理论物理基础教程答案_刘连寿
- 格式:ppt
- 大小:1.01 MB
- 文档页数:44
本科毕业论文题目:物体在有心力场中运动的分析目录1.引言 (1)2.有心力基本概念及它的性质: (1)3.推出动力学方程 (2)4.用开普勒定律推出引力公式 (6)5.两体问题 (7)6.结论 (9)7.参考文献 (10)8.致谢......................................................... - 10 -物体在有心力场中运动的分析摘要有心力场中的运动是经典力学和天体力学的一个重要问题.本文概括地介绍了有心力及其有关它的一些重要结论.首先研究质点和质点系在有心力作用下的运动,有心力的基本性质.用动力学方法推导关于有心力的公式,及在开普勒三定律的基础上推导万有引力方程.,介绍有心力场在物理学中的应用。
关键词有心力;动力学;开普勒定律;两体问题。
1.引 言经典力学的发展是与对天体运行的观察和研究分不开的.早在17世纪初叶,开普勒(J.Kepler )通过对太阳系各行星运动的观察,总结出行星运动的三个定律,于1620年发表在《论天体之协调》(On Celestial Harmonics )一书中.在此基础上,牛顿建立了著名的万有引力定律.行星绕恒星的运动属于所谓“有心运动”一类的运动.有心运动是一类常见的运动,天体的运行,原子核外的电子运动都属于这类运动.火箭和人造卫星的发射和运行都离不开对有心运动的研究.首先我们介绍有心力的基本概念及它的性质,然后利用开氏三定律推导出引力公式并对公式进行分析.2.有心力基本概念及它的性质:一般来讲,如果运动质点所受力的作用线始终通过惯性系中某一个固定点,则我们就说这个质点所受的力是有心力,此固定点称为力心.有心力的量值,一般是矢径(即质点和力心之间的距离)r 的函数,而力的方向则始终沿着质点和力心的连线,凡是趋向定点的是引力,离开定点的是斥力。
行星绕太阳运动时受到的力,电子饶原子核转动时受到的库仑引力,近似看做有心力.有心力场是自然界中最普遍、最重要的力场之一.有心力构成的力场称为有心力场.我们平时假定力心不动研究有心力场问题.这时以力心作为坐标质点,变成一个平面问题.质点受变力作用而沿曲线运动时,变力所作的总功为d W B A .⎰= (1)在平面极坐标系中,力所做的功为θθd F dr F W B A r +=⎰ (2)因为有心力只具有径矢方向的分量)(r F F r =,而横向分量为0=θF ,故质点由A 点运动到B 点时有心力作的功是dr r F dr r F W B A r r ⎰⎰==21)()( (3)这个顶积分的值只取决于起点和终点的矢径,与质点运动的路径无关,这就证明了有心力是保守力.而平面力,力和位置坐标相互平行且应满足0=⨯∇,那么角动量守恒.这是有心力场的一个特点,根据有心力场的特点,下面推导有心力场的动力学方程及加讨论。
第六章 习题答案6.1-1 求解下列本征值问题的本征值和本征函数。
(1)0=+''X X λ ()00=X ()0='l X(2)0=+''X X λ ()00='X ()0='l X (3)0=+''X X λ ()00='X ()0=l X (4)0=+''X X λ()0=a X()0=b X解:(1)0=λ时,()b ax x X +=,代入边界条件得 ()00==b X 和()0=='a l X 得到()0=x X ,不符合,所以0≠λ0>λ时,()x b x a x X λλsin cos +=,代入边界条件得()00==a X ,()()2224120sin ln l b l X nπλλ+=⇒==',2,1,0=n所以:()()x ln x X 212sin π+=,2,1,0=n(2)0=λ时,()b ax x X +=,代入边界条件得 ()00=='a X 和()0=='a l X ,所以()b x X =存在。
0>λ时,()x b x a x X λλsin cos +=,代入边界条件得()000=⇒=='b b X λ,() ,2,10sin 222==⇒=-='n ln l a l X n πλλλ综合:本征值:222l n n πλ=,2,1,0=n 本征函数:()x ln x X n πcos = ,2,1,0=n(3)0=λ时,()b ax x X +=,代入边界条件得 ()00=='a X 和()0==b l X ,()0=x X 不符合。
0>λ时,()x b x a x X λλsin cos +=,代入边界条件得()000=⇒=='b b X λ,()() ,2,1,04120cos 222=+=⇒==n ln l a l X nπλλ本征函数:()x ln x X n πcos = ,2,1,0=n(4)0=λ时,()d cx x X +=,代入边界条件得 ()0=+=d ca a X 和()0=+=d cb l X ,得到b a =,故0≠λ。
微电子学专业(071202)一、培养目标培养德、智、体全面发展,自动化专业知识基础扎实、相关学科知识丰富,具有一定创新意识和较强实践应用能力、社会适应能力,能在企事业单位从事集成电路设计、制造、测试等技术工作,具有电子信息领域及新型交叉学科领域相关工作能力,适应地方经济建设与社会发展的高级应用型专门人才。
二、培养规格根据“宽口径、厚基础、强能力、高素质”的基本精神,学生经过四年学习,达到如下基本素质要求:(一)德育方面1.有坚定的政治信念。
热爱祖国,拥护党的领导,努力掌握马列主义、毛泽东思想、邓小平理论以及“三个代表”重要思想的基本原理。
2.有科学的思想方法和良好的学术道德。
能运用辩证唯物主义和历史唯物主义的立场、观点和方法分析问题、解决问题。
3.具有积极的人生态度和高度的工作热情,品质优良,情操高尚,行为规范;具有社会主义民主和法制观念。
(二)智育方面1.具有一定的人文社会科学、自然科学基本知识和文化艺术素养。
2.掌握本专业系统的基础知识、基本理论和基本技能,了解本专业最新科学成就和发展趋势,具有较好的获取知识、发现问题、分析问题和解决问题的能力,具有较强的自学能力和创新意识。
3.相对擅长半导体器件和微电子学方向的知识和技能,具备从事专业业务工作的能力和适应相邻专业业务工作的基本能力与素质,以及初步的自主创业的能力。
4.掌握一门外国语,具有一定的听、说、读、写、译的能力;具有较强的计算机操作能力;掌握文献检索、资料查询的基本方法,具备一定的学科专业科研能力。
(三)体育方面1.有健康的身体素质,具备体育锻炼的基本知识和良好的卫生习惯,达到国家规定的大学生体育合格标准。
2.有良好的心理素质、健全的人格、坚强的意志、较强的心理承受能力和乐观情绪。
三、学制及学习年限弹性学制。
学制四年,学习年限三至八年。
四、毕业最低学分163+8学分,8为课外学分。
五、授予学位工学学士。
六、主要课程简介:1.基础物理课程性质:专业必修课学分:8 学时:117+36内容简介:本课属于基础课,使学生比较系统地掌握物理基础知识,且能灵活应用,培养学生独立分析问题与解决问题能力。
第七篇第一章统计理论基础1.试求理想气体的定压膨胀系数和等温压缩系数。
1.解:假设我们考察的系统是n mol的理想气体,由于理想气体状态方程为:(1)(2)故定压膨胀系数:而等压压缩系数:综上有理想气体(n mol):2.某气体的定压膨胀系数和等温压缩系数,,其中都是常数,试求此气体的状态方程。
2.解:根据题意:把体积看成是数并微分有:两边同时积分有:由极限情况下:,故:得到:3.一弹性棒的热力学状态可用它的长度L,应力描述f和温度T关系,即为其状态方程,今设此弹性棒发生一微小变化,从一平衡态变到另一平衡态,试证明:其中为棒横截面积,为线膨胀系数,为杨氏模量。
3.证明:杨氏模量的定义:与类比线胀系数:对长度积分有:证毕4.对气体的膨胀系数和压缩系数进行测量的结果得到一下方程:,其中是常数,只是的函数.证明:(a)(b) 状态方程:4.证明:(a)由:(1)又由:(2)(2)式两边对求导(T一定时):此式与比较可知:f(P)=(因与T无关也与P无关)(b) 将带入(1)式有:当时,,故5.试给出半径为的维球体积:5.证明:在半径为1的维球区域内积分为:以另一种方式求上述积分有:由两式可知:证毕6.利用附录给出的斯特林公式:证明上题中的系数满足下式:6.证明:第一部分:只要将上题中解答过程的(3)式中的换成即得。
故关键是证明第二部分由于(1)由于:即有(1)式成立,故待证命题成立。
证毕第二章统计热力学基础1.单原子晶体中可占据一个格点或一个间隙点。
原子占据格点时的能量比占据间隙点时高。
设格点数和间隙点数相等。
且等于晶体中的原子数。
(a)考虑有个原子占据间隙点的宏观态,计算系统处于此宏观态的熵(b)设系统达到平衡,问晶体在此态的温度是多少?(c)若,晶体的温度时300K,处于间隙点的原子所占的比例是多少?解:(a)根据题意假设一个原子占据间隙点时能量,则占据格点时能量。
现有个原子占据间隙点故有个占据格点。
较正确地反映了太阳系的实际,为以后开普勒总结出行星运动定律,伽利略、牛顿建立经典力学体系铺平了道路,从根本上动摇了“人类中心论”的神话。
A、托勒玫的地心说B、哥白尼的日心说C、银河的系发现D、广阔恒星世界的发现我的答案:B18-19世纪中期,()兄妹及父子,通过数遍天上星星等大量观测事实提出“银河是一个星系”的观点,第一次为人类确定了银河系的盘状旋臂结构,把人类的视野从太阳系伸展到10万光年之遥,树立了继哥白尼以后开拓宇宙视野的第二个里程碑。
A、伽利略B、哈雷C、威廉·赫歇尔D、哈勃正确答案:C 我的答案:C根据(),当光源背离我们运行时,光源离开我们的速度越大它所发出的光的红移量就越大。
A、多普勒效应B、光速不变原理C、哈勃定律D、相对性原理正确答案:A 我的答案:A科学家根据拍照发现,几乎所有宇宙星系的某种元素的光谱线,相对于地球实验室内同种元素的广谱线,都具有明显而普遍的()现象,于是根据物理学的多普勒效应,科学家进一步得出了“目前宇宙正在膨胀”的结论。
A、减弱B、增强C、红移D、蓝移正确答案:C 我的答案:C类星体、恒星、行星及生命出现的年代大约距大爆炸的起点时刻()。
A、1亿年B、10亿年C、100亿年D、120亿年正确答案:B 我的答案:B根据目前的宇宙大爆炸理论,可视宇宙的半径(尺度)大约为()。
A、137亿光年B、150亿光年C、200亿光年D、无限大正确答案:A 我的答案:B 得分:0.0分3根据目前的观测与对哈勃常数的计算,宇宙的年龄大约()。
A、137亿年B、150亿年C、180亿年D、200亿年正确答案:A 我的答案:A 得分:25.0分4根据宇宙大爆炸模型的描述,在宇宙创生3分钟时,宇宙温度降至10的9次方K,直径达到1光年,近()物质合成氦。
A、一成B、一半C、三成D、七成正确答案:C 我的答案:C()给出,宇宙物质产生后氢和氦的质量丰度比约为75/25,这一比值一直保持下来。
浅谈波函数的理解吕晓卿 2006623161(华中师范大学物理科学与技术学院2006级基地班,武汉)[摘要]:本文主要论述微观粒子的运动状态,借助布朗运动理解微观粒子运动的不可预测性。
由量子理论知道微观粒子的状态是用波函数描述的,浅谈我对波函数物理意义的理解。
最后类比投硬币事件理解力学量的本征值和本征函数的意义,以及对各种测量结果的概率的计算。
[关键词]:微观粒子;波函数;概率分布;本征值;本征函数由量子力学理论我们知道微观粒子具有波粒二象性,那应该怎样理解那既是波又是粒子的微观粒子呢?为什么量子力学量测不准呢?波函数用来描述微观粒子的状态,它的物理意义是什么?力学量算符的本征值、本征函数的理解怎样?1.微观粒子的运动与布朗运动19世纪末,经典物理学遇到了重重困难:黑体辐射、光电效应、原子光谱的分立性等,正是在对这一系列困难的解决中提出并建立了量子理论。
人类对光的本性的认识过程:从牛顿的“微粒说”到胡克的“波动说”,德布罗意类比这一过程提出任何速度的微观粒子都具有波粒二象性。
微观粒子的波粒二象性是指微观粒子在与物质作用时呈现出粒子的“原子性”,在传播过程中表现出波动性的本质“叠加性”。
微观粒子到底是个什么东西?它在空间中到底怎么运动?事实告诉我们微观粒子在空间中任何一点都有可能出现,但它出现在哪一点又是无法预测的。
对于经典粒子,我们可以根据前一时刻的运动状态来预测其下一时刻的运动状态。
但对于微观粒子我们不能做到这一点,我们只能知道下一时刻它可能出现在什么位置以及出现的概率是多少。
布朗运动图当学习微观粒子那神秘诡异的运动时,我们不妨借助我们熟知的布朗运动来理解。
这两幅图片分别是氢原子电子图和布朗运动图,我们可以从中看出他们一些相似的地方。
首先,二者的共同点是运动都是杂乱无章的,电子云图中的点的密集程度表示电子在此出现的概率的大小,布朗运动图中的折点是布朗粒子曾出现的位置,但折线并不是布朗粒子的运动轨迹。
理论物理基础教程答案【篇一:物理学教程(第二版)上册课后答案7】7 -1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( )(a) 温度,压强均不相同 (b) 温度相同,但氦气压强大于氮气的压强(c) 温度,压强都相同(d) 温度相同,但氦气压强小于氮气的压强分析与解理想气体分子的平均平动动能k?3kt/2,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程p?nkt,当两者分子数密度n 相同时,它们压强也相同.故选(c).7-2 三个容器a、b、c 中装有同种理想气体,其分子数密度n相同,方均根速率之比?:??:??21/2a21/2b21/2c?1:2:4,则其压强之比pa:pb:pc为( )(a) 1∶2∶4 (b) 1∶4∶8 (c) 1∶4∶16 (d) 4∶2∶1 分析与解分子的方均根速率为2?3rt/m,因此对同种理想气体有同时,得p1:p2:p3?t1:t2:t3?1:4:16.故选(c).7-3 在一个体积不变的容器中,储有一定量的某种理想气体,温度为t0时,气体分子的平均速率为0,分子平均碰撞次数为0,平均自由程为0,当气体温度升高为4t0时,气体分子的平均速率、平均碰撞频率和平均自由程分别为( ) (a) ?40,?40,?40 (b) ?20,?20,?0 (c)?20,?20,?40 (d)?40,?20,?0碰撞频率变为20;而平均自由程?1,n不变,则?也不变.因此正确答案为(b). 27-4 图示两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线.如果(vp)o2和(vp)h2分别表示氧气和氢气的最概然速率,则( )(a) 图中a表示氧气分子的速率分布曲线且(vp)o(vp)h(vp)o(vp)h(vp)o(vp)h(vp)o(vp)h2?4 ?1 41 42(b) 图中a表示氧气分子的速率分布曲线且22(c) 图中b表示氧气分子的速率分布曲线且2?2(d) 图中b表示氧气分子的速率分布曲线且2?42分析与解由vp?2rt可知,在相同温度下,由于不同气体的摩尔质量不同,它们的m 最概然速率vp也就不同.因mh2?mo,故氧气比氢气的vp要小,由此可判定图中曲线a2应是对应于氧气分子的速率分布曲线.又因(b).mhmo2?2(vp)o1?,所以16(vp)h22mhmo2?21.故选4题 7-4 图7-5 有一个体积为1.0?105m3的空气泡由水面下50.0m深的湖底处(温度为4.0oc)升到湖面上来.若湖面的温度为17.0oc,求气泡到达湖面的体积.(取大气压强为p0?1.013?105pa)分析将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态.利用理想气体物态方程即可求解本题.位于湖底时,气泡内的压强可用公式解设气泡在湖底和湖面的状态参量分别为(p1,v1,t1 )和(p2 ,v2,t2 ).由分析知湖底处压p1v1p2v2?t1t2可得空气泡到达湖面的体积为v2?p1t2v1?p0??gh?t2v1??6.11?10?5m3 p2t1p0t17-6 一容器内储有氧气,其压强为1.01?105pa,温度为27 ℃,求:(1)气体分子的数密度;(2) 氧气的密度;(3) 分子的平均平动动能;(4) 分子间的平均距离.(设分子间均匀等距排列)分析在题中压强和温度的条件下,氧气可视为理想气体.因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解.又因可将分子看成是均匀等距排列的,故每个分子占有的体积为v0?3,由数密度的含意可知v0?1/n,即可求出.解 (1) 单位体积分子数n?(2) 氧气的密度p?2.44?1025m3 kt??m/v?(3) 氧气分子的平均平动动能pm?1.30kg?m-3 rtk?3kt/2?6.21?10?21j(4) 氧气分子的平均距离?/n?3.45?10?9m通过对本题的求解,我们可以对通常状态下理想气体的分子数密度、平均平动动能、分子间平均距离等物理量的数量级有所了解.分析理想气体的温度是由分子的平均平动动能决定的,即k?3kt/2.因此,根据题中m?给出的条件,通过物态方程pv =rt,求出容器内氢气的温度即可得k.m解由分析知氢气的温度t?mpv,则氢气分子的平均平动动能为 mr323pvmk?3.89?10?22j2m?rk?kt?分析将组成恒星的大量质子视为理想气体,质子可作为质点,其自由度i=3,因此,质子的平均动能就等于平均平动动能.此外,由平均平动动能与温度的关系m/2?3kt/2,可得方均根速率2.解 (1) 由分析可得质子的平均动能为2k?2/2?3kt/2?2.07?10?15j(2) 质子的方均根速率为2?63kt?1.58?106m?s-1 m3kt?9.5?106m?s?1 me平均动能k?3kt/2?4.1?10?17j222mirt,对刚性双原子分子而言,i=5.由上述内能m2公式和理想气体物态方程pv =?rt可解出气体的压强.(2)求得压强后,再依据题给数据可求得分子数密度,则由公式p=nkt可求气体温度.气体分子的平均平动动能可由k?3kt/2求出.i解 (1) 由e??rt和pv=?rt可得气体压强2p?2e?1.35?105pa iv(2) 分子数密度n =n/v,则该气体的温度t?p/?nk??pv/?nk??3.62?102k气体分子的平均平动动能为k?3kt/2?7.49?10?21j7-11 当温度为0?c时,可将气体分子视为刚性分子,求在此温度下:(1)氧分子的平?3均动能和平均转动动能;(2)4.0?10能.kg氧气的内能;(3)4.0?10?3kg氦气的内分析(1)由题意,氧分子为刚性双原子分子,则其共有5个自由度,其中包括3个平动自由3度和2个转动自由度.根据能量均分定理,平均平动动能kt?kt,平均转动动能2kr?kt?kt.(2)对一定量理想气体,其内能为e?22m?irt,它是温度的单值函m2数.其中i为分子自由度,这里氧气i=5、氦气i=3.而m?为气体质量,m为气体摩尔质量,其中氧气m的内能.解根据分析当气体温度为t=273 k时,可得(1)氧分子的平均平动动能为?32?10?3kg?mol?1;氦气m?4.0?10?3kg?mol?1.代入数据即可求解它们kt?kt?5.7?10?21j氧分子的平均转动动能为32kr?kt?3.8?10?21j(2)氧气的内能为22【篇二:物理实验习题答案(第二版教材)(1)】什么是基本单位和导出单位? 2。
第六章 气体动理论6-1 一束分子垂直射向真空室的一平板,设分子束的定向速度为v ,单位体积分子数为n ,分子的质量为m ,求分子与平板碰撞产生的压强.分析 器壁单位面积所受的正压力称为气体的压强.由于压强是大量气体分子与器壁碰撞产生的平均效果,所以推导压强公式时,应计算器壁单位面积在单位时间内受到气体分子碰撞的平均冲力.解 以面积为S 的平板面为底面,取长度等于分子束定向速度v 的柱体如图6-1所示,单位时间内与平板碰撞的分子都在此柱体内.柱体内的分子数为nSv .每个分子与平板碰撞时,作用在平板上的冲力为2mv ,单位时间内平板所受到的冲力为v v nS m F ⋅=2根据压强的定义,分子与平板碰撞产生的压强为22v nm SFp ==6-2 一球形容器,直径为2R ,内盛理想气体,分子数密度为n ,每个分子的质量为m ,(1)若某分子速率为v i ,与器壁法向成θ角射向器壁进行完全弹性碰撞,问该分子在连续两次碰撞间运动了多长的距离?(2)该分子每秒钟撞击容器多少次?(3)每一次给予器壁的冲量是多大?(4)由上结果导出气体的压强公式.分析 任一时刻容器中气体分子的速率各不相同,运动方向也不相同,由于压强是大量气体分子与器壁碰撞产生的平均效果,气体压强公式的推导过程为:首先任意选取某一速率和运动方向的分子,计算单位时间内它与器壁碰撞给予器壁的冲力,再对容器中所有分子统计求和.v图6-1解 (1)如图6-2所示,速率为v i 的分子以θ角与器壁碰撞,因入射角与反射角都相同,连续两次碰撞间运动的距离都是同样的弦长,为θcos 2R AB =(2)该分子每秒钟撞击容器次数为θcos 2R AB ii v v =(3)每一次撞击给予器壁的冲量为θcos 2i m v(4)该分子每秒钟给予器壁的冲力为Rm R m i i i 2cos 2cos 2v v v =θθ由于结果与该分子的运动方向无关,只与速率有关,因此可得容器中所有分子每秒钟给予器壁的冲量为21212222221v v v v v v v RmN N N R m R m R m R m R m R m N i i N i i N i ===+++++∑∑== 其中n R N 334π=.根据压强的定义,分子与器壁碰撞产生的压强为W n m n nm R R m Np 3221323142222=⎪⎭⎫ ⎝⎛===v v vπ 其中W 为分子的平均平动动能.6-3 容积为10 L 的容器内有1 mol CO 2气体,其方均根速率为1440 km/h ,求CO 2气体的压强(CO 2的摩尔质量为31044-⨯kg/mol ).分析 在常温常压下可以将气体视为理想气体,理想气体压强公式中引入了统计平均量----方均根速率2v 和分子数密度n ,1 mol 的气体中分子数为阿伏图6-2伽德罗常量N A ,根据这些关系可求出压强.解 容积为V 的容器中有1 mol CO 2气体,则分子总数为N A ,摩尔质量为M ,则分子数密度为V N A ,分子质量为A N M,因此由气体压强公式得22A A 2313131v v v VM N M V N nm p ===代入数字得Pa 102.35Pa 3600101440101010443131523332⨯=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯==--v V M p 6-4 在实验室中能够获得的最佳真空相当于大约Pa 10013.19-⨯,试问在室温(273K )下在这样的“真空”中每立方厘米内有多少个分子?分析 引入玻尔兹曼常量k 和分子数密度n 后,理想气体状态方程可以表示为nkT p =.解 由理想气体状态方程nkT p =得3-113-239m 1069.2m 2731038.110013.1⨯=⨯⨯⨯==--kT p n 6-5 已知气体密度为1 kg/m 3,压强为Pa 10013.15⨯,(1)求气体分子的方均根速率;(2)设气体为氧,求温度.分析 气体密度ρ是单位体积中气体的质量,因此与分子数密度n 和分子质量m 的关系为nm =ρ.解 压强公式可写为 223131v v ρ==nm p(1)分子的方均根速率m/s 551m/s 110013.13352=⨯⨯==ρpv(2)氧的摩尔质量M =31032-⨯kg/mol ,由定义MRT32=v ,则 K 390K 31.8310325513322=⨯⨯⨯==-R M T v6-6 体积为10-3 m 3,压强为Pa 10013.15⨯的气体,所有分子的平均平动动能的总和是多少?分析 气体动理论的能量公式给出了微观量气体分子的平均平动动能和宏观量气体温度之间的关系.分子的平均平动动能是大量分子的统计平均值,是每个分子平均占有的平动动能量值.解 由气体动理论的能量公式,分子的平均平动动能为kT m 23212=v 容器中分子数nV N =,又由压强公式nkT p =,可得容器中所有分子的平均平动动能的总和为J152J 1010013.123232321352=⨯⨯⨯===-pV kT nV m Nv6-7 一容器内贮有氧气,其压强为Pa 10013.15⨯=p ,温度T =C 27︒,求(1)单位体积内的分子数;(2)氧气的密度;(3)氧分子的质量;(4)分子间的平均距离;(5)分子的平均平动动能;(6)若容器是边长为0.30 m 的立方体,当一个分子下降的高度等于容壁的边长时,其重力势能改变多少?并将重力势能的改变与其平均平动动能相比较.分析 常温和常压下,氧气可视为理想气体.从宏观的角度,可以认为气体是空间均匀分布的,因此分子间的平均距离的立方就是每个分子平均占有的体积.通过本题的计算,可以得到气体动理论中常用到的物理量的量级概念.解 (1) 由理想气体的状态方程nkT p =,可得单位体积内的分子数为3-253-235m 1045.2m 3001038.110013.1⨯=⨯⨯⨯==-kT p n (2) 利用理想气体的状态方程RT MmpV =,氧气的密度为 3335kg/m 3.1kg/m 30031.8103210013.1=⨯⨯⨯⨯===-RT pM V m ρ(3) 氧分子的质量为kg 105.3kg 1045.23.126-25⨯=⨯==nm ρ(4) 分子平均占有的空间开方等于分子间的平均距离m 10443m 1045.21193253.n d -⨯=⨯== (5) 分子的平均平动动能J 10.216J 3001038.123232121-232⨯=⨯⨯⨯==-kT m v(6) 一个氧分子下降的高度等于容壁的边长时,其重力势能改变为J 101.56J 30.08.9103.5-2526⨯=⨯⨯⨯=-mgh与分子平均平动动能相比较,有4252121098.31056.11021.621⨯=⨯⨯=--mgh m v 6-8 在什么温度时,气体分子的平均平动动能等于一个电子由静止通过1 V 电位差的加速作用所得到的动能(即1eV 的能量).解 根据题意,气体分子的平均平动动能J 10260.1eV 12321192-⨯===kT m v 则 K 7739K 1038.1310602.122319=⨯⨯⨯⨯=--T 6-9 1 mol 氢气,在温度C 27︒时,求(1)具有若干平动动能;(2)具有若干转动动能;(3)温度每升高C 1︒时增加的总动能是多少?分析 氢气是双原子分子气体,如果作为刚性分子看待,就具有3个平动自由度和2个转动自由度,根据能量按自由度均分原则可以求出平均平动动能和平均转动动能.解 (1) 1 mol 氢气的平动动能为J 10.743J 30031.82323233A⨯=⨯⨯==RT kT N(2) 1 mol 氢气的转动动能为J 10.492J 30031.8223A⨯=⨯==RT kT N(3) 温度每升高C 1︒,1 mol 氢气增加的总动能为J 8.02J 131.8252525A=⨯⨯=∆=∆T R T k N 6-10 1 mol 单原子理想气体和1 mol 双原子理想气体,温度升高C 1︒时,其内能各增加多少?1 g 氧气和1 g 氢气温度升高C 1︒时,其内能各增加多少?分析 一定量理想气体的内能T R iM m E ∆=2,对于单原子理想气体3=i ,对于双原子理想气体5=i ,对于1 mol 理想气体1=Mm.氧气和氢气都是双原子气体,氧气的摩尔质量kg/mol 10323-⨯=M .解 1 mol 单原子理想气体温度升高C 1︒,内能增量为J 5.12J 131.8232=⨯⨯=∆T R i1 mol 双原子理想气体温度升高C 1︒,内能增量为J 8.02J 131.8252=⨯⨯=∆T R i1 g 氧气温度升高C 1︒,内能增量为J 65.0J 131.8251032101233=⨯⨯⨯⨯⨯=∆--T R i M m 1 g 氢气温度升高C 1︒,内能增量为J 4.01J 131.825102101233=⨯⨯⨯⨯⨯=∆⋅--T R i M m 6-11 计算:(1)氧分子在C 0︒时的平均平动动能和平均转动动能;(2)在此温度下,4 g 氧的内能.分析 氧气是双原子分子气体,如果作为刚性分子看待,就具有3个平动自由度和2个转动自由度,5=i .解 (1) 氧分子在C 0︒时的平均平动动能为J 10.655J 2731038.1232321-23⨯=⨯⨯⨯=-kT 平均转动动能为J 10.773J 2731038.12221-23⨯=⨯⨯==-kT kT(2) 4 g 氧在C 0︒时的内能为J 709J 27331.8251032104233=⨯⨯⨯⨯⨯=⋅--RT i M m 6-12 有40个粒子速率分布如下表所示 (其中速率单位为m/s):速率区间100以下100~200 200~300 300~400 400~500 500~600 600~700 700~800 800~900 900以上粒子数 1 4 6 8 6 5 4 3 2 1若以各区间的中值速率标志处于该区间内的粒子速率值,试求这40个粒子的平均速率v 、方均根速率2v 和最概然速率p v ,并计算出p v 所在区间的粒子数占总粒子数的百分率.分析 为了更深入地理解麦克斯韦速率分布律以及气体动理论中引入的平均速率v 、方均根速率2v 和最概然速率p v 的统计意义,有必要通过实际例子,经过计算,体验速率分布规律和统计方法.解 这40个粒子分成了10个速率区间,若取1000 m/s 为粒子速率在900 m/s 以上的速率区间的中值速率,则根据定义,其平均速率v 为m/s448.75 m/s )1100028503750465055506450 835062504150150(4011101=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯==∑=i i i N N v v 方均根速率2v 为m/s 499.9 m/s )]1100028503750465055506450 835062504150150(401[121222222222210122=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯==∑=i i i N Nv v 最概然速率m/s 350p =v .p v 所在区间的粒子数占总粒子数的百分率为%20%100408p =⨯=∆NN 6-13上题所给分布情况,若以200m/s 为间隔作重新统计,列出分布情况表,计算出相应的v 、2v 和p v ,以及p v 所在区间的粒子数占总粒子数的百分率,并与上题结果进行比较.分析 通过本题和上题计算结果可以看出,在某一速率区间中的分子数和所计算的三种速率不但与速率区间位置有关,还与速率区间的宽度有关.只有当所统计的分子总数足够大,划分的速率区间足够小时,才可能获得处于平衡状态的气体分子速率的一个确定的分布函数,三种速率也才有确定值.解 以200m/s 为间隔对上题粒子速率作重新统计,速率分布情况为(其中速率单位为m/s):速率区间 200以下 200~400 400~600 600~800 800以上 粒子数 5 14 11 7 3这40个粒子分成了5个速率区间,若取900 m/s 为粒子速率在800 m/s 以上的速率区间的中值速率,则根据定义,其平均速率v 为m/s445 m/s)3900770011500143005100(401151=⨯+⨯+⨯+⨯+⨯⨯==∑=i i i N N v v 方均根速率2v 为498m/sm/s )]39007700 11500143005100(401[121222225122=⨯+⨯+⨯+⨯+⨯⨯==∑=i i iN Nvv最概然速率m/s 300p =v .p v 所在区间的粒子数占总粒子数的百分率为%35%1004014p =⨯=∆NN 6-14 N 个假想的气体分子,速率分布如图6-14所示.(1)用N 和v 0表示出a 的值;(2)求最概然速率p v ;(3)以v 0为间隔等分为三个速率区间求各区间中分子数占总分子数的百分率.分析 速率分布函数)(v f 表示气体分子速率在v 值附近单位速率区间内的分子数占总分子数的百分率.本题给出了一个特殊的分布情况,通过计算,理解速率分布函数和最概然速率的物理意义,以及各速率区间中分子数占总分子数的百分率的计算方法.解 (1) 由图6-14可见,分布函数与气体分子总数N 的乘积曲线下的总面积应等于气体分子总数N ,即000302322121d )(0v v v v v v a a a f N =⋅+==⎰则 032v Na =Nf (v )a0 v 0 2 v 0 3 v 0 v图6-14(2) 最概然速率 0p v v =(3) 以v 0为间隔等分为三个速率区间,分子数占总分子数的百分率分别为%3.3331211d )(10010==⋅==⎰v v v v a N f N N N %5021431d )(10220==⋅==⎰v v v v v a N f N N N %7.1661411d )(103230==⋅==⎰v v v v v a N f NN N *6-15在速率区间1v ~2v 内麦克斯韦速率分布曲线下的面积等于分布在此区间内的分子数的百分率.应用(6-17)式和麦克斯韦速率分布函数表示式(6-18)式,求在速率区间v p ~1.01v p 内的气体分子数占总分子数的比率.分析 麦克斯韦速率分布律表明,由速率分布函数)(v f 可得气体分子速率在v ~v v ∆+速率区间内的分子数占分子总数的百分率为v v ∆=∆)(f NN. 解 麦克斯韦速率分布函数22232e24)(v v v kT m kT m f -⎪⎭⎫ ⎝⎛=ππ,因mkT2p =v ,则分布函数可写为1p 2p223p2p22p2e4e4)(----==v v v v v v v v v v ππππf 速率区间v p ~1.01v p 内的气体分子数占总分子数的比率为%83.001.01e 4e4e 4)(1p 2p223p 2p22p2=⨯⨯⨯=∆=∆=∆=∆----πππv v v v v v v v v v v v v f N N *6-16应用平均速率表示式(6-20)*式、麦克斯韦速率分布函数表示式(6-18)式以及积分公式bb 21d e23=-∞⎰v v v 求v 的值.分析 这里采用的是数学中加权求某量值的平均值的方法,权重就是麦克斯韦速率分布函数)(v f .如果要计算方均根速率2v ,可先求速率平方的平均值,只需将积分式中的v 改为2v ,即v v)v v d 022⎰∞=f(,再将积分结果开方.解 麦克斯韦速率分布函数表示式(6-18)式和平均速率表示式(6-20)*式给出v v v v)v v v d e24d 0322302⎰⎰∞-∞⎪⎭⎫⎝⎛==kTm kT m f(ππ利用积分公式bb 21d e 23=-∞⎰v v v 得 mkTkT m kT m f(πππ822124d 2230=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛==⎰∞v v)v v *6-17 试由麦克斯韦速率分布律推出相应的平动动能分布律,并求出最概然能量E p ,它是否就等于2p 21v m .分析 要找出分子按平动动能的分布规律,即求出分布在平动动能区间E k ~E k +d E k 中的分子数占总分子数的百分率.解 速率为v 的分子的平动动能为E k = 221v m ,则v v d d k m E =,麦克斯韦速率分布律可改写为kk k k 232212232223d )(d e12 d e 2112 d e 24d )(d k 22E E f E E kT m m kT kT m f N N kTE kT m kT m =⎪⎭⎫ ⎝⎛=⋅⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛==---ππππv v v v v v v v v即分子按平动动能分布律,其中分布函数kTE E kT E f k e12)(k 23k -⎪⎭⎫⎝⎛=π参考最概然速率的定义,令0d )(d kk =E E f ,由上式得最概然动能 kT E 21k p =因m kT 2p =v ,则 k p 2p 221E kT m ==v 6-18 飞机起飞前机舱中的压强计指示为Pa 10013.15⨯,温度为C 27︒.起飞后压强计指示为Pa 1010.84⨯,温度仍为C 27︒.试计算飞机此时距地面的高度.解 根据玻尔兹曼分子数密度按高度分布公式kT mgh n n /0e -=和压强公式nkT p =,在高度1h 和2h 的压强分别为1p 和2p ,则有kT h h mg p p /)(2121e --=得m 100.2m 1010.810013.1ln 8.9102930031.8 ln ln 3453212112⨯=⨯⨯⨯⨯⨯⨯==+=-p p Mg RTp p mg kT h h6-19 设地球大气是等温的,温度为C 17︒,海平面上的气压为Pa 100.150⨯=p ,已知某地的海拔高度为h = 2000 m ,空气的摩尔质量kg/m ol 10293-⨯=M ,求该地的气压值.解 根据玻尔兹曼分子数密度按高度分布公式kT mgh n n /0e -=和理想气体状态方程nkT p =,在高度h 处的压强p 为Pa 107.90Pa e100.1e 429031.820008.910295/03⨯=⨯⨯==⨯⨯⨯⨯---RT Mgh p p6-20 在某一粒子加速器中,质子在Pa 10333.14-⨯的压强和273 K 的温度的真空室内沿圆形轨道运动.(1)估计在此压强下每立方厘米内的气体分子数;(2)如果分子有效直径为2.0×10-8 cm .则在此条件下气体分子的平均自由程为多大?分析 由理想气体状态方程nkT p =可得压强和分子数密度的关系,并由此可计算平均自由程.解 (1) 由理想气体状态方程可得3103163234cm 1054.3m 1054.3m 2731038.110333.1----⨯=⨯=⨯⨯⨯==-kT p n (2) 由定义,平均自由程为cm 101.59m )102(1054.32121428102⨯=⨯⨯⨯⨯⨯==-ππλnd6-21设电子管内温度为300 K ,如果要管内分子的平均自由程大于10 cm时,则应将它抽到多大压强?(分子有效直径约为3.0×10-8 cm ).分析 由平均自由程定义和理想气体状态方程可建立压强与平均自由程以及温度之间的关系.解 由平均自由程定义221ndπλ=和理想气体状态方程nkT p =,得Pa 0.1035Pa 1.0)103(23001038.12210232=⨯⨯⨯⨯⨯==--πλπd kT p6-22 计算:(1)在标准状态下,一个氮分子在1 s 内与其它分子的平均碰撞次数;(2)容积为4 L 的容器,贮有标准状况下的氮气,求1 s 内氮分子间的总碰撞次数.(氮分子的有效直径为3.76×10-8 cm .)解 (1) 因平均速率MRTπ8=v ,标准状态下22.4 L 中的分子数为A N ,则平均碰撞次数1-91-32321033-A 22s 1067.7 s 104.2210023.6)1076.3(102827331.816 1022.4162⨯=⨯⨯⨯⨯⨯⨯⨯⨯=⨯==---πππN d M RT n d Z v(2) 4 L 氮的分子数N =A 4.224N ,分子间的总碰撞次数为1321923s 10125.4s 1067.710023.64.2242121-⨯=⨯⨯⨯⨯⨯=-Z N 6-23 假设氦气分子的有效直径为10-10 m ,压强为Pa 10013.15⨯,温度为300 K ,(1)计算氦气分子的平均自由程λ和飞行一个平均自由程所需要的时间τ;(2)如果有一个带基本电荷的氦离子在垂直于电场的方向上运动,电场强度为104 V/m ,试计算氦离子在电场中飞行τ时间内沿电场方向移动的距离s 及s 与λ的比值;(3)气体分子热运动的平均速率与氦离子在电场方向的平均速率的比值;(4)气体分子热运动的平均平动动能与氦离子在电场中飞行一个λ远的距离所获得的能量和它们的比值.解 (1) 由平均自由程定义221ndπλ=和理想气体状态方程nkT p =,得m 1029m 10013.1)10(23001038.1275210232-.pd kT ⨯=⨯⨯⨯⨯⨯==--ππλ 平均速率 m/s 1260m/s 10430031.8883=⨯⨯⨯⨯==-ππM RT v 则 s 107.3s 1260102.910-7⨯=⨯==-v λτ (2) 氦离子质量为A N M m =,沿电场方向受到的电场力为eE ,加速度meE a =,在τ时间内沿电场方向移动的距离为m 106.4m 1042103.710023.610106.1 2218-310234192A 2⨯=⨯⨯⨯⨯⨯⨯⨯⨯===---M eEN a s ττ 14.4104.6102.987=⨯⨯=--s λ(3) 氦离子沿电场方向的平均速率为m/s 87.7m/s 103.7104.6108E =⨯⨯==--τsv 14.4E==s λv v(4) 氦气分子平均平动动能为J 106.21J 3001038.1232321-23⨯=⨯⨯⨯=-kT 氦离子在电场中飞行一个λ远的距离所获得的能量为J 101.472J 102.910106.1-217419⨯=⨯⨯⨯⨯=--λeE二者之比为 22.410472.11021.62121=⨯⨯-- *6-24用范德瓦耳斯方程计算压强为Pa 10013.18⨯,体积为0.050 L 的1 mol氧气的温度,如果用理想气体状态方程计算,将引起怎样的相对误差?已知氧的范德瓦耳斯常数为:225/mol L Pa 10378.1⋅⨯=a ;L/mol 0318.0=b .解 由范德瓦耳斯方程得K 342.6K 10)0318.0050.0(050.010378.110013.131.81 )(13258020=⨯-⨯⎪⎪⎭⎫ ⎝⎛⨯+⨯⨯=-⎪⎪⎭⎫⎝⎛+=-b V V a p R T由理想气体状态方程得K .5609K 31.810050.010013.138=⨯⨯⨯==-R pV T相对误差为%7878.06.3426.3425.609==-*6-25在C 27︒时,2 mol 氮气的体积为0.1 L ,分别用范德瓦耳斯方程及理想气体状态方程计算其压强,并比较结果.已知氮气224/mol L Pa 1039.8⋅⨯=a ,L/mol 1005.32-⨯=b .解 范德瓦耳斯方程)(222RT M m b V V a M m p =-⎪⎪⎭⎫ ⎝⎛+,得Pa 109.43Pa 101039.82Pa 1005.321030031.82 782254222⨯=⨯⨯-⨯⨯-⨯⨯=--=----V a M m bMm V RTM m p 由理想气体状态方程得Pa 104.99Pa 1030031.8274⨯=⨯⨯==-V RT M m p 结果表明由理想气体状态方程计算出的压强小于由范德瓦耳斯方程的计算值.*6-26实验测知C 0︒时氧的粘滞系数1.92×10-4 s)g/(cm ⋅,试用它来求标准状态下氧分子的平均自由程和分子的有效直径.解 粘滞系数 v λρη31= 其中密度Vm=ρ.又由理想气体状态方程 RT Mm pV =平均速率MRTπ8=v ,联立可得m109.49 m 1032827331.810013.11092.138338-355⨯=⨯⨯⨯⨯⨯⨯⨯⨯===--ππηρηλM RT p v 分子的有效直径为m 102.97m 1049.910013.122731038.1 210-8523⨯=⨯⨯⨯⨯⨯⨯⨯==--πλπp kT d*6-27实验测知氮气C 0︒时热传导系数为23.7×10-3 W/(m ·K),定体摩尔热容为20.9 J/(mol ·K),试由此计算氮分子的有效直径.解 热传导系数 λρκv MC mV,31=其中密度A N nM =ρ,平均速率MRTπ8=v ,平均自由程221nd πλ=,则2Am V,132dM RT N C ππκ=m 102.23m 1102827331.810023.6107.2339.202 13210-4343233434Am V,⨯=⨯⨯⋅⨯⨯⨯⨯⨯=⋅=--ππκM RT N C d。