬度大的特点,同时具有较好的塑性。
它被广泛应用于制造机械零件和结构件。
- 铝:铝具有较低的密度和良好的耐腐蚀性,适用于制造轻型结构和航空航天器件。
- 铜:铜具有良好的导电性和导热性,广泛应用于电子设备和导线等领域。
- 铁:铁是常见的结构材料,具有良好的韧性和可塑性。
2. 塑料材料塑料是一种具有可塑性、耐腐蚀性和绝缘性的高分子化合物。
它们在机械工程领域中得到了广泛应用。
- 聚乙烯(PE):聚乙烯具有较高的强度和良好的耐化学性,常用于制造管道、储罐和塑料零件等。
- 聚丙烯(PP):聚丙烯是一种具有良好耐腐蚀性和高韧性的材料,常用于汽车零部件和容器等领域。
- 聚氯乙烯(PVC):聚氯乙烯是一种广泛使用的塑料材料,它具有优异的耐化学性和电绝缘性能,常用于制造管道、电线等。
- 聚苯乙烯(PS):聚苯乙烯具有低成本、良好的耐冲击性和绝缘性能,在包装和电子器件等领域有广泛应用。
3. 纤维材料纤维材料是由纤维形状的颗粒组成的材料,常用于机械工程领域的结构件和强度要求较高的零件。
- 碳纤维:碳纤维具有极高的强度和刚度,同时重量很轻,被广泛应用于航空航天、汽车和体育器材等领域。
- 玻璃纤维:玻璃纤维具有优异的强度、耐腐蚀性和绝缘性能,在船舶、风力发电和建筑等领域有广泛应用。
- 聚酰胺纤维(ARAMID):聚酰胺纤维具有很高的强度和耐热性,广泛用于防弹材料、绳索和高温隔热材料等。
4. 陶瓷材料陶瓷材料是一类脆性材料,具有良好的耐磨、耐高温和绝缘性能。
在机械工程中,陶瓷材料主要用于制造轴承、绝缘体和切削工具等。
机械工程材料材料性能概述机械工程材料是用于制造机械零件和设备的材料。
材料性能是评估材料适用性的重要指标。
本文将介绍机械工程材料的材料性能,并深入讨论材料性能的几个关键方面。
强度和硬度强度是机械工程材料的一个重要性能指标,它表示材料抵抗外力的能力。
强度通常通过材料的屈服强度、抗拉强度和抗压强度来衡量。
屈服强度是材料在受力过程中开始发生可观变形的应力值,抗拉强度是材料在拉伸力下能承受的最大应力值,而抗压强度则是材料在受压力下能承受的最大应力值。
硬度是材料抵抗表面划伤或穿透的能力。
硬度测量可以使用各种硬度测试方法,例如洛氏硬度测试、布氏硬度测试和维氏硬度测试。
机械工程材料的强度和硬度取决于它们的化学成分、晶体结构和加工工艺。
通常情况下,高碳钢和合金钢具有较高的强度和硬度,而铝合金和镁合金则具有较低的强度和硬度。
韧性和脆性韧性是材料抵抗断裂的能力,也是衡量材料耐冲击性、耐疲劳性和耐剪切性的重要指标。
韧性较高的材料能够吸收大量的能量才发生破坏,而韧性较低的材料则容易发生断裂。
脆性是材料容易发生断裂的性质。
脆性材料在受到应力时会发生迅速且不可逆转的断裂,而韧性材料则会在受到应力时发生局部变形,使材料产生可逆的形变。
韧性和脆性之间有一个材料特性称为冷脆性。
冷脆性是指材料在低温下变得更加脆性的能力。
某些材料在低温下会变得非常脆弱,容易发生断裂。
疲劳性疲劳性是指材料在交替或反复加载下产生破坏的能力。
疲劳破坏是机械工程材料最常见的失效方式之一。
当材料受到交替或反复加载时,它会累积微小的应力和变形,最终导致疲劳破坏。
疲劳性能包括疲劳寿命和疲劳极限。
疲劳寿命是指材料承受一定载荷下的循环加载次数,达到失效的循环次数。
疲劳极限是指材料在无限次循环加载下能承受的最大应力水平。
机械工程材料的疲劳性能和寿命可以通过疲劳试验来评估和预测。
疲劳试验通常会在不同应力水平下进行,以确定材料的疲劳曲线和SN曲线。
耐腐蚀性耐腐蚀性是机械工程材料抵抗化学物质和环境侵蚀的能力。
绪论一、机械工程材料的定义和分类1 定义:机械工程材料主要指用于机械工程、电器工程、建筑工程、化工工程、航空航天工程等领域的材料。
2、分类按化学成分分为: 金属材料(用量最大、应用范围最广)高分子材料(质轻、耐腐蚀、化工、机械、航空航天等)陶瓷材料(高电强、高硬度、耐腐蚀、绝缘、勇于电器化工等)复合材料(轻、高强度、结合两种材料的性能优点,用于航空航天等领域)二(机械)工程材料的性能力学性能()保证构件安全可靠(1)材料的使用性能物理性能包括两方面化学性能切削加工性能保证构件容易制备铸造性能材料的工艺性能焊接性能热处理性能:实际进行机械设计时:主要考虑的是材料的使用性能,其中有以力学性能最为重要。
原因:如果力学性能不能瞒住工作的要求时,将引起重大事故,带来灾难。
(如泰坦尼克巨轮的沉没,哥伦比亚号航天分级的解体和坠毁等)这些都是由于零件(部件)的失效引起的。
第一章机械零件的失效分析简介:一失效的定义1任何一个机械零件或部件都要具有一定的功能:(零件设计功能)(1)P、T、M 下,保持一定的几何形状和尺寸(最基本的要求,桥梁,钢轨等)(2)实现规定的机械运动(发动机中的活塞和衢州,把直线运动转换成沿圆周运动)(3)传递力和能(齿轮,传递力矩,水轮机江水能转变成电能)2失效:零件失去设计要求的效能(功能)----失效形式多样,常见的分为以下几种方式。
过量变形断裂磨损腐蚀2引起失效的原因:外界载荷、温度、介质等材料又损害作用(外界对材料的损害)材料本身:抵抗损害的能力。
(这种能力是有限的)若:前者大于后者------失效前者等于后者-------临界状态前者小于后者------正常工作二研究失效的意义1通过失效分析-----找出失效原因------确定相应的抗力指标-----为选材和制定工艺提供依据;2通过失效分析----减少和预防机械产品类事故的重复发生,提高产品质量、减少经济损失;3失效分析工作是机械产品维修工作的基础,确定维修的技术和方法,提高维修工作的质量和效益;4失效分析可以为人仲裁事故责任、侦破犯罪等提高可靠的技术依据。
※ 机械工程常用材料的分类材 料 分 类应 用铸铁灰铸铁低牌号(HT100、HT150)对力学性能无一定要求的零件,如盖、底座、手轮、机床床身等高牌号(HT200~400)承受中等静载的零件,如机身、底座、泵壳、法兰、齿轮、联轴器、飞轮、带轮等可锻铸铁铁素体型(KTH )承受低、中、高动载荷和静载荷的零件,如差速器壳、犁刀、扳手、支座、弯头等珠光体型(KTZ ) 要求强度和耐磨性较高的零件,如曲轴、凸轮轴齿轮、活塞环、轴套、犁刀等 球墨铸铁 和可锻铸铁基本相同特殊性能铸铁分别用于耐热、耐蚀、耐磨等场合 钢碳素钢低碳钢(碳的质量分数≤0.25%) 铆钉、螺钉、连杆、渗碳零件等 中碳钢(碳的质量分数>0.25%~ 0.60%) 齿轮、轴、蜗杆、丝杠、联接件等 高碳钢(碳的质量分数>0.60%) 弹簧、工具、模具等合金钢低合金钢(合金元素总的质量分数≤5%)较重要的钢结构和构件、渗碳零件、压力容器等 中合金钢(合金元素总的质量分数<5%~10% 飞机构件、热镦锻模具、冲头等高合金钢(合金元素总的质量分数>10%) 航空工业蜂窝结构、液体火箭壳体、核动力装置、弹簧等 铸钢普通碳素铸钢 低合金铸钢 机座、箱壳、阀体、曲轴、大齿轮、棘轮等容器、水轮机叶片、水压机工作缸、齿轮、曲轴等特殊用途铸钢分别用于耐蚀、耐热、无磁、电工零件、水轮机叶片、模具等铜合金 铸造铜合金铸造黄铜 铸造青铜 用于轴瓦、衬套、阀体、船舶零件、耐蚀零件、管接头等 用于轴瓦、蜗轮、丝杠螺母、叶轮、管配件等变形铜合金 黄铜青铜用于管、销、铆钉、螺母、垫田、小弹簧、电器零件、耐蚀零件、减摩零件等用于弹簧、轴瓦、蜗轮、螺母、耐磨零件等轴承 合金锡基轴承合金 用于轴承衬,其摩擦因数低,减摩性、抗烧伤性、磨合性、耐蚀性、韧性、导热性均良好铅基轴承合金用于轴承衬,其摩擦因数低,减摩性、抗烧伤性、磨合性、导热性均良好,价格较低,但强度、韧性和耐蚀性稍差塑料 热塑性塑料(如聚乙烯、有机玻璃、尼龙等)、热固性塑料(如酚醛塑料、氨基塑料等)用于一般结构零件、减摩件、耐磨零件、传动件、耐腐蚀件、绝缘件、密封件、透明件等橡胶通用橡胶、特种橡胶用于密封件、减振件、防振件、传动带、运输带和软管、绝缘材料、轮胎、胶辊、化工衬里等※ 常用钢铁材料的牌号及力学性能材 料 力 学 性 能试件尺寸/mm 类 别 牌 号 抗拉强度σb/MPa 屈服点σs /MPa 断后伸长率δ /% 碳素结构钢 Q215 Q235 Q275 335~450 375~500 490~630 215 235 275 31 26 20 d ≤16 优质碳素结构钢20 35410 530245 31525 20d ≤2545 65Mn 600735355430169合金结构钢35SiMn40Cr20CrMnTi885980108073578583515910d≤25d≤25d≤15铸钢ZG270—500ZG310—5702703105005701815 d<100灰铸铁HT150HT200HT250145195240------------壁厚10-20球墨铸铁QT400-15QT5OO-7QT600-34005006002503203701573壁厚30~200※ 钢材常用热处理方法名称操作方法目的应用退火将钢件加热到临界温度(约723°C)以上30~50°C,保温一段时间,然后随炉冷却降低硬度,提高塑性,改善切削加工性能;细化晶粒,改善力学性能;消除冷热加工所产生的内应力适用于碳素钢和合金钢的铸件、锻件和焊接件;一般在毛坯状态下进行退火正火(常化)将钢件加热到临界温度以上30~50°C保温一定时间,然后在空气中冷却,冷却速度比退火快与退火相似用于处理低、中碳钢零件;渗碳零件的预先热处理工序淬火将钢件加热到临界温度以上,保温一定时间,然后在水、盐水或油中快速冷却获得高强度和高硬度,提高耐磨性和耐蚀性适用于碳的质量分数大于0.3%的碳素钢、合金钢;淬火后能发挥钢的强度和耐磨性潜力,但产生很大内应力,降低塑性和韧性,故应回火以得到较好的综合性能回火将淬火后的钢件再加热到临界以下的温度,保温一定时间后,在空气、油或水中冷却按回火温度不同,又分低温回火(150~250°C),中温回火(300~500°C),高温回火(500~650°C)降低或消除淬火后产生的内应力,减少工件变形,提高塑性和韧性;稳定工件尺寸要求硬度55~62HRC,用低温回火;要求硬度35~45HRC,用中温四火;要求硬度23~35HRC用高温回火调质淬火后再进行高温回火改善切削加工性能;减小淬火时的变形;适用于中碳钢和淬透性较好的合金钢;可作为重获得良好的综合力学性能要零件(如轴)的热处理,精密零件的预先热处理时效将钢件加热到120~130℃以下,长时期保温,随炉或在空气中冷却降低或消除淬火后的微观应力和机械加工产生的残余应力稳定工件形状及尺寸※常用金属材料其他数据金属材料熔点、热导率及比热容名称熔点℃热导率W/(m·K)比热容J(kg·K)名称熔点℃热导率W/(m·K)比热容J(kg·K)灰铸铁1200 46.4~92.8 544.3 铝658 203 904.3 铸钢1425 489.9 铅327 34.8 129.5 低碳钢1400~1500 46.4 502.4 锡232 62.6 234.5 黄铜950 92.8 393.6 锌419 110 393.6 青铜995 63.8 385.2 镍1452 59.2 452.2材料线[膨]胀系数材料温度范围(℃)20 20~10 20~200 20~300 20~400 20~600 20~700 20~900 70~1000工程用铜黄铜青铜铸铝合金铝合金碳钢铬钢3Cr131Cr18/Ni9Ti铸铁镍铬合金砖水泥、混凝土胶木、硬橡皮玻璃有机玻璃18.44~24.59.510~1464~7716.6~17.117.817.622.0~24.010.6~12.211.210.216.68.7~11.114.54~11.513017.1~17.218.817.923.4~24.811.3~1311.811.1178.5~11.617.620.918.224.0~25.912.1~13.512.411.617.210.1~12.118.~18.112.9~13.91311.917.511.5~12.718.613.5~14.313.612.317.912.9~13.214.7~1512.818.6 19.317.6常用材料的密度材料名称密度)(33mtcmg材料名称密度)(33mtcmg材料名称密度)(33mtcmg碳钢合金钢球墨铸铁灰铸铁7.8~7.857.97.37.0铅锡镁合金硅钢片11.377.291.747.55~7.8无填料的电木赛璐珞酚醛层压板尼龙61.21.41.3~1.451.4~1.14紫铜黄铜锡青铜无锡青铜碾压磷青铜冷拉青铜工业用铝8.98.4~8.858.7~8.97.5~8.28.88.82.7锡基轴承合金铅基轴承合金胶木板、纤维板玻璃有机玻璃矿物油橡胶石棉板7.34~7.759.33~10.671.3~1.42.4~2.61.18~1.190.921.5~2.0尼龙66尼龙1010纵纤维木材横纤维木材石灰石、花岗石砌砖混凝土1.14~1.151.04~1.060.7~0.90.7~0.92.4~2.61.9~2.31.8~2.45常用材料的弹性模量及泊松比名称弹性模量EGPa切变模量GGPa泊松比μ名称弹性模量EGPa切变模量GGPa泊松比μ灰、白口铸铁球墨铸铁碳钢合金铜铸钢轧制磷青铜轧制锰黄铜115~160151~160200~2202101751151104561818170~8442400.23~0.270.25~0.290.24~0.280.25-0.30.25~0.290.32~0.350.35铸铝青铜硬铝合金冷拔黄铜轧制纯铜轧制锌轧制铝铅1057191~99110846917422735~37403226~3770.250.31~0.420.31~0.340.270.32~0.360.42常用法定计量单位及换算关系量的名称法定计量单位非法定计量单位换算关系名称符号名称符号旋转速度转每分r/min 1r/min=(1/60)r/s长度米m埃英寸Åin1Å=0.1nm=10-10m1in=0.0254m=25.4mm面积平方米m2公亩公顷aha1a=102m21 ha=104m2体积容积立方米升m3L(1)(1=10-3m3)立方英尺英加仑美加仑f t3UkgalUSgal1ft3=0.0283168m3=28.3168dm31Ukgal=4.54609cm31Usgal=3.78541dm3质量千克(公斤)吨Kgt磅长吨(英吨)e bton1e b=0.45359237cm31ton=1016.05kg力重力牛(顿)N达因千克力,(公斤力)吨力dynkgftf1dyn=10-5N1kgf=9.80665N1tf=9.80665×103N压力压强帕(斯卡)pa巴标准大气压毫米汞柱千克力每平方厘米(工程大气压)baratmmmHgkgf/cm2(at)1bar=0.1Mpa=105pa(1pa=1N/m2)1atm=101325pa1mmHg=133.3224pa1kgf/cm2=9.80665×104 pa应力M 千克力每平方毫米Kgf/mm21kgf/mm2=9.80665×106pa 动力粘度帕[斯卡]秒Pa·s 泊P 1P=0。
机械工程材料及成形工艺1. 简介机械工程材料及成形工艺是机械工程领域中的重要学科,涉及到材料的选择、性能分析以及成形工艺的研究。
在机械设计与制造过程中,合理选择材料和优化成形工艺可以提高产品的性能和质量,降低生产成本。
2. 材料选择2.1 材料特性分析在机械设计中,需要根据产品的功能要求和使用环境来选择合适的材料。
常见的材料特性包括力学性能、热学性能、电学性能、化学稳定性等。
力学性能包括强度、刚度、韧性等指标。
强度是材料抵抗外部力量破坏的能力,刚度是材料抵抗变形的能力,韧性是材料吸收冲击能量的能力。
热学性能包括导热性、膨胀系数等指标。
导热性决定了材料传导热量的速度和效率,膨胀系数决定了材料在温度变化时的体积变化。
电学性能包括导电性、绝缘性等指标。
导电性决定了材料传导电流的能力,绝缘性决定了材料阻止电流流动的能力。
化学稳定性是指材料在不同环境下的耐腐蚀性和耐热性。
不同材料对酸、碱、溶剂等介质的稳定性有所差异。
2.2 常用工程材料常用的工程材料包括金属材料、塑料材料和复合材料等。
金属材料具有良好的力学性能和导热性能,广泛应用于机械工程中。
常见的金属材料有钢铁、铝合金和铜合金等。
塑料材料具有较低的密度和良好的耐腐蚀性,适用于制造轻量化和耐腐蚀要求较高的零件。
常见的塑料材料有聚乙烯、聚丙烯和聚氯乙烯等。
复合材料由两种或两种以上的不同组分组成,具有优异的综合性能。
常见的复合材料有碳纤维复合材料和玻璃纤维复合材料等。
2.3 材料选择方法在进行材料选择时,可以采用以下方法:•根据产品功能需求和使用环境确定所需的材料性能指标;•调研市场上已有的材料,了解其性能和应用范围;•进行材料筛选和评估,选择符合要求的候选材料;•进行实验或模拟分析,验证所选材料的性能是否满足要求;•最终确定最佳的材料选择。
3. 成形工艺3.1 成形工艺分类成形工艺是将原始材料加工成所需形状和尺寸的过程。
根据成形方式的不同,可以将成形工艺分为以下几类:•铸造:将液态金属或熔融塑料注入模具中,通过冷却凝固得到所需形状的零件。
机械制造中的机械工程材料与应用机械工程是一个广泛而重要的领域,它涉及到许多不同类型的机械设备和系统的设计、制造和维护。
在机械制造中,使用适当的机械工程材料对于提高产品的质量和性能至关重要。
本文将探讨机械工程材料的种类和其在机械制造中的应用。
一、金属材料金属材料是机械工程中最常用的材料之一。
金属具有良好的强度、硬度和导热性能,使其非常适合机械零部件的制造。
常见的金属材料包括钢、铝、铜和铁等。
1. 钢:钢是机械制造中最常用的金属材料之一。
它具有优异的强度和韧性,可以用于制造各种零部件,如轴、齿轮和轮毂等。
钢的不同成分和处理方式可以产生不同的特性,如不锈钢、弹簧钢和合金钢等。
2. 铝:铝是一种轻质金属,具有良好的导热性和抗腐蚀性能。
它被广泛应用于航空、汽车和电子行业中,用于制造飞机结构、汽车车身和电子外壳等部件。
3. 铜:铜具有良好的导电性和导热性能,因此它常用于制造电气设备、线缆和管道等。
此外,铜还具有良好的抗腐蚀性能,使其在海洋工程和化学工业中广泛应用。
4. 铁:铁是一种常见的金属材料,在机械制造中被广泛使用。
它可以通过锻造、铸造和焊接等工艺进行加工,用于制造结构零件、轴承和齿轮等。
二、非金属材料除了金属材料外,机械工程中还广泛使用一些非金属材料,如塑料、复合材料和陶瓷等。
这些材料具有独特的性能,适用于特定的机械制造应用。
1. 塑料:塑料是一种轻质、耐腐蚀的材料,具有良好的绝缘性能。
它在机械制造中常用于制造塑料零件、密封件和绝缘材料等。
常见的塑料材料有聚乙烯、聚丙烯和聚氯乙烯等。
2. 复合材料:复合材料是由两种或更多种材料组合而成的材料。
它通常由纤维增强材料和基体材料组成,例如碳纤维增强塑料和玻璃纤维增强复合材料。
复合材料具有优异的强度和轻质化特性,在航空航天、汽车和体育器材等领域得到广泛应用。
3. 陶瓷:陶瓷是一种硬、脆且耐高温的材料。
它具有优异的耐磨性和耐腐蚀性能,被广泛应用于制造刀具、轴承和瓷器等产品。
机械工程材料的定义和分类一、机械工程材料的定义机械工程材料是指用于机械工程中各种零件制造的原材料,是机械制造工业的基础,它直接影响机械工程的质量、性能和使用寿命。
机械工程材料包括金属材料、非金属材料和复合材料三大类,主要用于机械制造工业中各种零部件的制造。
二、机械工程材料的分类1. 金属材料金属材料是机械工程材料中最为常见的一类材料,主要使用各种金属(包括铁、铜、铝、钛、锌、镁等)及其合金。
金属材料的优点是具有良好的机械性能,高强度、高韧性、耐磨性、耐腐蚀性和导电性及热导性能,因此它们适用于制造各种零部件。
根据材料的特性,金属材料又可以分为钢、铜、铝、镁、钛、锌等几大类。
2. 非金属材料非金属材料是机械工程材料中较为多样化的一类,以其特殊的性质在大量的场合中得到了应用。
非金属材料包括塑料、橡胶、陶瓷、复合材料、玻璃、纤维、橡胶、绝缘材料等。
非金属材料主要用于制造不同于金属材料的零部件,如塑料、橡胶等材料就非常适合用于制造一些耐腐蚀或不需要高强度的零件。
3. 复合材料复合材料是指由两种或两种以上的材料以一定的比例和方法交织或贴合在一起形成的材料,其重量比、强度比和成本比均优于单一材料。
技术进步和应用广泛使复合材料已成为一类重要的机械工程材料。
复合材料具有高强度、高刚度、低重量、耐腐蚀、耐磨损、耐腐蚀性能为普通材料的十多倍。
由于它们的高性能和轻量化,它们正被广泛应用于汽车、飞机、火箭、船舶和航天等领域。
4. 其他材料除了以上三类基本材料以外,机械制造行业中还有其他材料的应用,如铸造材料、导电材料、电子材料、各种涂料材料和粘合剂等。
这些材料和其它使用领域,如建筑、家庭、农业、矿业,也是机械工程材料中存在的,供各类专业制造企业采购和制造使用。
总之,机械工程材料是机械工程制造不可缺少的材料,分类清晰,用途广泛。
其材料选择、特性和加工等方面都是机械工程师需要熟悉和掌握的知识,因为选材的不当或加工失误,都可能会导致相关零部件的品质不好或损坏,所以关于机械工程材料准确的了解和使用对于机械工程领域有着十分重要的意义。
机械工程材料机械工程材料是指用于制造机械零部件和构件的各种材料,包括金属材料、非金属材料和复合材料等。
在机械工程中,材料的选择对于产品的性能、质量和寿命都有着重要的影响。
因此,了解不同材料的特性和应用是非常重要的。
金属材料是机械工程中最常用的材料之一,其主要包括钢、铝、铜、铁等。
钢是一种铁碳合金,具有良好的强度和韧性,广泛应用于各种机械零部件的制造中。
铝具有较低的密度和良好的导热性能,常用于制造航空器和汽车零部件。
铜具有良好的导电性和导热性,常用于制造电气设备和导热元件。
铁是一种常见的金属材料,具有良好的磁性和加工性能,广泛应用于各种机械构件的制造中。
非金属材料包括塑料、陶瓷、橡胶等,它们具有较低的密度、良好的耐腐蚀性和绝缘性能,在机械工程中也有着重要的应用。
塑料是一种轻质、耐腐蚀的材料,常用于制造各种零部件和外壳。
陶瓷具有优异的耐磨性和耐高温性能,广泛应用于制造轴承、刀具和瓷砖等。
橡胶具有良好的弹性和密封性能,常用于制造密封件和减震元件。
复合材料是由两种或两种以上的材料组合而成的,它们综合了各种材料的优点,具有良好的强度、刚度和耐磨性能。
碳纤维复合材料具有较高的强度和刚度,广泛应用于航空航天和汽车工业中。
玻璃钢复合材料具有良好的耐腐蚀性和绝缘性能,常用于制造化工设备和管道。
在选择机械工程材料时,需要根据产品的使用环境、工作条件和要求来进行合理的选择。
不同的材料具有不同的特性和适用范围,只有根据实际情况进行合理的选择,才能保证产品具有良好的性能和质量。
总之,机械工程材料的选择对产品的性能和质量有着重要的影响,不同的材料具有不同的特性和应用范围,只有根据实际情况进行合理的选择,才能保证产品具有良好的性能和质量。
希望本文能够帮助大家更好地了解机械工程材料,为实际工程应用提供参考和指导。
《机械工程材料》教学教案(第一部分)一、教学目标1. 让学生了解机械工程材料的分类及性能。
2. 使学生掌握金属材料(包括黑色金属和有色金属)的基本性质和应用。
3. 培养学生对材料选择和应用的能力。
二、教学内容1. 机械工程材料的分类及性能2. 金属材料的基本性质3. 金属材料的性能与应用三、教学重点与难点1. 重点:机械工程材料的分类、性能及应用。
2. 难点:金属材料的基本性质和应用。
四、教学方法1. 采用讲授法,讲解机械工程材料的基本概念、分类、性能及应用。
2. 利用案例分析法,分析实际工程中材料的选择和应用。
3. 开展小组讨论,培养学生独立思考和团队协作的能力。
五、教学准备1. 教材:《机械工程材料》2. 课件:机械工程材料的相关图片、图表、案例等3. 教具:实物模型、样品等《机械工程材料》教学教案(第二部分)一、教学目标1. 让学生了解非金属材料的基本性质和应用。
2. 使学生掌握复合材料的特点及应用。
3. 培养学生对材料选择和应用的能力。
二、教学内容1. 非金属材料的基本性质和应用2. 复合材料的特点及应用三、教学重点与难点1. 重点:非金属材料的基本性质和应用,复合材料的特点及应用。
2. 难点:复合材料的特点及应用。
四、教学方法1. 采用讲授法,讲解非金属材料的基本概念、分类、性能及应用。
2. 利用案例分析法,分析实际工程中材料的选择和应用。
3. 开展小组讨论,培养学生独立思考和团队协作的能力。
五、教学准备1. 教材:《机械工程材料》2. 课件:非金属材料、复合材料的相关图片、图表、案例等3. 教具:实物模型、样品等《机械工程材料》教学教案(第三部分)一、教学目标1. 让学生了解材料力学性能的测试方法。
2. 使学生掌握材料力学性能的主要指标。
3. 培养学生对材料力学性能的理解和应用能力。
二、教学内容1. 材料力学性能的测试方法2. 材料力学性能的主要指标三、教学重点与难点1. 重点:材料力学性能的测试方法,材料力学性能的主要指标。
机械工程材料的定义和分类
机械工程材料是指用于制造机械零件、机械设备、工具和结构件等的材料。
它是机械制造行业中不可或缺的重要组成部分,直接影响着机械产品的性能、质量和寿命。
机械工程材料可以根据不同的标准进行分类,常见的分类方式包括:
1. 金属材料:包括黑色金属和有色金属,如钢、铁、铜、铝、镁等。
金属材料具有良好的力学性能、导电性、导热性和可塑性等特点,广泛应用于机械制造领域。
2. 非金属材料:包括塑料、橡胶、陶瓷、复合材料等。
非金属材料具有密度低、比强度高、耐腐蚀、隔热、隔音等特点,常用于制造机械零件、密封件、绝缘材料等。
3. 复合材料:由两种或两种以上不同性质的材料组成,具有比单一材料更优异的综合性能。
常见的复合材料包括纤维增强复合材料、层压复合材料等,广泛应用于航空航天、汽车制造、体育器材等领域。
4. 功能材料:具有特殊物理、化学或生物功能的材料,如磁性材料、光敏材料、生物医用材料等。
功能材料常用于制造传感器、电子元件、医疗器械等高性能产品。
总之,机械工程材料的分类是多样的,不同的材料具有不同的特点和应用领域。
在机械设计和制造过程中,选择合适的材料是至关重要的,它直接影响着产品的性能、质量和成本。
因此,了解各种机械工程材料的特点和分类,对于提高机械产品的设计和制造水平具有重要意义。
机械工程材料机械工程材料是指用于制造机械和设备的材料。
它们具有特定的物理、化学和机械性能,能够承受各种负荷和环境的影响,并满足设计和制造要求。
机械工程材料主要包括金属材料、非金属材料和复合材料。
金属材料是机械工程中最常用的材料之一。
常见的金属材料有钢、铁、铝、铜、镁等。
金属材料具有良好的导电、导热和强度特性,适用于制造结构件和传动件等机械零件。
不同种类的金属材料具有不同的力学性能和耐腐蚀性,可以根据不同的应用要求选择合适的金属材料。
非金属材料主要包括塑料、橡胶、陶瓷等。
塑料具有轻质、耐腐蚀、可塑性好等特点,适用于制造机械外壳、密封件等部件。
橡胶具有弹性好、抗老化和耐磨损等特性,常用于制造密封件和弹性元件。
陶瓷具有高强度、高硬度和耐高温等特点,适用于制造高温部件和摩擦材料。
复合材料是由两种或两种以上的不同材料组成的材料。
常见的复合材料有纤维增强复合材料和金属基复合材料等。
纤维增强复合材料由纤维和基体材料组成,具有轻质、高强度和良好的抗冲击性能。
金属基复合材料由金属基体和强化相组成,具有高强度、高温抗氧化性和耐热疲劳性能。
复合材料广泛应用于航空、航天、汽车和船舶等领域。
机械工程材料在机械制造过程中起着至关重要的作用。
合适的材料选择可以提高机械的耐磨、抗腐蚀和抗冲击性能,延长使用寿命,降低维修成本。
因此,在机械设计和制造时,需要根据具体的工作条件和要求选择合适的材料,并进行必要的表面处理和热处理,确保材料的性能和可靠性。
总之,机械工程材料是机械制造中不可或缺的重要组成部分。
通过合理的材料选择和处理,可以提高机械的性能和可靠性,满足不同场合下的使用需求。
机械工程材料的基本概念失效------零件若失去设计要求的效能即为失效。
变形------材料在外力作用下的形状或尺寸的变化叫变形。
弹性------是指材料弹性变形的大小。
弹性塑性变形------外力去除后能够恢复的变形叫弹性变形,不能够恢复的叫塑性形变。
弹性模量E---是材料抵抗弹性变形的性能指标。
主要取决于材料中原子本性和原子间结合力。
熔点越高E越高。
反映原子间结合力强弱,跟温度的变化而变化。
刚度------零件在受力时抵抗弹性形变的能力。
强度------材料抵抗变形或断裂的能力。
屈服强度δs------是材料开始产生塑性形变的应力。
抗拉强度δb----是材料开始产生最大均匀塑性形变的应力。
塑性-是指材料断裂前发生塑性变形的能力。
断后伸长率δ,断面收缩率ψ。
硬度------是表征材料软硬程度的一种性能。
韧性------表示材料在塑性变形和断裂过程中吸收能量的能力,它是材料强度和塑性的综合表现。
韧性好,发生脆性断裂的倾向小。
冲击韧性A k---是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。
断裂韧性K Ic------是指材料抵抗裂纹失稳扩展的能力。
应力腐蚀------是指材料在拉应力和特定的化学介质联合作用下所产生的低应力脆性断裂现象。
蠕变------材料在长时间的恒温,恒应力作用下缓慢的产生塑性变形的现象称为蠕变。
由于这种变形而引起的断裂称蠕变断裂。
(碳钢在300—350℃)蠕变极限-高温长期载荷作用下材料对塑性变形的抗力指标。
持久强度------材料在高温长期载荷作用下抵抗断裂的能力。
过冷现象----液体温度达到T0时并不能结晶,必须到T0以下的某一温度T n时才开始结晶,称为实际结晶温度。
在实际结晶过称中总是低于T0,这种现象称为过冷现象。
过冷度------两者之间的温度差ΔT== T0——T n称为过冷度。
过烧---------钢材在奥氏体单项区温度范围内锻造或轧制,温度过高钢材氧化严重或发生奥氏体晶界熔化称过烧。
一般控制在固相线以下100---200度,过高晶粒粗大,过低塑性差,导致产生裂纹。
自由能----物质能够对外做功的能量。
自然界的一切自发转变过程总是从其能量较高的状态倾向能量较低的状态,同一物质的液体和固体,由于状态不同就有不同的自由能。
固体与液体间的自由能差为结晶驱动力。
结晶------物质从液体转变为晶体的过程为结晶。
欲使液体结晶就必须有一定得过冷度,以提供结晶驱动力,冷却速度大,过冷度大,过冷度大,自由能大,自由能大,结晶驱动力大,结晶倾向大,晶核多。
单晶体-----一块晶体只有一个晶核长成,只有一个晶粒,称之为单晶体。
如:单晶硅。
实际使用中的金属材料通常为多晶体。
晶体结构----晶体中原子在空间的具体排列就成为晶体结构。
常见的有三种:体心立方,面心立方,密排立方。
各项异性---不同晶面上和晶向上的原子排列情况不同,故在不同方向上的性能不同。
(单晶体)(多晶体-织构)晶体缺陷-----在实际晶体中会出现许多原子排列不规则的区域称之为晶体缺陷。
细晶强化-----材料的晶粒越细,晶界越多,强度越高。
通过细化晶粒而使材料强度提高的方法称为细晶强化同素异构-----同一种元素在固态下随温度变化而发生的晶体结构转变称为同素异构转变。
工业纯铁-----含有少量杂质的纯铁称为工业纯铁。
室温下为α-Fe,具有体立方结构,强度低,塑性,韧性很好。
铁和碳的相互作用表现为两个方面:形成固溶体,化合物。
固溶体------就是固体溶液,它是溶质原子溶入溶剂中形成的晶体,保持着溶剂元素的晶体结构。
化合物----它的特点就是晶体结构和性能都不同于其组成元素铁素体-----人们把碳溶于α-Fe中形成的间隙固溶体称为铁素体,用α或F表示具有体心立方结构。
(max0.0218%)奥氏体------人们把碳溶于γ-Fe中形成的间隙固溶体称为奥氏体,用γ或A表示具有面心立方结构。
(max2.11%)固溶强化-----通过融入某种溶质元素形成固溶体(固体溶液)而使材料的强度升高的现象称为固溶强化。
渗碳体-----碳和铁形成的化合物,特点:晶体结构和性能都不同与其组成元素,具有复杂的晶体结构,熔点高,硬而脆。
Fe3C熔点1227℃。
能轻易划破玻璃。
如果他在铁碳合金中以网状或粗大片状或作为基体出现时,将导致材料的脆性增加,如果以球状或细小片状出现时,将起强化作用。
相------指系统中具有同一聚集状态,同一化学成分,同一结构并以界面相互隔开的均匀组成部分。
(铁素体,奥氏体,渗碳体)组织组成物-----构成显微组织的独立成分,它可以是单项,也可以是两项混合物或三项混合物。
(铁素体,奥氏体,渗碳体,珠光体,莱氏体)组织组成物的类型,数量,大小,形态,分布状况不同,就构成不同的显微组织。
分析材料的显微组织必须考虑两方面的情况:一是该组织组成物的类型如F;P等;二是组成物的数量(多或少),大小(粗或细),形状(片,球,网,针等)和分布(均匀或沿晶界,相界等)相图-----表示合金在缓慢冷却的平衡状态下相或组织与温度,成分间关系的图形,又称平衡图或状态图。
匀晶转变----在共存的两项区直接从液相中结晶出固溶体即:L→α这种转变称为匀晶转变。
显微偏析-----先结晶和后结晶的固溶体的化学成分不同,这种固溶体成分的微观不均匀现象称为显微偏析。
杠杆定律------在固液两相共存时,随着温度变化,液相和固相的成分分别沿着液相线和固相线变化。
如何知道两个相的相对质量的计算方法。
与力学中的杠杆定律相似。
它只适用于两相区。
(分子相反法则)包晶转变------在恒温下(1495℃),有一定成分的液相和一定成分的固相相互作用生成一个一定成分的新固相的转变。
(L+α→β)。
共晶转变-----在恒温下(1148℃),有一定成分的液相同时转变成两种一定成分的固相的转变。
(L→α+β)。
(晶粒细化,温度最低,流动性好,铸造,保险丝共晶合金)莱氏体Ld。
共析转变------在恒温下(727℃),有一定成分的固相同时转变成两种一定成分的新固相的转变。
(α→β1+β2)。
(晶粒更细化,易过冷,形核率大,产生内应力)珠光体P。
铁碳合金按碳的质量分数和室温下平衡组织可分为三类:A 工业纯铁(ωc<0.0218%)F, FeCⅢB 钢(ωc为0.0218%~2.11%)亚共析刚(ωc<0.77%) F P共析钢(ωc=0.77%)P过共析钢(ωc>0.77%)P FeCⅡC 白口铸铁(ωc为2.11%~6.69%)亚共晶白口铸铁(ωc<4.3%)P FeCⅡLd共晶白口铸铁(ωc=4.3%)Ld过共晶白口铸铁(ωc>4.3%)Ld FeCⅠ低碳钢:(ωc为0.10%~0.25%)容器建筑结构中碳钢:(ωc为0.25%~0.60%)轴类高碳钢:(ωc为0.60%~1.30%)工具热脆-------当钢材在1000----2000℃锻造或轧制时,FeS和γFe的共晶体会融化,使钢材变脆,沿奥氏体晶界开裂,这种现象称为热脆。
S的作用。
冷脆--------P元素固熔于F中,有强化作用,但它剧烈的降低了钢的塑性和韧性,特别是低温韧性,是刚在低温下变脆,这种现象叫冷脆。
P可以增强钢在大气中的抗腐蚀性,添加少量稀土,钛等元素,可以抑制冷脆。
氢脆---------H在钢中的含量达到0.5----3mL/100g会导致钢的塑性,韧性显着下降导致零件在使用中突然断裂的现象。
镇静钢------钢液在浇筑前用锰铁,硅铁,铝进行充分脱氧,注入锭摸后钢液不发生碳,氧反应处于镇静状态。
沸腾钢------钢液在冶炼的后期加入少量的锰铁进行轻度脱氧,钢液氧含量高,注入锭摸后发生碳氧反应,析出CO大量气体,引起钢液沸腾。
区域偏析------钢锭先结晶部位和后结晶部位化学成分不同,性能不一样的现象。
形变强化------人们把金属材料经冷塑性变形后,随变形度增加,强度,硬度升高,塑性,韧性降低的现象。
(加工强化)如:冷拔丝。
回复--------工件在经冷加工变形后,在加热温度不高的情况下,基本保持加工硬化效果。
这个阶段称回复,工业称去应力退火。
再结晶------工件在经冷加工变形后,当温度继续升高,原子活动能力增大,破碎的晶粒,拉长的晶粒变成细小均匀的等轴晶粒内应力完全消除,加工硬化消除,这个阶段称为再结晶,或再结晶退火。
工业纯铁在800度时已经完全再结晶。
钢的再结晶退火一般选用600---700℃,这样既保证完全再结晶又不止使晶粒粗化。
晶粒长大----再结晶结束后,如果温度继续升高或演唱加热时间,便会出现大晶粒吞并小晶粒的现象,这一阶段叫晶粒长大。
热加工,冷加工-------再结晶温度是冷加工和热加工的分界线,高于它为热加工反之为冷加工。
500℃钢:锡,铅,常温加工。
高级优质碳素钢:ωs<0.020%, ωp<0.030%(压力容器)实际晶粒度------在具体加热条件下所得到的奥氏体晶粒大小称为奥氏体的实际晶粒度。
本质晶粒度------只表示钢在加热时奥氏体晶粒长大倾向的大小。
过冷奥氏体------通常将在临界点(A1 A3 A cm)以下尚为发生转变的不稳定奥氏体称为过冷奥氏体。
奥氏体等温转变相图孕育期-------奥氏体转变为铁素体开始时所需时间长短为孕育期。
珠光体-------铁素体跟渗碳体所形成的相间片状组织。
(P,S,T)贝氏体------过饱和铁素体和渗碳体组成的混合物。
(B上B下)马氏体M------碳在铁素体中的过饱和固溶体。
体心正立方结构,其硬度高,强度高必须进行回火后才能使用。
临界冷却速度------V临,(V C V K)由奥氏体直接转变为马氏体的最小冷却速度。
P95钢的淬透性------刚在淬火时获得淬硬层深度大小的能力称为钢的淬透性。
除钴以外,其它元素都能挺高钢的淬透性。
除钴以外,所有的合金元素融入奥氏体后都能使奥氏体等温转变图右移,除钴和铝外,其他元素融入奥氏体后都使奥氏体等温转变图的Ms和Mf点降低。