钻探设备概论资料
- 格式:pdf
- 大小:3.50 MB
- 文档页数:17
钻探工程概论(中国地质大学)1.根据岩石的变形特性,图示说明岩石的三种类型。
弹塑性岩石弹脆性岩石高塑性和高孔隙性岩石弹脆性岩石(花岗岩、石英岩、碧石铁质岩)在压头压入时仅产生弹性变形,至A点最大载荷为Pmax处便突然完成脆性破碎,压头瞬时压入,破碎穴的深度为h [图 (a) ]。
这时破碎穴面积明显大于压头的端面面积,即h/δ>5。
弹塑性岩石(大理岩、石灰岩、砂岩)在压头压入时首先产生弹性变形,然后塑性变形。
至B点载荷达Pmax时才突然发生脆性破碎[图 (b) ]。
这时破碎穴面积也大于压头的端面面积,而h/δ=2.5~5,即小于第一类岩石。
高塑性(粘土、盐岩)和高孔隙性岩石(泡沫岩、孔隙石灰岩)区别于前二类,当压头压入时,在压头周围几乎不形成圆锥形破碎穴,也不会在压入作用下产生脆性破碎[图(c)],h/δ=1。
2.什么是岩石破碎的体积破碎?岩石的变形破碎形式表面破碎疲劳破碎体积破碎表面破碎:切削具与岩石的接触压力远远小于岩石硬度,切削具不能压入岩石。
切削具移动时,将研磨孔底岩石,岩石破碎是由接触摩擦功引起的,研磨的岩石颗粒很小,钻进速度低。
这种变形破碎方式称为岩石的表面研磨,这个区称为表面破碎区。
疲劳破碎:切削具上的轴向载荷增加,但接触压力仍小于岩石硬度,可使岩石晶间联系破坏,岩石结构间缺陷发展,特别是孔底受多次加载产生的疲劳裂隙更加发展,于是众多裂隙交错,仍可产生较粗岩粒的分离,这种变形破碎方式称为疲劳破碎,这个区称为疲劳破碎区。
体积破碎:切削具上的载荷继续增加,接触压力大于或等于岩石硬度,切削具可有效地切入岩石,结果是:切削具在孔底移动时不断克服岩石的结构强度,切下岩屑,这种变形破坏方式称为体积破碎,这个区称为体积破碎区。
体积破碎时,会分离出大块岩石,破碎效果好。
3.什么是岩石的各向异性?对钻进有哪些影响?岩石在不同方向上表现出不同的强度值称为岩石的各项异性。
岩石的各向异性分为两种:一种是由于微裂缝的存在以及在不同方向上的排列,分布不同而导致的,这种各向异性会随着岩石的应力变化而变化,可称为应力各向异性;另一种是由于岩石颗粒的定向排列引起的,这种岩石的各向异性不会随着岩石的应力变化而改变。
钻探设备
钻探设备是用于地质勘探和工程勘测中的重要工具。
它们能够帮助工程师和地
质学家获取地下岩层和地质构造信息,以支持各种建设项目的规划和实施。
钻探设备通常包括各种类型的钻机、钻头、管柱等组成的系统,能够在不同类型的地质条件下进行钻探工作。
钻探设备的分类
钻探设备根据其工作方式和用途可以大致分为手持钻机、旋挖钻机、振动钻机
等多种类型。
手持钻机适用于较小规模的勘测工作,操作简便灵活;旋挖钻机适用于大型工程施工中对地下岩层的取样和勘探;振动钻机则主要用于土壤和软岩层的勘探。
钻探设备的工作原理
钻探设备通过旋转或震动等方式,使钻头在地下岩层中进行切削或冲击,从而
获取地下岩石样本或清理孔内泥浆。
在钻探作业中,通常还需要使用管柱来保持钻孔的稳定,并在必要时进行灌浆或压实操作。
钻探设备的应用领域
钻探设备广泛应用于地质勘探、石油天然气开采、地下水勘测、桥梁隧道工程
等领域。
在石油勘探中,钻探设备是获取地下油气信息的主要手段;在地下水资源开发中,钻探设备则能够帮助确定地下水层的分布和特性。
钻探设备的发展趋势
随着科学技术的发展和对地下资源勘探需求的增加,钻探设备的性能和功能不
断提升。
未来的钻探设备可能会采用更多智能化技术,提高自动化程度和勘探效率。
同时,环保和节能也将成为钻探设备发展的重要方向,推动其向更加清洁和高效的方向发展。
结语
钻探设备作为地质勘探和工程勘测中不可或缺的工具,扮演着重要的角色。
通
过不断的技术革新和应用拓展,钻探设备将在未来更好地服务于各类勘探工作,并推动地下资源的合理开发和利用。
第二讲钻探设备、工具、管材及操作第一部分:岩心钻探设备一、钻探设备组成表岩芯钻探设备组成表组成功用钻机带动钻具破碎岩石,完成钻进工作,并通过升降机完成起下钻具工作。
泥浆泵向孔内输送冲洗液,用以清洗孔底,冷却润滑钻头、钻具,输送岩芯,还可作为液动钻具动力源装置。
钻塔用于起下钻具及套管、放靠立根,安放天车,悬挂滑车系统。
动力机向钻机、泥浆泵、辅助设备提供动力。
辅助设备搅拌机用于搅拌泥浆及其它冲洗液。
振动筛、旋流除砂器用于净化泥浆。
拧管机用于拧、卸钻杆。
二、钻机:、钻机的定义:借助动力机械的动力,带动钻具破碎岩石,向地壳钻进的机械装置。
、岩心钻机的基本构成及功用(见表)构成功用分类回转器带动钻具回转,进行钻进切削。
立轴式、转盘式、动力头式给进机构调节施加在钻头上压力。
油压式、绳索式、螺旋差动式升降机构用于升降钻具。
行星轮式、动力头倍速机构传动变速机构用于变速、变矩,将动力传递给给进和升降机构。
齿轮传动式动力头为液压式机架用来固定和支撑各机构。
固定式和移动式、钻机的分类、岩心钻机的基本参数①钻进能力参数:包括钻进深度、钻孔直径、钻杆直径和钻孔倾角等。
②回转参数:包括回转器的转速、通孔直径与让开孔口距离等。
③给进系统参数:包括立轴最大上顶力与给进力、给进速度、给进行程及倒立轴速度等。
④升降系统参数:包括升降机的最大起重量、提升速度等。
⑤钻机的重量指标、最大部件重量及动力机的功率等。
、岩心钻机主要技术参数及配套(见表)。
表岩心钻机主要技术参数及配套表技术参数代号额定钻孔深度() 动力配备()泥浆泵配备钻塔配备--8m三角塔12m铁塔、、、三、钻探用泵、泥浆泵的定义:泥浆泵是以水或其它液体为介质,将原动力机输入的机械能转化为液力能的一种机械装置。
、泥浆泵的作用:向孔内输送一定压力和流量的冲洗液。
、往复式泥浆泵的组成及工作原理及往复式泥浆泵的分类(略)、往复式泥浆泵的主要参数①流量(泵量、排量):是指泵在单位时间内输出液体数量的多少,用表示,常用单位是升分钟、立方分钟。
地质钻探设备一、钻探设备组成和分类钻探设备是指钻探施工中所使用的机械设备和装置的总称,包括钻机、泥浆泵(或空压机)、钻塔、动力机、冲洗液制备与固控设备、钻进参数检测仪表和附属设备等。
钻机是钻探工作的主要设备,是驱动、控制钴具钻进,并能升降钻具的机械。
泥浆泵在鈷探中的主要作用是向孔内输送冲洗液以清洗孔底、保护孔壁、冷却钻头和润滑钻具。
在使用液动锤、螺杆马达和涡轮马达等孔底动力钻具时,泥浆泵还作为提供液体动力的装置。
钻塔在钻进过程中主要用于起、下钻具、套管柱和悬挂钻具,要求钻塔有足够的承载能力及足够的刚度。
动力机是钻机、泥浆泵、固控设备及绞车等设备的动力源,一般使用电动机或内燃机作为动力驱动装置。
泥浆制备与固控设备是用以制备钻井液和清除冲洗介质中无用固相的地面设备。
钻参仪是检测钻进过程相关技术参数(钻压、转速、泵量、泵压、钻速等)的仪器仪表。
附属设备是为了完成钻探工作为钻机配备的辅助设备,主要包括提引装置水龙头、钻杆夹持器、拧卸装置、绳索取心绞车等。
岩石心钻机主要用于固体矿产地质勘探,也可用于工程地质勘查、水文地质勘探、水并钻探和科学钻探等。
岩心钴机一般都是回转式钴机,按回转器的形式可分为立轴式、转盘式和动力头式(移动回转器式)三种。
由于钻探目的和施工对象不同,常采用不同特点的钻探设备,钻机可按钻机的用途、钻进方法、结构形式、传动方式、装载方式等进行分类,见表3-1。
二、立轴式岩心钻机立轴式钻机是指回转、升降钻具等主传动为机械传动,给进、卡夹等辅助动作为液压传动,以立轴为主要结构特征的岩心钻机,简称立轴钻机。
立轴式钴机主要适用于使用金刚石或硬质合金钻进方法进行固体矿产勘探,也可用于工程地质勘查、浅层石油、天然气、地下水钻探,还可用于堤坝灌浆和坑道通风、排水等工程孔钻进。
机械传动、液压给进的立轴式岩心钻机是目前国内广泛使用的一种主要机型,已形成完整的系列(表3-2)。
现代立轴式钻机在兼顾硬质合金和钢粒钻进工艺要求的基础上,为适应金刚石钻进的需要,提高了立轴的转速,扩大了调速范围,增加了变速挡数。