当前位置:文档之家› 弹簧质量块模型过程分析概要

弹簧质量块模型过程分析概要

弹簧质量块模型过程分析概要
弹簧质量块模型过程分析概要

过程分析之弹簧

如图11所示,两个木块质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面的弹簧,在这过程中下面木块移动的距离

A .

11k g m B. 2

2k g

m C.

2

1k g

m D.

22k g m

如图所示,劲度系数为2k 的轻弹簧B 竖直固定在桌面上.上端连接一个质量为m 的物体,用细绳跨过定滑轮将物体m 与另一根劲度系数为1k 的轻弹簧C 连接。当弹簧C 处在水平位置且没发生形变时.其

右端点位于a 位置。现将弹簧C 的右端点沿水平方向缓慢拉到b 位置时,弹簧B 对物体m 的弹力大小为

mg 3

2

,则ab 间的距离为________。

如图所示,两根轻弹簧AC 和BD ,它们的劲度系数分别为k1和k2,它们的D 端分别固定在质量为m 的物体上,A 、B 端分别固定在支架和正下方地面上,当物体m

静止时,上方的弹簧处于原长;若将物体的质量增加了原来的2倍,仍在弹簧的弹性限度内,当物体再次静止时,其相对第一次静止时位置下降了 ( )

A .

B .

C .

D .

如图10所示,劲度系数为k 1的轻质弹簧两端分别与质量为m 1 、m 2 的物块1、2拴接,劲度系数为k 2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面,在此过程中物块2的重力势能增加了多少?物块1的重力势能增加了多少?

如图所示,重80N 的物体A 放在倾角为30°的粗糙斜面上,有一根原长为10cm ,劲度系数

为1000N/m 的弹簧,其一端固定在斜面底端,另一端放置物体A 后,弹簧长度缩短为8cm 。现用一测力计沿斜面向上拉物体。若物体与斜面间的最大静摩擦力为25N ,当弹簧的长度仍为8cm 时,测力计的示数可能为

A .10N

B .20N

C .40N

D .60N

m 1

m 2

K 2 K 1 图11

m 1

m 2

1 2 k 1 K 2

图10

如图所示,在水平板的左端有一固定挡板,挡板上连接一轻质弹簧.紧贴弹簧放一质量为m 的滑块,此时弹簧处于自然长度.已知滑块与板之间的动摩擦因数为

,且最大静摩擦力等于滑动摩擦力.现

将板的右端缓慢抬起(板与水平面的夹角为θ),直到板竖直,此过程中弹簧弹力的大小F 随夹角θ的变化关系可能是( )

A B C D

用轻弹簧竖直悬挂质量为m 的物体,静止时弹簧伸长量为L 。现用该弹簧沿斜面方向拉住质里为2 m 的物体,系统静止时弹簧伸长量也为L 。斜面倾角为30°,如图所示。则物体所受摩擦力 A .等干零

B .大小为1

2mg ,方向沿斜面向下

C .大小为

3

2

mg ,方向沿斜面向上 D . 大小为mg ,方向沿斜面向上

如图,一倾角为θ的斜面固定在水平地面上,一质量为m 有小球与弹簧测力计相连在一木板的端点处,且将整个装置置于斜面上,设木板与斜面的动摩擦因数为μ,现将木板以一定的初速度0v 释放,不熟与木板之间的摩擦不计,则

( ABC ) A .如果0μ=,则测力计示数也为零

B .如果tan μθ,则测力计示数大于sin mg θ

C .如果tan μ

θ=,则测力计示数等于sin mg θ

D .无论μ取何值,测力计示数都不能确定

如图所示,两质量相等的物块A 、B 通过一轻质弹簧连接,B 足够长、放置在水平面上,所有接触面均光滑。弹簧开始时处于原长,运动过程中始终处在弹性限度内。在物块A 上施加一个水平恒力,A 、B 从静止开始运动到第一次速度相等的过程中,下列说法中正确的有

A .当A 、

B 加速度相等时,系统的机械能最大

B .当A 、B 加速度相等时,A 、B 的速度差最大

C .当A 、B 的速度相等时,A 的速度达到最大

D .当A 、B 的速度相等时,弹簧的弹性势能最大

如图所示,A 、B 质量均为m ,叠放在轻质弹簧上,当对A 施加一竖直向下的力,大小为F ,将弹簧压缩一段,而且突然撤去力F 的瞬间,关于A 的加速度及A 、B 间的相互作用力的下述说法正确的是( )

A 、加速度为0,作用力为mg 。

B 、加速度为F/2m ,作用力为mg+F/2

C 、速度为F/m ,作用力为mg+F

D 、加速度为F/2m ,作用力为(mg+F )/2

如图所示,一根轻弹簧上端固定,下端挂一质量为m 1的箱子,箱中有一质量为m 2的物体.当箱静止时,弹簧伸长L 1,向下拉箱使弹簧再伸长L 2时放手,设弹簧处在弹性限度内,则放手瞬间箱对物体的支持力为:( )

A.g m L L 212)1(+

B.g m m L L ))(1(2112++

C.g m L L 212

D.g m m L L

)(211

2+

如图所示,静止在水平面上的三角架质量为M ,它用两质量不计的弹簧连接着质量为m 的小球,小球上下振动,当三角架对水平面的压力为mg 时,小球加速度的方向与大小分别是

( ) A .向上,/Mg m B 。向下,/Mg m C .向下,g

D 。向下,()/M

m g m +

如图所示,一端固定在地面上的竖直轻弹簧,在它的正上方高H 处有一个小球自由落下,落到轻弹簧上,将弹簧压缩。如果分别从1H 和2H (1

2H H )高处释放小球,小球落到弹簧上将弹簧压缩的过程中获得的最大动能分别为1k E 和

2k E ,在具有最大动能时刻的重力势能分别为1p E 和2p E ,比较1k E 、2k E 和1p E 、2p E 的大小正确

的是 ( )

A .1

2k k E E ,12p p E E = B 。1

2k

k E E ,12p p E E C .1

2k

k E E ,12p p E E =

D 。1

2k

k E E ,1

2

p p E E

如图所示,固定在水平面上的竖直轻弹簧上端与质量为M 的物块A 相连,静止时物块A 位于P 处,另有一质量为m 的物块B ,从A 的正上方Q 处自由下落,与A 发生碰撞立即具有相同的速度,然后A 、B 一起向下运动,将弹簧继续压缩后,物块A 、B 被反弹,下面有关的几个结论正确的是

( )

A .A 、

B 反弹过程中,在P 处物块B 与A 分离 B .A 、B 反弹过程中,在P 处物块A 具有最大动能

C .B 可能回到Q 处

D .A 、B 从最低点向上运动到P 处的过程中,速度先增大后减小

22(2006年江苏卷)如图所示,物体A 置于物体B 上,一轻质弹簧一端固定,另一端与B 相连,在弹性限度范围内,

A 和

B 一起在光滑水平面上做往复运动(不计空气阻力),并保持相对静止,则下

列说法正确的是

( )

A .A 和

B 均做简谐运动

B .作用在A 上的静摩擦力大小与弹簧的形变量成正比

C .B 对A 的静摩擦力对A 做功,而A 对B 的静摩擦力对B 不做功

D .B 对A 的静摩擦力始终对A 做正功,而A 对B 的静摩擦力始终对B 做

负功

如图1所示,一根轻弹簧上端固定在O 点,下端栓一个钢球P ,球处于静止状态。现对球施加一个方向向右的外力F ,

使球缓慢偏移,在移动中的每一个时刻,都可以认为钢球处于平衡状态。若外力F 方向始终水平,移动中弹簧与竖直方向的夹角θ<90°且弹簧的伸长量不超过弹性限度,则下面给出的弹簧伸长量x 与cos θ的函数关系图象中,最接近的是

( )

如图所示,轻弹簧下端挂一个质量为M 的重物,平衡后静止在原点O .现令其在O 点上下做蔺谐振动,图中哪一个图像能正确反映重物的加速度a 随位移x 变化的关系(沿x 轴方向的加速度为正)。( B

)

如图a 所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬间这个过程,并且选定这个过程中木块A 的起始位置为坐标原点,则下列图象中可以表示力F 和木块A 的位移x 之间关系的是( )

如图所示,劲度数为k 的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m 的物体接触(未连接),弹簧水平且无形变。用水平力F 缓慢推动物体,在弹性限度内弹簧长度被压缩了0x ,此时物体静止。撤去F 后,物体开始向左运动,运动的最大距离为40x 。物体与水平面间的动摩擦因数为μ,重力加速度为g 。则 A .撤去F 后,物体先做匀加速运动,再做匀减速运动

B .撤去F 后,物体刚运动时的加速度大小为0

kx g m

μ- C .物体做匀减速运动的时间为02

x g

μ

D .物体开始抽左运动到速度最大的过程中克服摩擦力做的功为0()mg

mg x k

μμ-

1 F

x O F x O F x O F x O F A B C D

A B a A B b

A 、

B 两球质量分别为m 1与m 2,用一劲度系数为k 的弹簧相连,一长为l 1的细线与m 1相连,置于水平光滑桌面上,细线的另一端拴在竖直轴OO /上,如图7所示,当m 1与m 2均以角速度ω绕OO /做匀速圆周运动时,弹簧长度为l 2。求:

(1)此时弹簧伸长量多大?绳子张力多大? (2)将线突然烧断瞬间两球加速度各多大?

解析:m 2只受弹簧弹力,设弹簧伸长Δl ,满足

k Δl =m 2ω2(l 1+l 2)

∴弹簧伸长量Δl =m 2ω2(l 1+l 2)/k

对m 1,受绳拉力T 和弹簧弹力F 做匀速圆周运动, 满足:T -F =m 1ω2l 1

绳子拉力T =m 1ω2l 1+m 2ω2(l 1+l 2) (2)线烧断瞬间

A 球加速度a 1=F /m 1=m 2ω2(l 1+l 2)/m 1

B 球加速度a 2=F /m 2=ω2(l 1+l 2)

如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k ,C 为一固定挡板.系统处于静止状态.现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位移d .(重力加速度为g )

如图所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:

(1)此过程中所加外力F 的最大值和最小值。 (2)此过程中外力F 所做的功。

一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s2)。求此过程中所加外力的最大和最小值。

如图19所示,A 、B 两木块叠放在竖直轻弹簧上,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N /m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m /s 2的加速度竖直向上做匀加速运动(g =10 m /s 2)

(1)使木块A 竖直做匀加速运动的过程中,力F 的最大值

(2)若木块由静止开始做匀加速运动,直到A 、B 分离的过程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对木块做的功

此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力 N =0时 ,恰好分离.

当F =0(即不加竖直向上F 力时),设A 、B 叠放在弹簧上处于平衡时弹簧的压缩量为x ,有

A B A B m +m g

kx=(m +m )g x k

()即 =

对A 施加F 力,分析A 、B 受力如右图所示 对A

A A F+N-m g=m a

对B

''B B kx -N-m g=m a

可知,当N ≠0时,AB 有共同加速度a =a ′,由②式知欲使A 匀加速运动,随N 减小F 增大.当N =0时,F 取得了最大值F m ,

即m A F =m (g+a)=4.41 N

又当N =0时,A 、B 开始分离,由③式知,

此时,弹簧压缩量B B m (a+g)

kx'=m (a+g) x'=k

④ AB 共同速度

2 v =2a (x -x ')

由题知,此过程弹性势能减少了W P =E P =0.248 J 设F 力功W F ,对这一过程应用功能原理

2F A B A B p 1

W =( m +m )v +(m +m )g(x-x')-E 2

联立①④⑤⑥,且注意到E P =0.248 J 可知,W F =9.64×10-2 J

一根劲度系数为k ,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。如图21所示。现让木板由静止开始以加速度a (a <g )匀加速向下移动。求经过多长时间木板开始与物体分离。

设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F =kx 和平板的支持力N 作用。据牛顿第二定律有:

mg -kx -N =ma 得N =mg -kx -ma

当N =0时,物体与平板分离,所以此时k

a g m x )

(-=

因为2

21at x =

,所以ka

a g m t )

(2-=

图20

图19

a 图21

如图甲所示,一根轻质弹簧(质量不计),劲度系数为k ,下端静止吊一质量为m 的物体A 。手持一块质量为2m 的水平木板B ,将A 向上托起至某一位置静止(如图14-26乙所示)。此时若将木板B 突然撤去,则撤去的瞬间A 向下的加速度大小为a(a>g)。现不撤木板而用手托着木板B ,让其由上述的静止位置开始以加速度a/3向下做匀加速直线运动。求:

(1)运动多长时间A 、B 开始分离。

(2)木板B 开始运动的瞬间,手托B 的作用力多大?

2005(全国理综)(19分)如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩。开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向。现在挂钩上升一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升。若将C 换成另一个质量为(m 1+m 2)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g 。

光滑水平桌面上放着两个质量块AB ,m 1和m 2电量分别为q1和q2,轻弹簧连接,弹簧的劲度系数为k 。空间上有水平向左的匀强电场,场强为E 。一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩。开始时各段绳都处于伸直状态。现在挂钩上升一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开左墙面但不继续上升。若将C 换成另一个质量为m 4(>m 3)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离墙时D 的速度的大小是多少?已知重力加速度为g 。

质量为m 的如图26所示,挡板P 固定在足够高的水平桌面上,小物块A 和B 大小可忽略,它们分别带为+Q A 和+Q B 的电荷量,质量分别为m A 和m B。两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B 连接,另一端连接轻质小钩。整个装置处于场强为E 、方向水平向左的匀强电场中,A 、B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的库仑力,A 、B 所带电荷量保持不变,B 不会碰到滑轮。

(1)若在小钩上挂质量为M 的物块C 并由静止释放,

A A

k

k

甲乙

B

可使物块A 对挡板P 的压力恰为零,但不会离开P ,求物块C 下降的最大距离h

(2)若C 的质量为2M ,则当A 刚离开挡板P 时,B 的速度多大?

56通过一轻弹簧与档板M 相连,如图所示,开始时,木块A 静止于P 处,弹簧处于原长状态,木块B 在Q 点以初速度0v 向下运动,P 、Q 间的距离为L 。已知木块B 在下滑的过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点。

若木块A 仍静止放在P 点,木块C 从Q 点处于开始以初速度02

3

v 向下运动,经历同样过程,最后木块C 停在斜面的R 点。求:

(1)A 、B 一起压缩弹簧过程中,弹簧具有的最大弹性势能; (2)A 、B 间的距离L

钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图4所示.一物块从钢板正上方距离为3x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们达到最低点后又向上运动.已知物块质量也为m 时,它们恰能回到O 点,若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度.求物块向上运动达到的最高点与O 点的距离.

5、如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的

劲度系数为k ,A 、B 都处于静止状态。质量块C 质量为m 3,从A 物块上方h 处自由下落,和A 碰撞后立即粘连成整体D ,当D 上升到最高点时,B 物体对地压力恰好是零,如果用质量为m 4(>m 3)的物块从相同高度下落,也和A 物体碰撞后粘连成新物体E ,问当B 离地瞬间,E 物体的速度多大?

如图所示,质量均为m 的两物体A 、B 分别与轻质弹簧的两端相连接,现将它们静止放在地面上。一质量也为m 的小物体C 从距A 物体h 高处由静止开始下落,C 与A 相碰后立即粘在一起向下运动,以后不再分开,当A 与C 运动到最高点时,物体B 对地面刚好无压力。不计空气阻力,弹簧始终处于弹性限度内,重力加速度为g 。求 ⑴A 与C 一起开始向下运动时的速度大小; ⑵A 与C 运动到最高点时的加速度大小; ⑶弹簧的劲度系数。

61A ,B 两个木块叠放在竖直轻弹簧上,如图所示,已知1A

B m m kg ==,轻弹簧的劲度系数为100N/m 。

若在木块A 上作用一个竖直向上的力F ,使木块A 由静止开始以22m s 的加速度竖直向上做匀加速运动。

取210g

m s =,求:

(1) 使木块A 竖直向上做匀加速运动的过程中,力F 的最大值是多少?

(2) 若木块A 竖直向上做匀加速运动,直到A ,B 分离的过程中,弹簧的弹性势能减少了1.28J ,则在这

个过程中,力F 对木块做的功是多少?

62如图所示,将质量均为m 厚度不计的两物块A 、B 用轻质弹簧相连接。第一次只用手托着B 物块于H 高度,A 在弹簧弹力的作用下处于静止,现将弹簧锁定,此时弹簧的弹性势能为E p ,现由静止释放A 、B ,B 物块刚要着地前瞬间将弹簧瞬间解除锁定(解除锁定无机构能损失),B 物块着地后速度立即变为O ,在随后的过程中B

物块恰能离开地面但不继续上升。第二次用手拿着A 、B 两物块,使得弹簧竖直并处于原长状

态,此时物块B 离地面的距离也为H ,然后由静止同时释放A 、B ,B 物块着地后速度同样立即变为0。求: (1)第二次释放A 、B 后,A 上升至弹簧恢复原长时的速度v 1; (2)第二次释放A 、B 后,B 刚要离地时A 的速度v 2。

如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平直导轨上,弹簧处在原长状态.另一质量与B 相同的滑块A,从导轨上的P 点以某一初速度向B 滑行.当A 滑过距离l 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连.已知最后A 恰好返回到出发点P 并停止.滑块A 和B 与导轨的动摩擦因数都为μ,运动过程中弹簧最大形变量为l

2,重力加速度为g.求A 从P 点出发时的初速度v 0.

答案 )161101(21

+g μ

解析 令A 、B 质量皆为m,A 刚接触B 时速度为v 1(碰前),由功能关系有:

21mv 0

2-2

1

mv 12=μmgl 1

A 、

B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为v 2,有 mv

1=2mv 2

碰后,A 、B 先一起向左运动,接着A 、B 一起被弹回,当弹簧恢复到原长时,设A 、B 的共同速度为v 3,在这过程中,弹簧势能始末两态都为零,利用功能关系,

21×2mv 2

2-2

1

×2mv 32=2m ×2l 2μg

此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有

2

1mv 32=μmgl 1

由以上①②③④式,解得v 0=)161101(21+g μ

如图所示,一水平直轨道CF 与半径为R 的半圆轨道ABC 在C 点平滑连接,AC 在竖直方向,B 点与圆心等高。一轻弹

簧左端固定在F 处,右端与一个可视为质点的质量为m 的小铁块甲相连。开始时,弹簧为原长,甲静止于D 点。现将另一与甲完全相同的小铁块乙从圆轨道上B 点由静止释放,到达D 点与甲碰撞,并立即一起向左运动但不粘连,它们到达E 点后再返回,结果乙恰回到C 点。已知CD 长为L 1,DE 长为L 2,EC 段均匀粗糙,ABC 段和EF 段均光滑,弹簧始终处于弹性限度内。 (1)求直轨道EC 段与物块间动摩擦因素. (2)要使乙返回时能通过最高点A ,可在乙

由C 向D 运动过程中过C 点时,对乙 加一水平向左恒力,至D 点与甲碰撞

前瞬间撤去此恒力,则该恒力至少多大? 24、(20分)

解(1)设乙与甲碰前瞬间速度为1v ,碰后瞬间速度为2v ,甲乙一起返回到D 时速度为3v .

乙从B 到D 有 2111

2

mgR umgL mv -= ①-------(2分)

碰撞过程由动量守恒得 122mv mv = ②-------(2分)

甲乙从D 到E 再回到D 有 22

23211222222mg L mv mv μ-??=- ③-------(3分)

乙从D 到C 有 2

1312

mgL mv μ-=- ④-------(3分)

联立解得12

58R

L L μ=+

(2)设对乙加的最小恒力为F

从B 到D 有

21141

2

mgR FL mgL mv μ+-=

⑤-------(2分) 碰撞过程由动量守恒得 542mv mv = ⑥-------(1分)

甲乙从D 到E 再回到D 有2

526222122122mv mv L mg -=??-μ ⑦-------(1分)

乙从D 到A 有2

6212

1212mv mv mgL R mg A -=-?-μ ⑧-------(2分)

在A 点有 2

A mv mg R

= ⑨-------(2分)

联立⑤⑥⑦⑧⑨解得1

10mgR

F L = --------------------(2分)

如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上的O 点,此时弹簧处于原长.另一质量与B

相同的块A 从导轨上的P 点以初速度v 0向B 滑行,当A 滑过距离l 时,与B 相碰.碰撞时间极短,碰后A 、B 粘在一起运动.设滑块A 和B 均可视为质点,与导轨的动摩擦因数均为μ.重力加速度为g .求: (1)碰后瞬间,A 、B 共同的速度大小;

(2)若A 、B 压缩弹簧后恰能返回到O 点并停止,求弹簧的最大压缩量.

【答案】(1)2

0122

v gl μ-;

(2)2

0168v l g μ- 解析:(1)设A 、B 质量均为m ,A 刚接触B 时的速度为v 1,碰后瞬间共同的速度为v 2,以A 为研究对象,从P 到O ,由功能关系22

011122

mgl

mv mv μ=- 以A 、B 为研究对象,碰撞瞬间,由动量守恒定律得mv 1=2mv 2 解得2

2

0122

v v gl μ=

- (2)碰后A 、B 由O 点向左运动,又返回到O 点,设弹簧的最大压缩量为x , 由功能关系可得2

2

1(2)

2(2)2

mg x m v μ= A B l

O

P

v 0

(word完整版)高中物理弹簧问题

弹簧问题 轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。 无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零。 弹簧读数始终等于任意一端的弹力大小。 弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。 性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。 其伸长量等于弹簧任意位置受到的力和劲度系数的比值。 性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性; 有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。 性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。 分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。 弹簧问题的题目类型 1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数) 2、求与弹簧相连接的物体的瞬时加速度 3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化) 4、有弹簧相关的临界问题和极值问题 除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题 1、弹簧问题受力分析 受力分析对象是弹簧连接的物体,而不是弹簧本身 找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。(灵活运用整体法隔离法); 通过弹簧形变量的变化来确定物体位置。(高度,水平位置)的变化 弹簧长度的改变,取决于初末状态改变。(压缩——拉伸变化) 参考点,F=kx 指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。 抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零的特点求解。 注:如果a相同,先整体后隔离。 隔离法求内力,优先对受力少的物体进行隔离分析。 2、瞬时性问题 题型:改变外部条件(突然剪断绳子,撤去支撑物) 针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析 3、动态过程分析 三点分析法(接触点,平衡点,最大形变点) 竖直型: 水平型:明确有无推力,有无摩擦力。物体是否系在弹簧上。 小结:弹簧作用下的变加速运动, 速度增减不能只看弹力,而是看合外力。(比较合外力方向和速度方向判断) 加速度等于零常常是出现速度极值的临界点。速度等于零往往加速度达到最大值。

高中物理模型-水平方向上的碰撞弹簧模型

模型组合讲解——水平方向上的碰撞+弹簧模型 [模型概述] 在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 [模型讲解] 一、光滑水平面上的碰撞问题 例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( ) A. m E P B. m E P 2 C. m E P 2 D. m E P 22 解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,根据动量守恒定律得出 mv mv 20=,由能量守恒定律得220 )2(21 21v m E mv P +=,联立解得m E v P 20=,所以正确选项为C 。 二、光滑水平面上有阻挡板参与的碰撞问题 例 2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这 类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。 图1 (1)求弹簧长度刚被锁定后A 球的速度。 (2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。 解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得1 0)(v m m mv +=当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒得2132mv mv =,由

高考物理专题分析及复习建议: 轻绳、轻杆、弹簧模型专题复习

高考物理专题分析及复习建议: 轻绳、轻杆、弹簧模型专题复习 , 吊着重为180N的物体,不计摩

例2:如图所示,三根长度均为l 的轻绳分别连接于C 、D 两点,A 、B 两端被悬挂在水平天花板上,相距2l .现在C 点上悬挂一个质量为m 的重物,为使CD 绳保持水平,在D 点上可施加力的最小值为 ( ) A. mg B. 33mg C. 21mg D. 4 1 mg 变式训练1.段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图4-7所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳( ) A .必定是OA B.必定是OB C .必定是OC D.可能是OB ,也可能是OC 变式训练2.如图所示,物体的质量为2kg .两根轻细绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,当AB 、AC 均伸直时,AB 、AC 的夹角60θ=,在物体上另施加一个方向也与水平线成60θ=的拉力F ,若要使绳都能伸直,求拉力F 的大小范围. 变式训练3.如图所示,电灯悬挂于两壁之间,更换水平绳OA 使连结点A 向上移动而保持O 点的位置不变,则A 点向上移动时 A .绳OA 的拉力逐渐增大 B .绳OA 的拉力逐渐减小 C .绳OA 的拉力先增大后减小 D .绳OA 的拉力先减小后增大 变式训练4.一轻绳跨过两个等高的定滑轮不计大小和摩擦,两端分别挂上质量为m 1 = 4Kg 和m 2 = 2Kg 的物体,如图所示。在滑轮之间的一段绳上悬挂物体m ,为使三个物体不可能保持平衡,求m 的取值范围。

常见弹簧类问题分析

常见弹簧类问题分析 高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再 用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-2 1 kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p = 2 1kx 2 ,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. 下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。 一、与物体平衡相关的弹簧问题 1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2, 两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( ) A.m 1g/k 1 B.m 2g/k 2 C.m 1g/k 2 D.m 2g/k 2 此题若求m l 移动的距离又当如何求解? 参考答案:C

弹簧碰撞模型

模型分析 1.注意弹簧弹力特点及运动过程,弹簧弹力不能瞬间变化。 2.弹簧连接两种形式:连接或不连接。 连接:可以表现为拉力和压力,从被压缩状态到恢复到原长时物体和弹簧不分离,弹簧的弹力从压力变为拉力。 不连接:只表现为压力,弹簧恢复到原长后物体和弹簧分离,物体不再受弹簧的弹力作用。 3.动量和能量问题:动量守恒、机械能守恒,动能和弹性势能之间转化,等效于弹性碰撞。弹簧被压缩到最短或被拉伸到最长时,与弹簧相连的物体共速,此时弹簧具有最大的弹性势能,系统的总动能最小;弹簧恢复到原长时,弹簧的弹性势能为零,系统具有最大动能。 题型1.弹簧直接连接的两物体间的作用. 【例1】质量分别为3m 和m 的两个物体, 用一根细线相连,中间夹着一个被压缩的 轻质弹簧,整个系统原来在光滑水平地面上以速度v 0向右匀速运动,如图所 示.后来细线断裂,质量为m 的物体离开弹簧时的速度变为2v 0.求: (1)质量为3m 的物体最终的速度; (2)弹簧的这个过程中做的总功. 【答案】(1)032v (2) 203 2mv 【解析】(1)设3m 的物体离开弹簧时的速度为v 1,由动量守恒定律得: ()100 323v m v m v m m ?+?=+ 所以 013 2v v = (2)由能量守恒定律得:()()202021321221321v m m v m v m E P +?-?+??= 所以弹性势能:2032mv E P =

【点评】本题考查动量守恒定律和能量守恒定律的应用,解答的关键是正确确定初末状态及弹簧弹开过程的能量转化。 【例2】【2015届石家庄市高中毕业班第二次模拟考试试卷理科综合能力测试】如图所示,一辆质量M=3kg 的小车A 静止在水平面上,小车上有一质量m=lkg 的小物块B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为p E =6J ,小物块与小车右壁距离为l =0.4m ,解除锁定,小物块脱离弹簧后与小车右壁发生碰撞,碰撞过程无机械能损失,不计一切摩擦。求: ①从解除锁定到小物块与小车右壁发生第一次碰撞,小车移动的距离; ②小物块与小车右壁发生碰撞后,小物块和小车各自的速度大小和方向。 【答案】①0.1m ②小车速度方向向右为1m/s ,小物块速度方向向左为3m/s 22211122P E mv Mv = + 解得s /m 3s /m 121-==v v 或s /m 3s /m 1-' 2'1==v v 碰后小车速度方向向右为1m/s ,小物块速度方向向左为3m/s 【点评】本题考查动量守恒定律、能量守恒定律的结合应用,明确研究的系统和初末状态是正确解答的关键。 4.滑块a 、b 沿水平面上同一条直线发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x 随时间t 变化的图象如图所示.求:

高中物理问题详解弹簧类模型中的最值问题

弹簧类模型中的最值问题 在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。一、最大、最小拉力问题 例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。求此过程中所加外力的最大和最小值。 图1 解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量?l mg k m ==025.,末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,??l l m '.==025,故对A 物体有212 2?l at =,代入数据得a m s =42/。刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有 F mg mg ma max --=,解得F mg ma N max =+=2360。 二、最大高度问题 例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。 、

服务质量模型分析

对医疗行业的服务系统模型和服务场景模型分析 ——以重庆第七人民医院为案例作者:谭云升重庆理工大学市场营销 一.服务系统模型阐述 服务系统模型是关系营销中一个重要的知识内容,主要阐述了企业与顾客互动的重要性,并且在该模型中揭示了企业如何在实践中与顾客进行互动,互动需要企业内部的哪些支持,并分析了顾客期望的来源。 首先,从企业方面讲,需要界定企业使命,然后以此来确定服务概念。有了如上两步,接着才规划支持部分和互动部分。 1.支持部分。 (1)管理支持。这是最主要的,主要是指企业的管理者应该支持他们的员工,建立一种以顾客为导向的服务组织。 (2)物质支持。这是一种有形的支持,与顾客直接接触的员工往往依赖于这些物质支持提供服务。 (3)系统支持。这是指在技术、系统方面的支持,通过这些系统,保证员工方便的为顾客提供个性化的服务。 2.互动部分 互动部分实际上是讲在互动接触中涉及的一切资源,包括人力、物力、系统资源。包括: (1)参与到服务中的顾客,企业必须将顾客作为一种重要的资源进行管理,而不是把他们视为被动的服务接收者。 (2)与顾客接触员工。他们是服务提供者最关键的资源。 (3)系统和运营资源。这包括由系统和规章构成的和所有的运营和行政体系,直接影响顾客感知,又约束员工有内在影响。 (4)有形资源和设备。它们对功能质量产生影响。 其次,从顾客方面说,由于顾客价值生成体系的存在,导致期望的产生,于是希望与服务企业产生互动。 基于此,服务系统模型就构成了。服务提供者应该提供良好的支持服务和互动满足顾客期望,与顾客互动,解决顾客的问题。 二.服务场景模型阐述 众所周知,顾客实际经历的服务质量包括三个方面:what、how、where。那么,服务场景就是第三个因素where,服务场景的好坏会影响顾客感知服务质量。其模型如下:

弹簧模型的动力学分析方法

弹簧模型的动力学分析方法 【例二】如图所示,劲度系数为21,k k 的轻质弹簧竖直悬挂,两弹簧之间有一质量为1m 的重物,最下端挂一质量为2m 的重物,用一力竖直向上缓慢托起2m ,当力为多少时,两弹簧的总长等于弹簧原长之和? 解析: 两弹簧的总长等于弹簧原长之和,必定是弹簧1k 伸长, 1k 弹簧2k 压缩,且形变量21x x = 1m 对1m 物体有 g m x k x k 12211=+ 2k 对2m 物体有 222x k g m F += 2m 21121k k g m x x +==∴ 2 1122k k g m k g m F ++= 【变式3】如图所示,竖直放置的箱子内,用轻质弹簧支撑着一个重G 的物块, 静止时物块对箱顶P 的压力为2 G ,若将箱子倒转,使箱顶向下,静止时物块对箱顶P 的压力是多少?(物块和箱顶间始终没有发生相对滑动) P 【变式4】如图所示,在倾角为θ的光滑斜面上有两个轻质 弹簧相连的物块B A ,,它们的质量分别为B A m m ,,弹簧的 劲度系数为k ,C 为一固定挡板,现开始用一恒力F 沿斜面 方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位置d (重力加速度为g ) (变式3图) C A B θ (变式4图) 【变式5】如图所示,水平面上质量均为m 的两木块B A ,用劲度系数为k 的轻质弹簧连接,整个系统处于平衡状态,现用一竖直向上的力F 拉动木块A ,使木块A 向上做加速度为a 的匀加速直线运动,取木块A 的起始位置为坐标原点,图乙

中实线部分表示从力F 作用在木块A 到木块B 刚离开地面这个过程中,F 和木块A 的位移x 之间的关系,则( ) A.k ma x /0-= F F B.k g a m x /)(0+-= A 0F C.ma F =0 B D.)(0g a m F += 0x O x 甲 乙 【2】如图所示,B A ,两个物快的重力分别是N G N G B A 4,3==,弹簧的重力不计,系统沿着竖直方向处于静止状态,此时弹簧的弹力N F 2=,则天花板受到的拉力和地板受到的有压力有可能是( ) A.N N 6,1 A B.N N 6,5 C.N N 2,1 B D.N N 2,5 【5】如图所示,一辆有力驱动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连,设在某一段时间内小球与小车相对静止且弹簧处于压缩状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是() A.向右做加速运动 B.向右做减速运动 C.向左做加速运动 D.向左做减速运动 左 右 【6】如图所示,质量均为m 的物体B A ,通过一劲度系数为k 的轻质弹簧相连,开始时B 放在地面上,B A ,都处于静止状态,现通过细绳缓慢地将A 向上提升距离1L 时,B 刚要离开地面,若将A 加速向上拉起,B 刚要离开地面时,A 上升的距离为2L ,假设弹簧一直都在弹性限度范围内,则( ) A.k mg L L = =21 B. k mg L L 221== A C.121,L L k mg L >= C.121,2L L k mg L >= B

弹簧与弹簧测力计练习题精选附答案讲解学习

弹簧与弹簧测力计练习题精选附答案

2017年12月05日弹簧与弹簧测力计练习题精选 一.选择题(共14小题) 1.甲体重大、乙手臂粗、丙手臂长,三位同学用同一个拉力器比试臂力,结果每个人都能把手臂撑直,则下列说法中正确的是() A.甲所用拉力大B.乙所用拉力大 C.丙所用拉力大D.甲乙丙所用拉力一样大 2.在图中,A、B两球相互间一定有弹力作用的图是() A.B.C.D. 3.小明使用弹簧测力计前发现指针指在0.4N处,没有调节就测一物体的重力,且读数为2.5N,则物体重力的准确值应为() A.2.1N B.2.5N C.2.7N D.2.9N 4.如图所示的四个力中,不属于弹力的是() A. 跳板对运动员的支持力B. 弦对箭的推力 C.

熊猫对竹子的拉力D. 地球对月球的吸引力 5.使用弹簧测力计时,下面几种说法中错误的是() A.弹簧测力计必须竖直放置,不得倾斜 B.使用中,弹簧、指针、挂钩不能与外壳摩擦 C.使用前必须检查指针是否指在零点上 D.使用时,必须注意所测的力不能超过弹簧测力计的测量范围 6.如图所示,一根弹簧,一端固定在竖直墙上,在弹性限度内用手水平向右拉伸弹簧的另一端,下列有关“弹簧形变产生的力”描述正确的是() A.弹簧对手的拉力 B.手对弹簧的拉力 C.墙对弹簧的拉力 D.以上说法都正确 7.如图所示,一个铁块放在一块薄木板上,下列关关于铁块和木板受力情况的叙述正确的是() ①木板受到向下的弹力是因为铁块发生了弹性形变;②木板受到向下的弹力是因为木板发生了弹性形变;③铁块受到向上的弹力是因为木板发生了弹性形变;④铁块受到向上的弹力是因为铁块发生了弹性形变. A.①③B.①④C.②③D.②④

高中物理弹簧类模型中的最值问题

弹簧类模型 一、最大、最小拉力问题 例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2 )。求此过程中所加外力的最大和最小值。 图1 解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量?l mg k m = =025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,??l l m '.==025,故对A 物体有 212 2 ?l at = ,代入数据得a m s =42/。刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有 F mg mg ma max --=,解得F mg ma N max =+=2360。 二、最大高度问题 例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。

图2 解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则: v gx 006= ① 物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ② 刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p + =1 2 22120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有: 2302mv mv = ④ 碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得: E m v mgx m v p + =+123312 32202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升, 其上升的最大高度:h v g =2 2 ⑥ 解①~⑥式可得h x = 2 。 三、最大速度、最小速度问题 例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。

弹簧10大模型

弹簧”模型 10 大问题 太原市第十二中学 姚维明 模型建构 : 在我们的日常生活中,弹簧虽然形态各异 , 大小不同 , 但是从弹簧秤 , 机动车的减震装置 , 各种复 位按钮和机械钟表内的动力装置等 , 弹簧处处在为我们服务 .因为弹簧本身的特性,如弹簧弹力的方 向与弹簧所处的伸缩状态有关、弹力的大小与弹簧形变量大小有关;而且,弹簧在伸缩过程中涉及 的物理过程较复杂,物理概念和规律较多,如力和加速度、功和能、冲量和动量等,因此,弹簧类 试题多年来深受物理命题专家的青睐。 【模型】弹簧 【特点】:( 1)一般问题中的轻弹簧是一种理想模型,不计质量。( 2) 弹簧弹力不能突变,弹 力变化需要形变量变化,需要时间的积累。 (3)弹力变化: F = kx 或△ F =k △x ,其中 F 为弹力(△ F 为弹力变化), k 为劲度系数, x 为形变量(△ x 为形变变化量)。( 4 )弹簧可以贮存能量,弹 力做功和弹性势 能的关系为: W =-△ E P 其中 W 为弹簧弹力做功, △ E P 为弹性势能变化。另外, 弹性势能计算公式暂不做要求。 、轻弹簧的弹力与弹簧秤的读数问题 【典案 1】如图 1,四个完全相同的轻弹簧都处于水平位置,它们的右端受到大小相等的拉力 F 作用,而左端的情况则各不相同: ⑴ 弹簧的左端固定在墙上 ⑵ 弹簧的左端受到大小也为 F 的拉力作用 以 l 1、l 2、 l 3、 l 4 依次表示四条弹簧的伸长量,则有 A 、 l 1 l 2 B 、 l 4 l 3 C 、 l 1 l 3 D 、 l 2 =l 4 〖解析〗因轻弹簧自身质量不计,则轻弹簧的伸长量与轻弹簧上的弹力大小成正 比,因为四种 状态中轻弹簧的弹力均为 F ,故四种状态轻弹簧的伸长量相同;选 D 【体验 1】如图 2,四个完全相同的弹簧秤都处于水平位置,它们的右端受到大小相等的拉力 F 作用,而左端的情况则各不相同: ⑴弹簧秤的左端固定在墙上 ⑵ 弹簧秤的左端受到大小也为 F 作用 ⑶ 弹簧秤的左端拴一小物块 块在光滑的水平面上滑动 ⑷ 弹簧秤的左端拴一个小物块 m 1,物块在粗糙的水平面上滑动 ⑶ 弹簧的左端拴一小物块 m ,物块在光滑的 水平面上滑动 图1 ⑷ 弹簧的左端拴一个小物块 m ,物块在粗糙的水平面上滑动 的拉力 m 1,物 图2

弹簧质量块模型过程分析

过程分析之弹簧 如图11所示,两个木块质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面的弹簧,在这过程中下面木块移动的距离 A . 1 1k g m B. 22k g m C. 2 1k g m D.22 k g m 如图所示,劲度系数为2k 的轻弹簧B 竖直固定在桌面上.上端连接一个质量为m 的物体,用细绳跨过定滑轮将物体m 与另一根劲度系数为1k 的轻弹簧C 连接。当弹簧C 处在水平位置且没发生形变时.其右端点位于a 位置。现将弹簧C 的右端点沿水平方向缓慢拉到b 位置时,弹簧B 对物体m 的弹力大小为 mg 3 2 ,则ab 间的距离为________。 如图所示,两根轻弹簧AC 和BD ,它们的劲度系数分别为k1和k2,它们的D 端分别固定在质量为m 的物体上,A 、B 端分别固定在支架和正下方地面上,当物体m 静止时,上方的弹簧处于原长;若将物体的质量增加了原来的2倍,仍在弹簧的弹性限度内,当物体再次静止时,其相对第一次静止时位置下降了 ( ) A . B . C . D . 如图10所示,劲度系数为k 1的轻质弹簧两端分别与质量为m 1 、m 2 的物块1、2拴接,劲度系数为k 2的轻质弹 m 1 m 2 K 2 K 1 图11 m 1 m 2 1 2 k 1 K 2 图10

簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面,在此过程中物块2的重力势能增加了多少?物块1的重力势能增加了多少? 如图所示,重80N 的物体A 放在倾角为30°的粗糙斜面上,有一根原长为10cm ,劲度系数为1000N/m 的弹簧,其一端固定在斜面底端,另一端放置物体A 后,弹簧长度缩短为8cm 。现用一测力计沿斜面向上拉物体。若物体与斜面间的最大静摩擦力为25N ,当弹簧的长度仍为8cm 时,测力计的示数可能为 A .10N B .20N C .40N D .60N 如图所示,在水平板的左端有一固定挡板,挡板上连接一轻质弹簧.紧贴弹簧放一质量为m 的滑块,此时弹簧处于自然长度.已知滑块与板之间的动摩擦因数为 ,且最大静摩擦力等于滑动摩擦力.现将板的右端缓 慢抬起(板与水平面的夹角为θ),直到板竖直,此过程中弹簧弹力的大小F 随夹角θ的变化关系可能是( ) A B C D 用轻弹簧竖直悬挂质量为m 的物体,静止时弹簧伸长量为L 。现用该弹簧沿斜面方向拉住质里为2 m 的物体,系统静止时弹簧伸长量也为L 。斜面倾角为30°,如图所示。则物体所受摩擦力 A .等干零 B .大小为1 2 mg ,方向沿斜面向下 C .大小为 3 2 mg ,方向沿斜面向上 D . 大小为mg ,方向沿斜面向上

弹簧的强度计算 1、弹簧的受力 图示的压缩弹簧,当弹簧受轴向压力

弹簧的强度计算 1、弹簧的受力 图示的压缩弹簧,当弹簧受轴向压力F时,在弹簧丝的任何横剖面上将作用着:扭矩 T= FRcosα ,弯矩 M= FRsinα,切向力F Q = Fcosα和法向力 N F = Fsinα (式中R为弹簧的平均半径)。由于弹簧螺旋角α的值不大(对于压缩弹簧为6~90 ),所以弯矩M和法向力N 可以忽略不计。因此,在弹簧丝中起主要作用的外力将是扭矩T和切向力Q。α的值较小时,cosα≈ 1,可取T = FR 和 Q = F。这种简化对于计算的准确性影响不大。 当拉伸弹簧受轴向拉力F时,弹簧丝横剖面上的受力情况和压缩弹簧相同,只是扭矩T 和切向力Q均为相反的方向。所以上述两种弹簧的计算方法可以一并讲述。 2、弹簧的强度 从受力分析可见,弹簧受到的应力主要为扭矩和横向力引起的剪应力,对于圆形弹簧丝

系数K s可以理解为切向力作用时对扭应力的修正系数,进一步考虑到弹簧丝曲率的影响,可得到扭应力 式中K为曲度系数。它考虑了弹簧丝曲率和切向力对扭应力的影响。一定条件下钢丝直径 3、弹簧的刚度 圆柱弹簧受载后的轴向变形量 式中n为弹簧的有效圈数;G为弹簧的切变模量。 这样弹簧的圈数及刚度分别为 对于拉伸弹簧,n>20时,一般圆整为整圈数,n<20时,可圆整为1/2圈;对于压缩弹簧总圈数n的尾数宜取1/4、1/2或整圈数,常用1/2圈。为了保证弹簧具有稳定的性能,通常弹簧的有效圈数最少为2圈。C值大小对弹簧刚度影响很大。若其它条件相同时,C值愈小的弹簧,刚度愈大,弹簧也就愈硬;反之则愈软。不过,C值愈小的弹簧卷制愈困难,且在工作时会引起较大的切应力。此外,k值还和G、d、n有关,在调整弹簧刚度时,应综合考虑这些因素的影响。

弹簧模型(动力学问题)

模型组合讲解——弹簧模型(动力学问题) [模型概述] 弹簧模型是高考中出现最多的模型之一,在填空、实验、计算包括压轴题中都经常出现,考查范围很广,变化较多,是考查学生推理、分析综合能力的热点模型。 [模型讲解] 一. 正确理解弹簧的弹力 例1. 如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上。②中弹簧的左端受大小也为F的拉力作用。③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有() ①② ③④ 图1 解析:当弹簧处于静止(或匀速运动)时,弹簧两端受力大小相等,产生的弹力也相等,用其中任意一端产生的弹力代入胡克定律即可求形变。当弹簧处于加速运动状态时,以弹簧为研究对象,由于其质量为零,无论加速度a为多少,仍然可以得到弹簧两端受力大小相等。

F是作用力与反作用的关系,因此,弹簧 的弹力也处处相等,与静止情况没有区别。在题目所述四种情况中,由于弹簧的右端受到大小皆为F的拉力作用,且弹簧质量都为零,根据作用力与反作用力关系,弹簧产生的弹力大小皆为F,又由四个弹簧完全相同,根据胡克定律,它们的伸长量皆相等,所以正确选项为D。 二. 双弹簧系统 例2. (2004年苏州调研)用如图2所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度。该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器。用两根相同的轻弹簧夹着一个质量为2.0kg的滑块,滑块可无摩擦的滑动,两弹簧的另一端分别压在传感器a、b上,其压力大小可直接从传感器的液晶显示屏上读出。现将装置沿运动方向固定在汽车上,传感器b在前,传感器a在后,汽车静止时,传感器a、b的示数均为10N 图2 (1)若传感器a的示数为14N、b的示数为6.0N,求此时汽车的加速度大小和方向。 (2)当汽车以怎样的加速度运动时,传感器a的示数为零。 解析:(1 a1的方向向右或向前。 (2

弹簧类问题的几种模型及其处理方法

弹簧类问题的几种模型 及其处理方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

弹簧类问题的几种模型及其处理方法 学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。 一、弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。 2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。同时要注意弹力做功的特点:弹力做功等于弹性势能增量 的负值。弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。 二、弹簧类问题的几种模型 1.平衡类问题 例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。 分析:上提m1之前,两物块处于静止的平衡状态,所以有:, ,其中,、分别是弹簧k1、k2的压缩量。 当用力缓慢上提m1,使k2下端刚脱离桌面时,,弹簧k2最终恢复原长,其中,为此时弹簧k1的伸长量。

弹簧10大模型

图 1 图2 “弹簧”模型10大问题 太原市第十二中学 姚维明 模型建构: 在我们的日常生活中,弹簧虽然形态各异,大小不同,但是从弹簧秤,机动车的减震装置,各种复位按钮和机械钟表内的动力装置等,弹簧处处在为我们服务.因为弹簧本身的特性,如弹簧弹力的方向与弹簧所处的伸缩状态有关、弹力的大小与弹簧形变量大小有关;而且,弹簧在伸缩过程中涉及的物理过程较复杂,物理概念和规律较多,如力和加速度、功和能、冲量和动量等,因此,弹簧类试题多年来深受物理命题专家的青睐。 【模型】弹簧 【特点】:(1)一般问题中的轻弹簧是一种理想模型,不计质量。(2) 弹簧弹力不能突变,弹力变化需要形变量变化,需要时间的积累。(3)弹力变化:F = kx 或△F =k △x ,其中F 为弹力(△F 为弹力变化),k 为劲度系数,x 为形变量(△x 为形变变化量)。(4)弹簧可以贮存能量,弹力做功和弹性势能的关系为:W =-△E P 其中W 为弹簧弹力做功, △E P 为弹性势能变化。另外, 弹性势能计算公式暂不做要求。 一、轻弹簧的弹力与弹簧秤的读数问题 【典案1】如图1,四个完全相同的轻弹簧都处于水平位置,它们的右端受到大小相等的拉力F 作用,而左端的情况则各不相同: ⑴弹簧的左端固定在墙上 ⑵弹簧的左端受到大小也为F 的拉力作用 ⑶弹簧的左端拴一小物块m ,物块在光滑的 水平面上滑动 ⑷弹簧的左端拴一个小物块m ,物块在粗糙的水平面上滑动 以1l 、2l 、3l 、4l 依次表示四条弹簧的伸长量,则有 A 、1l 2l B 、4l >3l C 、1l >3l D 、2l =4l 〖解析〗因轻弹簧自身质量不计,则轻弹簧的伸长量与轻弹簧上的弹力大小成正比,因为四种状态中轻弹簧的弹力均为F ,故四种状态轻弹簧的伸长量相同;选D 【体验1】如图2,四个完全相同的弹簧秤都处于水平位置,它们的右端受到大小相等的拉力F 作用,而左端的情况则各不相同: ⑴弹簧秤的左端固定在墙上 ⑵弹簧秤的左端受到大小也为F 的拉力 作用 ⑶弹簧秤的左端拴一小物块m 1,物 块在光滑的水平面上滑动 ⑷弹簧秤的左端拴一个小物块m 1,物块在粗糙的水平面上滑动

服务质量体系模型及评价指数分析

服务质量体系模型及评价指数分析

服务质量指数 摘要:当前对服务质量的评价一般从顾客的主观感受程度,采用SEVEQUAL、顾客满意度等方法。可是,对服务质量的提供过程和提供能力涉及不够,而这些因素是决定服务质量水平的前提,经过对这些要素进行综合测评,才能准确、客观地体现服务质量的水平。本文提出建立以顾客为中心,涵盖服务质量能力、服务质量过程、服务质量绩效的服务质量体系模型,并用服务质量评价的新型工具——服务质量指数来定量化地描述服务质量水平。最后,经过实证研究论证了服务质量指数的有效性。 关键词:服务质量指数模型改进 Service Quality Index Tang Xiaofen (Shanghai Academy of Quality Management, Tel: 86-21- 62835871, E-mail:) Abstract: Nowadays the evaluation of service quality

usually adopts the methods such as SEVEQUAL, customer satisfaction, etc. And these methods employ the customer's impression to evaluate the service quality. But the attention paid to the process and capacity of service quality is not enough. While these two factors are prerequisites to determine the level of service quality. To describe the level of service quality accurately and objectively, it is necessary to evaluate these factors synthetically. This paper presents and establishes a service quality system model, which is customer-focused and covers three functional aspects of service capacity, service process and service performance. With the service quality index, the model describes quantitatively the level of service quality, which is a new point of view and method. Finally the paper introduces a real study case of an enterprise, which demonstrates the validity of service quality index. Key words: Service quality, Index, Model, Improvement 1 引言 当前全球国民生产总值的58%来自服务业,服务贸易在国际贸易中的比重达到25%,服务质量成为人们日益关注的焦点。国际有关

弹簧的应力分析.

CosmosWorks Designer 2005 Training Manual 第七章:吸振器的应力分 析 目的顺利修完本章以后,你将学会: 利用连接器加载约束并简化模型 控制网格密度以获得精确的应力解

COSMOSWorks 2005 Designer Training Manual 第七章:吸振器的应力分析 工程描述某一微型吸振器的组成包括 一根管子、活塞、夹钳以及 一螺旋状的弹簧。在本章 中,我们研究当该装置承受 10N压力时,由压环所产生 的应力分布情况。 由于螺旋弹簧中的应力情况 并不是我们所关心的,因 此,我们把弹簧从模型中去 掉,取而代之的是一等效的 弹簧连接器。 计算受压弹簧的刚度 首先,螺旋弹簧的刚度是我们必须考虑的。为此,我们单独分析该弹簧。 下面计算受压弹簧的刚度: 1打开零件. 打开SolidWorks 零件:弹簧副本。 弹簧的有效长度为方便加载约束与载荷,我们在弹簧的两端分别加上一个圆盘。 相应地,两圆盘间的距离为弹簧未受压时它的有效长度。 2创建研究名称. 进入COSMOSWorks, 然后创建一研究名称,取名为spring stiffness。 (静态分析,实体网格) 3回顾材料属性. 材料的属性(合金钢)可由SolidWorks中转移过来。 4加载固定约束. 在1号圆盘的底面施加一固定约束。 5施加径向约束. 在2号圆盘的柱面上 沿径向施加一径向约 束。 该约束使得弹簧仅能 沿轴向压缩(或伸 长)。

COSMOSWorks 2005 Designer Training Manual 第七章:吸振器的应力分析6加载压力. 现在,在承受柱面径向约束的圆盘(2号)的底面施加1N的压 力。 7网格划分与分析运行. 8得出z向位移. 得到的位移结果显示: 轴向位移为3.8 mm, 且沿着z轴方向。 受压刚度因此,该弹簧的受压刚度为 260 N/m。(k = f/x) 在下一个模型中,我们用上述结果来定义弹簧连接器,即f = kx, 其中,k=260 N/m。 分析吸振器装置为了分析此吸振器装置: 9打开组件. 打开文件名为shock的组件, 并去掉螺旋状弹簧 (零件文件为 Front Spring)。 10创建研究名称. 创建一名为mesh1的研究模型。 (静态分析,实体网格) 11施加固定约束. 在激振管(1)中的孔眼侧面上 施加一固定约束。 该约束完全限制了激振管部件。 12施加径向约束. 在振动活塞的细杆(2)端部的孔眼侧面上,施加径向约束。

弹簧压轴题(非常实用)

弹簧类问题在高中物理中占有相当重要的地位,且涉及到的物理问题多是一些综合性较强、物理过程又比较复杂的问题,从受力的角度看,弹簧上的弹力是变力;从能量的角度看,弹簧是个储能元件;因此,关于弹簧的问题,能很好的考察学生的分析综合能力,备受高考命题专家的青睐。解决这些问题除了一般要用动量守恒定律和能量守恒定律这些基本规律之外,搞清物体的运动情景,特别是弹簧所具有的一些特点,也是正确解决这类问题的重要法。 在有关弹簧类问题中,要特别注意使用如下特点和规律: 1.弹簧的弹力是一种由形变而决定大小和向的力。当题目中出现弹簧时,要注意弹力的大小与向时刻要与当时的形变相对应。在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置,找出形变量x与物体空间位置变化的几关系,分析形变所对应的弹力大小、向,以此来分析计算物体运动状态的可能变化。 2. 弹簧的弹力不能突变,它的变化要经历一个过程,这是由弹簧形变的改变要逐渐进行决定的。在瞬间形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。 3、弹簧上的弹力是变力,弹力的大小随弹簧的形变量发生变化,求弹力的冲量和弹力做功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值。如果弹簧被作为系统的

一个物体时,弹簧的弹力对系统物体做不做功都不影响系统的机械能。 4、对于只有一端有关联物体,另一端固定的弹簧,其运动过程可结合弹簧振子的运动规律去认识,突出过程的期性、对称性及特殊点的应用。如当弹簧伸长到最长或压缩到最短时,物体的速度最小(为零),弹簧的弹性势能最大,此时,也是关联物的速度向发生改变的时刻。若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零。若关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零。若关联物同时处在电磁场中,要注重过程分析。 5、两端均有关联物的弹簧,弹簧伸长到最长或压缩到最短时,相关联物体的速度一定相同,弹簧具有最大的弹性势能;当弹簧恢复原长时,相关联物体的速度相差最大,弹簧对关联物体的作用力为零。若物体再受阻力时,弹力与阻力相等时,物体速度最大。针对此类问题,要立足运动和受力分析,在解题法上以动量定理、动量守恒定律和动能定理等为首选。 下面我们结合例题来分析一下弹簧类问题的研究法。 1.质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地面上.平衡时,弹簧的压缩量为x。,如图4所示.一物块从钢板正上距离为3x。处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点.若物块质量为2m,仍从A

相关主题
文本预览
相关文档 最新文档