非线性结构有限元分析概论
- 格式:ppt
- 大小:1.37 MB
- 文档页数:3
第五章非线性有限元分析原理及基于ABAQUS软件的实现5.1.1 ABAQUS主要模块ABAQUS 由两个主分析模块ABAQUS/Standard 和ABAQUS/Explicit,以及与ABAQUS/Standard 组合的两个特殊用途的分析模块ABAQUS/Aqua 和ABAQUS/Post构成,同时包含两个交互作用的图形模块ABAQUS/Pre 和ABAQUS/Post,从建模的前处理到显示模拟计算结果的后处理过程中,它们提供了丰富的友好的图形界面交互作用工具。
5.1.1.1 ABAQUS/StandardABAQUS/Standard是一个通用分析模块,在数值方法上采用有限元方法常用的隐式积分。
它能够求解广泛的线性和非线性问题,包括结构的静态、动态问题、热力学场和电磁场问题等。
对于通常同时发生作用的几何、材料、和接触非线性可以采用自动控制技术处理用户自己也可以控制。
5.1.1.2 ABAQUS/ExplicitABAQUS/Explicit是一个在数值方法上采用有限元显式积分的特殊模块,它利用对时间的显示积分求解动态有限元方程。
它适合于分析诸如冲击和爆炸这样短暂瞬时的动态问题。
5.1.1.3 ABAQUS/CAEABAQUS/CAE是一个友好的ABAQUS运行环境(Complete ABAQUS Environment),一个能够对ABAQUS 分析任务进行建模、管理、监控,同时又可以对ABAQUS分析结果进行可视化后处理的环境。
该模块根据结构的几何图形生成网格,将材料和截面的特性分配到网格上,并施加载荷和边界条件,并建立必要的分析布。
建模完成后,ABAQUS/CAE可以进一步将生成的模型(以输入文件的形式存在)提交给ABAQUS/Standard或者ABAQUS/Explicit分析模块,然后进行后台运行,并对运行情况进行监测,然后对计算结果(即输出数据库)进行后处理。
ABAQUS/CAE 的后处理对计算结果的描述和解释提供了范围很广的选择,除了必要的云图、矢量图和动画显示之外,还可以用列表,曲线等其他常用工具来完成对结果数据的处理。
非线性问题的类型和求解特点1 非线性问题的类型1. 1 线性分析的含义在有限元分析中的线性假设包含下列含义:即结点位移为无限小量,材料为线弹性,加载时边界条件的性质保持不变。
于是,静力平衡方程可以表示为:[]{}{}R U K = (2.1)其中,[]K 为刚度矩阵,{}R 为荷载矢量。
由于[]K 和{}R 的元素为常数,故位移响应{}U 是荷载矢量{}R 的线性函数。
也就是说,如果{}R 变为{}R α,则{}U 变为{}U α,其中,α为常数。
这就是所谓的线性有限元分析。
如果上述假设中的任何一条不能得到满足,那么就属于非线性有限元分析。
1. 2 非线性分析的必要性结构力学问题,从本质上讲都是非线性的,线性假设只是实际工程问题的一种简化。
当然,任何实际工程问题的求解都避免不了适当地简化,简化是否合理主要应根据求解效果和实际经验来判断。
对于目前工程实际中的很多问题,如地震作用下结构的弹塑性动力响应,高层建筑抗风,大跨度网壳结构动力稳定性,索膜结构找形荷载与裁减分析,大型桥梁风致振动等问题的研究,仅仅假设为线性问题是很不够的,常常需要进一步考虑为非线性问题。
因此,对各种工程结构的非线性分析就是必不可少且日趋重要了。
对于结构力学的非线性问题来说,有限单元法是最为有效的数值分析方法。
1. 3 非线性问题的类型通常,把非线性问题分为两大类,即分为几何非线性和材料非线性。
但从建立基本方程和程序设计的方便出发,又可分为三种类型:1.材料非线性:非线性效应仅由应力应变关系的非线性引起,位移分量仍假设为无限小量,故仍可采用工程应力和工程应变来描述,即仅材料为非线性。
非线性的应力应变关系是结构非线性的常见原因,许多因素都可以影响材料的应力应变性质,包括加载历史(如在弹塑性响应状况下),环境状况(如温度),加载的时间总量(如在蠕变响应状况下)等。
2.几何非线性:如果结构经受大变形,则变化了的几何形状可能会引起结构的非线性响应,这又可以分为两种情形:第一种情形,大位移小应变。
非线性有限元法综述摘要:本文针对非线性有限元法进行综述,分别从UL列式及TL列式、CR列式、几何精确梁、壳理论三个方面介绍其分析思路和发展动态,旨在为相关学者提供一些思路参考。
关键词:几何非线性;UL列式;TL列式;CR列式;几何精确梁、壳理论1引言几何非线性是由于位置改变引起了结构非线性响应。
进行结构几何非线性分析,实质上就是要得到结构真实的变形与受力情况。
有限元方法是进行结构几何非线性分析的最成熟的方法,也是应用最广泛的分析方法.2非线性有限元法研究思路非线性有限元法主要指UL列式法、TL列式法、CR列式法和几何精确梁、壳理论等,它们有着基本相同的思路,即利用虚功原理建立平衡方程。
方程中充分考虑了非线性因素对结构应变和应力的影响,也就是将线性应变和非线性应变都代入到表达式中,然后确定单元的本构关系并选取合适的形函数,导出单元对应的弹性刚度矩阵和几何刚度矩阵,再选取合适的增量-迭代算法进行求解,由此就完成了结构的整个几何非线性分析求解过程。
非线性有限元法将结构的变形过程划分为三个主要阶段:C0状态、C1状态和C2状态,如图1所示。
图1 单元的变形C0状态是单元的初始状态,C1状态是单元受力变形后上一次处于平衡的状态;C2状态是单元的当前状态,也就是所求的状态。
2.1UL法和TL法研究思路UL法和TL法为几何非线性问题提供了新的分析思路。
这两种方法本质上没有很大区别,但是方程建立的参考状态有所不同。
完全拉格朗日法(TL法)是以结构变形前C0状态为参考建立平衡方程的,考虑结构从C0状态到C2状态之间的变形;而更新的拉格朗日法(UL法)以结构变形后C1状态为参考建立平衡方程的[2],考虑结构从C1状态到C2状态之间的变形。
两种拉格朗日法的主要形式如下:(1)TL列式(2)UL列式从上面两式可以看出:TL法和UL法的另一个不同是TL法的增量平衡方程中考虑了初位移矩阵的影响,而UL法则忽略了其影响,只考虑了弹性刚度矩阵和初应力矩阵的影响。
非线性有限元分析1 概述在科学技术领域内,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。
但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。
对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。
这类问题的解决通常有两种途径。
一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。
但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。
因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。
特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。
已经发展的数值分析方法可以分为两大类。
一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。
其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。
但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。
另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。
如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。
诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。
但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。
1960年,发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。
非线性有限元方法非线性有限元方法是大量应用于工程领域的计算方法,它主要用于求解复杂结构的力学问题,例如材料的变形、破坏和变形控制等。
与线性有限元方法不同,非线性有限元方法考虑因为载荷和边界条件的非线性导致问题的非线性本质,以及材料的非线性行为。
在这篇文章中,我们将讨论非线性有限元方法,包括其应用、工作原理以及其在工程领域中的重要性等内容。
首先,我们来研究一下非线性有限元方法的应用。
非线性有限元方法在许多方面都有应用。
其中最重要的领域是结构力学,包括建筑、航空航天、汽车等领域。
由于这些结构需要承受复杂的载荷,因此非线性有限元方法可以很好地模拟这些结构的行为,预测它们的性能和寿命。
此外,非线性有限元方法还可以应用于材料力学研究中,例如破碎、断裂和塑性变形等方面。
其次,我们来了解一下非线性有限元方法的工作原理。
与线性有限元方法类似,非线性有限元方法通过将结构分成小块进行离散,然后在每个小块中进行力学分析,最后将分析结果合并为整个结构的行为。
但是,与线性有限元方法不同的是,非线性有限元方法考虑到材料的非线性行为,采用迭代的方法计算结构的响应。
通常,在每一次迭代中,我们都将结构的当前状态作为一个初始猜测,然后求解出该状态下的切应力和位移场。
然后我们将这个位移场的结果代入底部,从而更新结构的状态。
如果解决方案收敛,则完成计算,否则就将新的状态再次代入求解。
这种方法的本质是将非线性问题转化为一系列线性问题的求解,通过迭代求解来逼近非线性问题的解。
最后,我们来讨论一下非线性有限元方法在工程领域中的重要性。
非线性有限元方法已成为现代工程设计和分析的不可或缺的工具。
它允许工程师们模拟和预测各种工程机构的行为,以及设计和优化各种结构。
例如,它可以帮助我们了解在不同载荷下建筑和桥梁行为的变化,预测材料的破坏和失效,以及优化汽车和飞机的结构以提高其性能。
总之,非线性有限元方法是一种复杂但十分有用的计算方法,它可以模拟各种结构的行为并预测其性能和寿命。
第三部分非线性分析第一章非线性有限元概述1.1非线性行为1、 非线性结构的基本特征是结构刚度随载荷的改变而变化。
如果绘制一个非线 性结构的载荷一位移曲线,则 力与位移的关系是非线性函数。
2、 引起结构非线性的原因:a 几何非线性:大应变,大位移,大旋转 (例如钓鱼竿的变形)b 材料非线性:塑性,超弹性,粘弹性,蠕变c 状态改变非线性:接触,单元死活3、 非线性行为一一分析方法特点A 不能使用叠加原理!B 结构响应与路径有关,也就是说加载的顺序可能是重要的。
C 结构响应与施加的载荷可能不成比例。
1.2非线性分析的应用1、 一些典型的非线性分析的应用包括: 非线性屈曲失稳分析金属成形研究碰撞与冲击分析制造过程分析(装配、部件接触等)材料非线性分析 (塑性材料、聚合物)2、 橡胶底密封:一个包含几何非线性(大应变与大变形),材料非线性(橡胶), 及状态非线性(接触)的例子。
2.1非线性方程组的解法1、求解一个结构的平衡问题通常等于求解结构的总位能的驻值 问题。
结构总位能n : 口 "3弋门心 2、 增量法:就是将荷载分成一系列的荷载增量,即 ANSYS 中的荷载步或荷载子 步。
A 要点:在每一个荷载增量求解完成后,继续进行下一个荷载增量之前, 刚度矩阵以反映结构刚度的变化。
B 增量法的优点:可以追踪结构变形历程,这对于材料或几何非线性(特别是 极限值屈曲分析)十分有用。
C 增量法的缺点:随着荷载步增量的增加而产生积累误差,导致荷载-位移曲 线飘移。
D 对飘移进行平衡修正,可以大大提高增量法的精度。
应用最广的就是在每一 级载荷增量上用Newton-Raphsor 或其变形的迭代法。
3、 迭代法:割线刚度法:收敛性差,因此很少应用切线刚度法Newto n-Ra phsor 迭代法:切向刚度法中 2.2 Newto n-Ra phsor 迭代法 1、 优点:对于一致的切向刚度矩阵有 二次收敛速度。
非线性有限元在结构分析中的应用综述摘要:钢筋混凝土结构在土木工程中应用越来越广泛,随着理论研究的进一步深入和电子计算机的飞速发展,钢筋混凝土非线性有限元法得到了迅速的发展,尤其近几年来,在结构分析领域,钢筋混凝土非线性有限元法的应用日趋普遍。
因为非线性有限元法具有“全过程仿真”的特点,对于钢筋混凝土这种应用最为广泛而又复杂的结构更是有着其他方法无法比拟的优势。
从钢筋混凝土非线性有限元分析理论及其在结构工程中的应用说明了钢筋混凝土非线性有限元分析已成为结构分析中不可或缺的关键部分。
关键词:结构分析;非线性;仿真;有限元分析钢筋混凝土结构是土建工程中应用最为广泛的一种结构。
但是对钢筋混凝土的力学性能掌握的还不够全面,特别是混凝土。
因为混凝土成分复杂、性能多样。
长期以来,人们用线弹性理论来分析钢筋混凝土结构的应力或内力,以极限状态的设计方法确定构件的承载能力、刚度、和抗裂性,显然二者是互不协调的。
非线性有限元分析就是结合钢筋混凝土特点而新发展起来的一种弹塑性分析方法。
有限元分析方法能够给出结构内力和变形发展的全过程;能够描述裂缝的形成和扩展,以及结构的破坏过程及其形态;能够对结构的极限承载能力和可靠度作出评估;能够揭示出结构的薄弱部位和环节,以利于优化结构的设计。
同时,它能广泛地适应于各种结构类型和不同的受力条件和环境。
一、有限元方法发展概况最早把有限元分析方法用于钢筋混凝土结构的是美国学者D.Ngo和A.C.Scordelies,在他们的研究中,沿用已有的有限元方法,将钢筋和混凝土均划分为三角形单元,用线弹性理论分析钢筋和混凝土的应力;并针对钢筋混凝土结构的特点,在钢筋和混凝土之间附加了一种粘结弹簧,从而可以分析粘结应力的变化;对于裂缝,他们根据实验,预先设置了一条剪切斜裂缝,裂缝间也附加了特殊的连结弹簧,以模拟混凝土裂缝间的骨料咬合力和钢筋的销栓作用。
1968年,Nilsson等人发展了Ngo的工作,将钢筋与混凝土之间的非线性粘结关系及混凝土的非线性应力应变关系引入有限元分析。
结构非线性有限元分析现状综述摘要:简要介绍非线性有限元概念及基本算法,浅谈结构非线性有限元分析之现状,例举数值算法和网格划分技术对结构非线性有限元分析的精度和效率的影响。
关键词:有限元分析网格ANSYS有限元方法的基本思想是将连续的求解区域离散为一组有限个、且按一定方式相互连接在一起的单元的组合体,利用在每一个单元内假设的近似函数来分片地表示全求解区域待求的未知场函数,从而使一个连续的无限自由度问题变成离散的有限自由度问题。
随着单元数目的增加,即单元尺寸的缩小,解的近似程度不断改进,最后将收敛于精确解。
按所取基本未知量的不同有限元方法分为位移控制法和荷载控制法。
位移控制法选取节点位移为基本未知量,荷载控制法选取节点力为基本未知量。
位移控制法因为容易实现电算求解而应用广泛。
国际上通用的有限元软件有ABAQUS、ADINA、ANSYS、MARC、NASTRAN、SAP等。
其中ANSYS历经30多年的发展,已经能够紧跟计算机硬件、软件发展的最新水平,而成为计算机辅助工程(CAE)和工程数值分析和模拟最有效的软件。
结构非线性全过程分析中的迭代控制算法早被提出[1-3]。
牛顿-拉普森平衡迭代(NR法)迫使在每一个载荷增量的末端解达到平衡收敛。
在每次求解前牛顿-拉普森方法估算出残差矢量,这个矢量就是回复力(对应于单元应力的载荷)和所加载荷的差值,然后使用非平衡荷载进行线性求解,且核查收敛性。
如果不满足收敛准则,重新估算非平衡载荷,修改刚度矩阵,获得新解。
持续这种迭代过程直到问题收敛。
如果仅仅使用牛顿-拉普森法,正切刚度矩阵可能变为奇异矩阵,导致严重的收敛问题。
近年来,国内外对非线性结构问题的数值解法做了大量的研究。
修正的牛顿-拉普森迭代法的出现,为保证计算精度提供了保障。
但是,对求解结构极限强度而言,这种方法仍很难找到极限点。
Wright&Gaylord发展了假想弹簧法以保证后极限强度区域结构刚度矩阵的正定,并成功应用于框架结构的分析。
钢筋混凝土非线性有限元分析综述1 前言钢筋混凝土结构是建筑、桥梁等领域中应用最为广泛的一种结构。
但是我国对钢筋混凝土的各方面力学性能的计算掌握还不能说已经掌握的很全面很彻底了,特别是混凝土。
因为混凝土是由水、水泥、砂子、石子及各种不同掺和料或外加剂混合硬化而成的,是一种成分非常复杂、性能多样的建筑结构材料。
长期以来,分析钢筋混凝土结构的应力或内力的方法都是线弹性理论,确定构件的承载能力、刚度和抗裂性却是用极限状态的设计方法,显然二者之间是互不协调的。
并且这种设计方法一般都是基于大量试验数据上的经验公式,虽然这些经验公式可以反映钢筋混凝土构件的非弹性性能,但是,随着越来越多的钢筋混凝土构筑物需要修建,对质量也提出了更高的要求,这样一来,使用经验公式的常规设计就暴露出来很多缺点,所以在使用上还有局限性,也缺乏系统的理论性。
为了进一步完善研究方法,人们又作了大量的实验和研究工作,探索塑性变形的结构非线性分析方法,以便能正确反映钢筋混凝土结构的实际性状。
2 有限元分析的重要性钢筋混凝土结构是目前工业建筑与民用建筑中最主要的结构形式,由于钢筋混凝土是由两种不同性质的材料—混凝土和钢筋—组合而成的,它的性能直接依赖于这两种材料的性能特别是在非线性阶段,在对钢筋混凝土进行分析时,最常用的,是线弹性分析方法,但是线弹性分析方法的基本假定是小变形。
混凝土和钢筋本身的各种不同的非线性性能和二者之间联结的非线性性能,在这种组合材料中将不同程度地反映出来,这时候,如果仍用线弹性方法进行模拟运算,将很难准确地反映结构的实际变形和受力特点。
正由于存在着这些问题,钢筋混凝土结构的非线性分析就显得特别重要。
基于功能完善的有限元软件和高性能的计算机硬件对设计的结构进行详细的力学分析,以获得尽可能真实的结构受力信息,就可以在设计阶段对可能出现的各种问题进行安全评判和设计参数修改。
3 有限元分析原理随着计算机技术的飞速发展,基于有限元方法原理的软件大量出现,并在实际工作中发挥了越来越重要的作用。