:完全归纳推与不完全归纳推理介绍
- 格式:ppt
- 大小:1.23 MB
- 文档页数:19
归纳推理一,归纳推理的定义所谓归纳推理,就是从个别性知识推出一般性结论的推理.例如:直角三角形内角和是180度;锐角三角形内角和是180度;钝角三角形内角和是180度;直角三角形,锐角三角形和钝角三角形是全部的三角形;所以,一切三角形内角和都是180度。
这个例子从直角三角形,锐角三角形和钝角三角形内角和分别都是180度这些个别性知识,推出了"一切三角形内角和都是180度"这样的一般性结论,就属于归纳推理.传统上,根据前提所考察对象范围的不同,把归纳推理分为完全归纳推理和不完全归纳推理.完全归纳推理考察了某类事物的全部对象,不完全归纳推理则仅仅考察了某类事物的部分对象.并进一步根据前提是否揭示对象与其属性间的因果联系,把不完全归纳推理分为简单枚举归纳推理和科学归纳推理.现代归纳逻辑则主要研究概率推理和统计推理.归纳推理的前提是其结论的必要条件.首先,归纳推理的前提必须是真实的,否则,归纳就失去了意义.其次,归纳推理的前提是真实的,但结论却未必真实,而可能为假.如根据某天有一只兔子撞到树上死了,推出每天都会有兔子撞到树上死掉,这一结论很可能为假,除非一些很特殊的情况发生,比如地理环境中发生了什么异常使得兔子必以撞树为快.我们可以用归纳强度来说明归纳推理中前提对结论的支持度.支持度小于50%的,则称该推理是归纳弱的;支持度小于100%但大于50%的,称该推理是归纳强的;归纳推理中只有完全归纳推理前提对结论的支持度达到100%,支持度达到100%的是必然性支持.二,归纳推理和演绎推理的关系归纳推理和演绎推理既有区别,又有联系.二者的区别是:1,思维进程不同.归纳推理的思维进程是从个别到一般.而演绎推理的思维进程不是从个别到一般,是一个必然地得出的思维进程.演绎推理不是从个别到一般的推理,但也不仅仅是从一般到个别的推理:演绎推理可以从一般到一般,比如从"一切非正义战争都是不得人心的"推出"一切非正义战争都不是得人心的";可以从个别到个别,比如从"罗吉尔·培根不是那个建立新的归纳逻辑学说的培根"推出"那个建立新的归纳逻辑学说的培根不是罗吉尔·培根";可以从个别和一般到个别,比如从"这个物体不导电"和"所有的金属都导电"推出"这个物体不是金属";还可以从个别和一般到一般,比如从"你能够胜任这项工作"和"有志者事竟成或者你不能够胜任这项工作"推出"有志者事竟成".在这里,应当特别注意的是,归纳推理中的完全归纳推理其思维进程既是从个别到一般,又是必然地得出.2,对前提真实性的要求不同.演绎推理不要求前提必须真实,归纳推理则要求前提必须真实.3,结论所断定的知识范围不同.演绎推理的结论没有超出前提所断定的知识范围.归纳推理除了完全归纳推理,结论都超出了前提所断定的知识范围.4,前提与结论间的联系程度不同.演绎推理的前提与结论间的联系是必然的,也就是说,前提真实,推理形式正确,结论就必然是真的.归纳推理除了完全归纳推理前提与结论间的联系是必然的外,前提和结论间的联系都是或然的,也就是说,前提真实,推理形式也正确,但不能必然推出真实的结论.二者的联系是:1,演绎推理如果要以一般性知识为前提,(演绎推理未必都要以一般性知识为前提.)则通常要依赖归纳推理来提供一般性知识.2,归纳推理离不开演绎推理.其一,为了提高归纳推理的可靠程度,需要运用已有的理论知识,对归纳推理的个别性前提进行分析,把握其中的因果性,必然性,这就要用到演绎推理.其二,归纳推理依靠演绎推理来验证自己的结论.例如,俄国化学家门捷列夫通过归纳发现元素周期律,指出,元素的性质随元素原子量的增加而呈周期性变化.后用演绎推理发现,原来测量的一些元素的原子量是错的.于是,他重新安排了它们在周期表中的位置,并预言了一些尚未发现的元素,指出周期表中应留出空白位置给未发现的新元素.逻辑史上曾出现两个相互对立的派别——全归纳派和全演绎派.全归纳派把归纳说成惟一科学的思维方法,否认演绎在认识中的作用.全演绎派把演绎说成是惟一科学的思维方法,否认归纳的意义.这两种观点都是片面的.正如恩格斯所说:"归纳和演绎,正如分析和综合一样,是必然相互联系着的.不应当牺牲一个而把另一个捧到天上去,应当把每一个都用到该用的地方,而要做到这一点,就只有注意它们的相互联系,它们的相互补充."①三,收集和整理经验材料的方法(一)收集经验材料的方法归纳推理要以个别性知识为前提,为了获得个别性知识,就必须收集经验材料.收集经验材料的方法有观察,实验等.1,观察这里所说的"观察"是"科学的观察"的简称.一般来说,人们把外界的自然信息通过感官输入大脑,经过大脑的处理,形成对外界的感知,就是观察.然而,盲目的,被动的感受过程不是科学的观察.科学的观察是在一定的思想或理论指导下,在自然发生的条件下进行(不干预自然现象)但有目的的,主动的观察.科学的观察往往不是单纯地靠眼耳鼻舌身五官去感受自然界所给予的刺激,而要借助一定的科学仪器去考察,描述和确认某些自然现象的自然发生.观察要遵循客观性原则,对客观存在的现象应如实观察.如果观察失真,便不能得到真实可靠的结论.但是,说观察要遵循客观性原则,并不是说在观察时应当不带有任何理论观点.理论总是不同程度地渗透在观察之中.提出观察要客观,是要求用正确的理论来观察事物,以免产生主观主义.理论对观察的渗透,说明了主体在观察中的能动作用.氧的发现过程生动地体现了理论对观察的作用.1774年8月,英国科学家普利斯特里在用聚光透镜加热氧化汞时得到了氧气,他发现物质在这种气体里燃烧比在空气中更强烈,由于墨守陈旧的燃素说,他称这种气体为"脱去燃素的空气".1774年,法国著名的化学家拉瓦锡正在研究磷,硫以及一些金属燃烧后质量会增加而空气减少的问题,大量的实验事实使他对燃素理论发生了极大怀疑.正在这时,普利斯特里来到巴黎,把他的实验情况告诉了拉瓦锡,拉瓦锡立刻意识到他的英国同事的实验的重要性.他马上重复了普利斯特里的实验,果真得到了一种支持燃烧的气体,他确定这种气体是一种新的元素.1775年4月拉瓦锡向法国巴黎科学院提出报告——金属在煅烧时与之相化合并增加其重量的物质的性质——公布了氧的发现.实际上,在普利斯特里发现氧气之前,瑞典化学家舍勒也曾独立地发现了氧气,但他把这种气体称为"火空气".氧的发现过程正如恩格斯在《资本论》第二卷序言中所说的:"普利斯特里和舍勒已经找出了氧气,但不知道他们找到的是什么.他们不免为现有燃素范畴所束缚.这种本来可以推翻全部燃素观点并使化学发生革命的元素,没有在他们手中结下果实.……(拉瓦锡)仍不失为氧气的真正发现者,因为其他两位不过找出了氧气,但一点儿也不知道他们自己找出了什么."当对象的性质使人们难以实际作用于对象(比如在天文学研究中)或者研究对象的特点要求避免外界干扰(如在许多心理学的研究中)时,最适用的收集经验材料的方法就是观察了.观察方法有一定局限性:(1)观察只能使我们看到现象,却看不到本质.现象是事物的外部联系和表面特征,是事物的外在表现.本质是事物的内部联系,是事物内部所包含的一系列必然性,规律性的综合.恩格斯说:"单凭观察所得到的经验,是决不能充分证明必然性的."①(2)观察有时无法区分真相与假象.比如,由于地球在运动,所以我们在地球上观察恒星的相互位置,好像发生了很大的变化,这在天文学上称为"视运动",可是视运动并不是天体的真实运动.2,实验实验是人们应用一定的科学仪器,使对象在自己的控制之下,按照自己的设计发生变化,并通过观察和思索这种变化来认识对象的方法.实验的特点是:(1)具有简化和纯化的特点.通过对影响某一对象的各种因素进行简化和纯化,突出主要因素,舍弃次要因素,排除与对象没有本质联系的因素的干扰,达到在比较单纯的状态下来认识对象.比如为研究某一植物在某一条件下对具有一定酸碱度的土壤的适应情况,在实验室中人为地控制大自然对植物生态的影响,只就酸碱度这一特定的因素进行考察.(2)具有强化条件的特点.通过实验,可以使对象处于一些特殊条件,极端状态下(如超高温,超高压,超真空和超强磁场等),使研究对象的特殊性质凸显出来,从而达到认识对象的特殊性质的目的.1956年杨振宁和李政道提出弱相互作用下宇称不守恒假说.为了检验这个假说,吴健雄用了钴-60作为实验材料进行实验.可是,在常温下钴-60本身的热运动和自旋方向杂乱无章,无法进行实验.于是吴健雄把钴-60冷却到0.01K,使钴核的热运动停止,实验便达到了预期效果.(3)具有可重复性.任何一个实验事实,应该能被重复实现,否则便不能成立,这是科学活动的一个规矩.例如,1974年10月初,丁肇中在美国通过实验证明了1/4粒子的存在,同年10月15日在西欧重复了这个实验,马上找到了1/4粒子,这就证明了丁肇中的实验是成功的.(二)整理经验材料的方法通过观察,实验等方法得到的经验材料,需要经过加工整理,才能形成科学的结论.整理经验材料的方法有比较,归类,分析与综合以及抽象与概括等.1,比较比较是确定对象共同点和差异点的方法.通过比较,既可以认识对象之间的相似,也可以了解对象之间的差异,从而为进一步的科学分类提供基础.运用比较方法,重要的是在表面上差异极大的对象中识"同",或在表面上相同或相似的对象中辨"异".正如黑格尔所说:"假如一个人能看出当前即显而易见的差别,譬如,能区别一支笔和一头骆驼,我们不会说这人有了不起的聪明.同样,另一方面,一个人能比较两个近似的东西,如橡树和槐树,或寺院与教堂,而知其相似,我们也不能说他有很高的比较能力.我们所要求的,是要能看出异中之同和同中之异."①在进行比较时必须注意以下两点:(1)要在同一关系下进行比较.也就是说,对象之间是可比的.如果拿不能相比的东西来勉强相比,就会犯"比附"的错误.比如,木之长是空间的长度,夜之长是时间的长度,二者不能比长短.(2)选择与制定精确的,稳定的比较标准.比如,在生物学中广泛使用生物标本,地质学中广泛使用矿石标本,用它们来证认不同品种的生物和矿石.这些标本就是比较的标准.现在研究陨石或登月采集的月岩物质,也是将它们同地球上的矿石标本比较.(3)要在对象的实质方面进行比较.例如比较两位大学生谁更优秀,必须就他们的思想品德,学习成绩,实践能力等实质方面进行比较,而不是就性别,籍贯,家庭贫富等方面进行比较.2,归类归类是根据对象的共同点和差异点,把对象按类区分开来的方法.通过归类,可以使杂乱无章的现象条理化,使大量的事实材料系统化.归类是在比较的基础上进行的.通过比较,找出事物间的相同点和差异点,然后把具有相同点的事实材料归为同一类,把具有差异点的事实材料分成不同的类.如全世界40万种左右植物,可把它们归为四大类(门):藻菌植物门,苔藓植物门,蕨类植物门和种子植物门.由门再往下分可以得出纲,目,科,属,种各级单位.归类与词项的划分是有区别的.(1)思维进程的方向不同.词项的划分是从较大的类,划分出较小的类.而归类则相反,它是从个体开始,上升到类,再上升到一般性更大的类.(2)作用不同.词项的划分是为了明确词项.归类则是把占有的材料系统化的方法.更为重要的是,由于正确的分类系统反映了事物的本质特征和内部规律性的联系,因而具有科学的预见性,能够指导人们寻找或认识新的具体事物.例如,以达尔文生物进化论为基础建立起来的生物自然分类系统,曾预言了许多当时尚未发现的过渡性生物.始祖鸟就是达尔文所预言并被人找到的一种.始祖鸟是介于爬虫类和鸟类之间的中间类型.它把这两类动物之间的空隙填补起来了,说明鸟类是由爬虫类演变而来的.3,分析与综合分析就是将事物"分解成简单要素".综合就是"组合,结合,凑合在一起".也就是说,将事物分解成组成部分,要素,研究清楚了再凑合起来,事物以新的形象展示出来.这就是采用了分析与综合的方法.如,分析一篇英文文章的结构,先是得到句子,单词,最后得到26个字母;反过来,综合是由字母组成单词,句子,再由句子组成文章,这些是文法所要研究的题材.再如,白色的光经过三棱镜,分解成红橙黄绿青蓝紫七色光;反过来,七色光又合成白色光.这就是光谱的分析与综合,由此可以解释彩虹的成因.分析和综合是两种不同的方法,它们在认识方向上是相反的.但它们又是密切结合,相辅相成的.一方面,分析是综合的基础;另一方面,分析也依赖于综合,没有一定的综合为指导,就无从对事物作深入分析.4,抽象与概括抽象是人们在研究活动中,应用思维能力,排除对象次要的,非本质的因素,抽出其主要的,本质的因素,从而达到认识对象本质的方法.概括是在思维中把对象本质的,规律性的认识,推广到所有同类的其他事物上去的方法.如发现"能导电"这一"金属"的共同本质后,可把这种共同的本质推广到全部金属上去,概括出全部金属都具有"能导电"的本质属性.第二节完全归纳推理完全归纳推理是根据某类事物每一对象都具有某种属性,从而推出该类事物都具有该种属性的结论.例如:"已知欧洲有矿藏,亚洲有矿藏,非洲有矿藏,北美洲有矿藏,南美洲有矿藏,大洋洲有矿藏,南极洲有矿藏,而欧洲,亚洲,非洲,北美洲,南美洲,大洋洲,南极洲是地球上的全部大洲,所以,地球上所有大洲都有矿藏."其逻辑形式如下: S1是PS2是P……Sn是PS1,S2,…,Sn是S类的全部对象所以,所有S都是P完全归纳推理的特点是:在前提中考察了一类事物的全部对象,结论没有超出前提所断定的知识范围,因此,其前提和结论之间的联系是必然的.运用完全归纳推理要获得正确的结论,必须满足两条要求:(1)在前提中考察了一类事物的全部对象.(2)前提中对该类事物每一对象所作的断定都是真的.完全归纳推理有两个方面的作用:(1)认识作用.完全归纳推理根据某类事物每一对象都具有某种属性,推出该类事物都具有该种属性,使人们的认识从个别上升到了一般.比如,上面根据"地球上的大洲"这一类事物的每个对象都有"有矿藏"这一属性,得出"地球上所有大洲都有矿藏"的结论,就体现了完全归纳推理的认识作用.(2)论证作用.因为完全归纳推理的前提和结论之间的联系是必然的,所以常被用作强有力的论证方法.比如对于论题"两个特称前提的三段论推不出结论",可以这样论证:前提是II的三段论推不出结论,前提是OO的三段论推不出结论,前提是IO(OI)的三段论推不出结论,前提是II的三段论,前提是OO的三段论,前提是IO(OI)的三段论是两个特称前提的三段论的全部对象,所以,两个特称前提的三段论推不出结论.完全归纳推理通常适用于数量不多的事物.当所要考察的事物数量极多,甚至是无限的时候,完全归纳推理就不适用了,而需要运用另一种归纳推理形式,即不完全归纳推理.第三节不完全归纳推理不完全归纳推理是根据某类事物部分对象都具有某种属性,从而推出该类事物都具有该种属性的结论.不完全归纳推理包括简单枚举归纳推理,科学归纳推理.一,简单枚举归纳推理在一类事物中,根据已观察到的部分对象都具有某种属性,并且没有遇到任何反例,从而推出该类事物都具有该种属性的结论,这就是简单枚举归纳推理.比如,被誉为"数学王冠上的明珠"的"哥德巴赫猜想"就是用了简单枚举归纳推理提出来的.200多年前,德国数学家哥德巴赫发现,一些奇数都分别等于三个素数之和.例如:17=3+3+1141=11+13+1777=7+17+53461=5+7+449哥德巴赫并没有把所有奇数都列举出来(事实上也不可能),只是从少数例子出发就提出了一个猜想:所有大于5的奇数都可以分解为三个素数之和.他把这个猜想告诉了数学家欧拉.欧拉肯定了他的猜想,并补充提出猜想:大于4的偶数都可以分解为两个素数之和.例如:10=5+514=7+718=9+9462=5+457前一个命题可以从这个命题得到证明,这两个命题后来合称为"哥德巴赫猜想".民间的许多谚语,如"瑞雪兆丰年","础润而雨,月晕而风","鸟低飞,披蓑衣"等,都是根据生活中多次重复的事例,用简单枚举归纳推理概括出来的.简单枚举归纳推理的逻辑形式如下:S1是PS2是P……Sn是PS1,S2,…,Sn是S类的部分对象,并且其中没有S不是P所以,所有S是(或不是)P简单枚举归纳推理的结论是或然的,因为其结论超出了前提所断定的知识范围.数学家华罗庚在《数学归纳法》一书中,对简单枚举归纳推理的或然性做了很好的说明: "从一个袋子里摸出来的第一个是红玻璃球,第二个是红玻璃球,甚至第三个,第四个,第五个都是红玻璃球时,我们立刻就会猜想:'是不是袋子里所有的球都是红玻璃球'但是,当我们有一次摸出一个白玻璃球时,这个猜想失败了.这时,我们会出现另一个猜想:'是不是袋里的东西全都是玻璃球'当有一次摸出一个木球时,这个猜想又失败了.那时,我们又会出现第三个猜想:'是不是袋里的东西都是球'这个猜想对不对,还必须继续加以检验,要把袋里的东西全部摸出来,才能见个分晓."①要提高简单枚举归纳推理的可靠性,必须注意以下两条要求:(1)枚举的数量要足够多,考察的范围要足够广.(2)考察有无反例.通常把不注意以上两条要求因而样本过少,结论明显为假的简单枚举归纳推理称为"以偏赅全"或"轻率概括".鲁迅在《内山完造作序》里写到:"一个旅行者走进了下野的有钱的大官的书斋,看见有许多很贵的砚石,便说中国是'文雅的国度';一个观察者到上海来一下,买几种猥亵的书和图画,再去寻寻奇怪的观览物事,便说中国是'色情的国度'."在这篇文章中,鲁迅更进一步揭示了此类人因为枚举的数量不够多或考察的范围不够广,不注意考察有无反例,以致"以偏赅全"或"轻率概括"而最后必然要陷入的窘境:"倘到穷文人的家里或者寓里去,不但无所谓书斋,连砚石也不过用着两角钱一块的家伙.一看见这样的事,先前的结论就通不过去了,所以观察者也就有些窘."简单枚举归纳推理是归纳推理中最简单的一种方法.但是,尽管如此,其意义却不可忽视.(1)简单枚举归纳推理有助发现的作用.当还不能找到概括的充分根据,但已有相当的材料时,就要运用简单枚举归纳推理,作出初步概括,推出一个或然性结论,以作为进一步研究的起点.因而,形成假说时常用到简单枚举归纳推理.例如,在波义耳定律的发现过程中,简单枚举归纳推理就起了一定的作用.波义耳从自己所掌握的许多实验事实中,概括出"在一定条件下,气体体积和它所受到的压强成反比"这一定律.(2)简单枚举归纳推理也可以用作论证的方法,在论证过程中发挥一定的作用.比如,胡适晚年有这样一段谈话:"凡是大成功的人,都是有绝顶聪明而肯做笨功夫的人.不但中国如此,西方也如此.像孔子,他说'吾尝终日不食,终夜不寝,以思,无益,不如学也',这是孔子做学问的功夫.孟子就差了.汉代的郑康成的大成就,完全是做的笨功夫.宋朝的朱夫子,他是一个绝顶聪明的人,他十五六岁时就研究禅学,中年以后才改邪归正.他说的'宁详毋略,宁近毋远,宁下毋高,宁拙毋巧'十六个字,我时常写给人家的.他的《四书集注》,除了《大学》早成定本外,其余仍是随时修改的.现在的《四书集注》,不知是他生前已经印行的本子,还是他以后修改未定的本子.如陆象山,王阳明,也是第一等聪明的人.像顾亭林,少年时大气磅礴,中年时才做实学,做笨的功夫,你看他的成就!"在这里,胡适为了论证"凡是大成功的人,都是有绝顶聪明而肯做笨功夫的人"的观点,用的就是简单枚举归纳推理.二,科学归纳推理科学归纳推理是根据某类事物中部分对象与某种属性间因果联系的分析,推出该类事物具有该种属性的推理.例如:金受热后体积膨胀;银受热后体积膨胀;铜受热后体积膨胀;铁受热后体积膨胀;因为金属受热后,分子的凝聚力减弱,分子运动加速,分子彼此距离加大,从而导致膨胀,而金,银,铜,铁都是金属;所以,所有金属受热后体积都膨胀.上例在前提中不仅考察了一类事物的部分对象有某种属性,而且进一步指出了对象与属性之间的因果联系,由此推出结论.这就是科学归纳推理.科学归纳推理的形式如下:S1是PS2是P……Sn是PS1,S2,…,Sn是S类的部分对象,其中没有Si(1≤i≤n)不是P ;并且科学研究表明, S和P之间有因果联系所以,所有S都是P科学归纳推理与简单枚举归纳推理相比,有共同点和不同点.它们的共同点是:都属于不完全归纳推理,前提中都只是考察了一类事物的部分对象,结论则都是对一类事物全体的断定,断定的知识范围超出前提.不同点是:(1)推理根据不同.简单枚举归纳推理仅仅根据已观察到的部分对象都具有某种属性,并且没有遇到任何反例.科学归纳推理则不是停留在对事物的经验的重复上,而是深入进行科学分析,在把握对象与属性之间因果联系的基础上作出结论.(2)前提数量对于两者的意义不同.对于简单枚举归纳推理来说,前提中考察的对象数量越多,范围越广,结论就越可靠.对于科学归纳推理来说,前提的数量不具有决定性的意义,只要充分认识对象与属性之间的因果联系,即使前提的数量不多,甚至只有一两个典型事例,也能得到可靠结论.正如恩格斯所说,十万部蒸汽机并不比一部蒸汽机更能说明热能转化为机械能.佛教《百喻经》中有一则故事说到,从前有一位富翁想吃芒果,打发他的仆人到果园去买,并告诉他:"要甜的,好吃的,你才买."仆人拿好钱就去了.到了果园,园主说:"我这里树上的芒果个个都是甜的,你尝一个看."仆人说:"我尝一个怎能知道全体呢我应当个个都尝过,尝一个买一个,这样最可靠."仆人于是自己动手摘芒果,摘一个尝一口,甜的就都买回去.带回家去,富翁见了,觉得非常恶心,一齐都扔了.这则故事非常有讽刺意味地说明了,简单枚举归纳推理在有些情况下是又笨又懒的办法,其笨在重复,其懒在不思考.当我们观察到一些S具有属性P后,应当开始思考,为什么这些S会有属性P呢也就是,去弄清楚S和P究竟有没有因果联系.通过把握对象与属性之间的因果联系,我们就可以尝数个芒果而知一棵树上全部芒果是甜还不是不甜,比如,我们可以想到,芒果的甜与不甜和园中土壤,日。
完全归纳推理和不完全归纳推理1.完全归纳推理先看一个实例:当着天文学家对太阳系的大行星运行轨道进行考察的时候,他们发现:水星是沿着椭圆轨道绕太阳运行的,金星是沿着椭圆轨道绕太阳运行的,地球是沿着椭圆轨道绕太阳运行的,火星是沿着椭圆轨道绕太阳运行的,木星是沿着椭圆轨道绕太阳运行的,土星是沿着椭圆轨道绕太阳运行的,天王星是沿着椭圆轨道绕太阳运行的,海王星是沿着椭圆轨道绕太阳运行的,冥王星是沿着椭圆轨道绕太阳运行的,而水星、金星、地球、火星、土星、木星、天王星、海王星、冥王星是太阳系的全部大行星。
由此,他们便得出如下结论:所有的太阳系大行星都是沿着椭圆轨道绕太阳运行的。
这一结论,就是运用完全归纳推理得出的。
可见,完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,发现它们每一个都具有某种性质,因而得出结论说:该类事物都具有某种性质。
根据完全归纳推理的这一定义,它的逻辑形式可表示如下(S表示事物,P表示属性),S1--PS2--P……………Sn--P(S1,S2……Sn是S类的所有分子)所以,S--P从公式可见,完全归纳推理在前提中考察的是某类事物的全部对象,而不是某一部分对象,因此,其结论所断定的范围并未超出前提所断定的范围。
所以其结论是根据前提必然得出的,即其前提与结论的联系是必然的。
就此而言,完全归纳推理具有演绎的性质。
由于完全归纳推理要求对某类事物的全部对象一一列举考察,所以,它的运用是有局限性的。
如果某类事物的个别对象是无限的(如天体、原子)或者事实上是无法一一考察穷尽的(如工人,学生),它就不能适用了。
这时就只能运用不完全归纳推理了。
2.不完全归纳推理不完全归纳推理是这样一种归纳推理:根据对某类事物部分对象的考察,发现它们具有某种性质,因而得出结论说,该类事物都具有某种性质。
第一种情况。
主要根据是:所碰到的某类事物的部分对象都具有某种性质,而没有发现相反的情况。
比如-《内经•针刺篇》记载了这样一个故事:有一个患头痛的樵夫上山砍柴,一次不慎碰破足趾,出了一点血,但头部不疼了。
不完全归纳推理的5个逻辑规则一、什么是不完全归纳推理不完全归纳推理是指前提中考察了某类事物的部分对象具有(或不具有)某种属性,从而推出该类事物具有(或不具有)这种属性的推理。
例如,人们通过考察发现,甲乌鸦是黑的,乙乌鸦是黑的,丙乌鸦是黑的,一直到n乌鸦都是黑的;而甲、乙、丙直到n乌鸦只是乌鸦中的部分对象,从而推出结论:天下所有的乌鸦都是黑的。
这个结论就是运用不完全归纳推理而得出的。
其推理过程如下:甲乌鸦是黑的;乙乌鸦是黑的;丙乌鸦是黑的;……n乌鸦是黑的;……甲乌鸦直到n乌鸦只是乌鸦中的部分对象;所以,天下所有的乌鸦都是黑的。
不完全归纳推理由于其前提只考察了某类事物中的部分对象具有(或不具有)某种属性,而结论则是该类事物的全部对象都具有(或不具有)某种属性,这样其结论的断定明显地超出了其前提所断定的范围。
因而,前提与结论之间的联系便是或然的,也就是说,即使前提真实,推理有效,而其结论也不必然为真。
因此,不完全归纳推理是一种或然性推理。
二、不完全归纳推理的种类根据其前提是否揭示了对象和属性间的因果联系或其他必然联系,把不完全归纳推理分为简单枚举归纳推理和科学归纳推理两类。
(一)简单枚举归纳推理1.什么是简单枚举归纳推理简单枚举归纳推理是指凭经验观察到某类事物中的部分对象具有(或不具有)某种属性,同时,又没有遇到反例,从而推出该类事物具有(或不具有)这一属性。
简单枚举归纳推理简称为简单枚举法,它是一种最典型的归纳推理。
例如:甲地的棉花是白的;乙地的棉花是白的;丙地的棉花是白的;丁地的棉花是白的;……在考察中未遇到反例;所以,所有的棉花都是白的。
这个推理就是一个简单枚举归纳推理。
前提中只考察了棉花的部分对象具有白的属性,从而推出了所有的棉花都具有这种属性的结论,即它是从经验的个别事实,概括出了一般性的结论。
简单枚举法的结构,可用公式表示为:S1是(或不是)P;S2是(或不是)P;S3是(或不是)P;……Sn是(或不是)P;(S1、S2、S3……Sn是S中的部分对象,并且在已考察的事例中未遇到相反的情况);所以,所有的S是(或不是)P。
小学《综合素质》高频考点详解:逻辑推理之归纳推理归纳推理①归纳推理的定义归纳推理是指从一系列个别性的判断出发,引申出一般性结论的推理。
这种推理的推导方向是由个别到一般。
②归纳推理的分类归纳推理按照其推理的前提中是否考查了一类事物的全部,可以分为完全归纳推理和不完全归纳推理。
不完全归纳推理,又分为简单枚举归纳推理和科学归纳推理。
此外.还有概率归纳推理和溯因归纳推理。
需要注意的是,归纳推理中的“完全”和“不完全”是相对的,它是就推理前提的数量方面来说的。
所谓“完全”是从整体上来对一类对象的全体加以考查;所谓“不完全”则是从局部(部分)上来对一类对象的全体加以推断。
因此,它只具有相对的意义。
a.完全归纳推理完全归纳推理.是以某一类对象中的每一个成员都具有(或不具有)某种属性为前提,因而推断出该类对象的全体都具有(或不具有)这种属性的推理。
因此,完全归纳推理的前提是个别性的,其结论却是一般性的。
完全归纳推理的结构可用公式表示为:S1是(或不是)P,S2是(或不是)P,S3是(或不是)P,Sn是(或不是)P。
S1……Sn是S类的全部对象。
所以,S是(或不是)P。
b.不完全归纳推理不完全归纳推理,是以某一类对象中的部分对象具有或不具有某种性质,因而推出该类对象的全体具有或不具有这种性质的一般性结论的推理。
不完全归纳推理根据前提中是否考察了事物对象与其属性间的内在联系,可以分为简单枚举归纳推理和科学归纳推理。
(a)简单枚举归纳推理简单枚举归纳推理,是根据某种属性在对象中不断重复而没有出现与之相反的情况,因而便推断该类对象的全体也都具有这种属性的一种推理。
这种推理形式可用公式表示为:s1是(或不是)P,S2是(或不是)P,S3是(或不是)P,Sn是(或不是)P,s1.……Sn是S类中的部分对象,且在重复中未遇到相反的情况。
所以,所有S是(或不是)P。
由于简单枚举归纳推理结论的得出仅仅是以推理前提的无矛盾性为依据,而推理前提所考察的又仅仅是一类对象中的一部分,因此其结论并不具有必然性而是或然的。
不完全归纳推理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII不完全归纳推理,又称“不完全归纳法”,它是以某类中的部分对象(分子或子类)具有或不具有某一属性为前提,推出以该类对象全部具有或不具有该属性为结论的归纳推理。
不完全归纳推理由于前提只考察了某类事物中的部分对象具有这种属性,而结论却断定该类事物的全部对象都具有这种属性,其结论所断定的范围显然超出了前提所断定的范围,所以,前提同结论之间的联系是或然的。
也就是说,即使前提真实,推理形式正确,其结论也未必一定是真的。
不完全归纳推理的类型不完全归纳推理分为两类,一是简单枚举法,一是科学归纳法。
一、简单枚举法简单枚举归纳推理,又称“简单枚举法”,它是这样一种不完全归纳推理:它根据某类中的部分对象(分子或子类)具有或不具有某一属性,并且未遇反例之前提,推出该类对象全部具有或不具有该属性之结论。
其形式如下:上式中的S1,S2,S3,……,Sn.可以表示S类的个体对象,也可以表示S类的子类。
二、科学归纳法科学归纳推理,又称“科学归纳法”,它是以科学分析为主要依据,由某类中部分对象与其属性之间所具有的因果联系,推出该类的全部对象都具有某种属性的归纳推理。
其形式为:所谓因果联系是指原因和结果之间的联系。
原因和结果本是哲学中的一对范畴。
它是对自然界和社会领域中普遍存在的一种必然联系的哲学概括和反映。
所谓原因,就是引起某现象出现的现象;所谓结果,就是被某现象引起的现象。
例如,某甲未付货款在先,致使某乙未交货物。
甲的行为就是乙未交货的原因,乙未交货就是甲未付款的结果。
不完全归纳法的特点是结论所断定的范围超出了前提所断定的范围,结论的知识往往不只是前提已有知识的简单推广,而且还揭示出存在于无数现象之间的普遍规律性,给我们提供全新的知识,尤其是科学的普遍原理。
人们要认识周围的事物,首先必须对事物的现象进行大量的观察和实验,然后根据观察和实验所确认的一系列个别事实,应用不完全归纳法由个别的知识概括成为一般的知识,从而达到对普遍规律性的认识。
完全归纳推与不完全归纳推理介绍完全归纳推理和不完全归纳推理是数学中使用的两种常用推理方法。
它们在数学证明和问题解决过程中发挥着重要的作用。
本文将首先介绍归纳推理的概念和原理,然后详细阐述完全归纳推理和不完全归纳推理的特点和应用。
首先,我们来了解一下归纳推理的概念和原理。
归纳推理是一种由特例到一般的推理方法,基于一系列已知实例的观察和分析,通过找到普遍规律或者推断结论的方法。
它通常使用以下的思维过程:观察一些具体例子,从中总结出普遍规律或者结论,并进一步应用于未知情况。
通过这种思维方式,我们可以通过少量实例推断出普适规律。
接下来,我们来看看完全归纳推理。
完全归纳推理是一种通过数学归纳法建议的推理方法。
它基于归纳原理,通过三个步骤来完成证明:基础步骤、归纳假设和归纳推理。
在基础步骤中,我们证明了一个基本实例;在归纳假设中,我们假设一个正整数n的一些性质成立;在归纳推理中,我们证明了n+1个性质成立。
通过这种方式,我们可以推断出对于所有正整数n,该性质都成立。
例如,我们可以证明对于任意正整数n,1+2+3+...+n=n(n+1)/2、这就是完全归纳推理。
完全归纳推理的特点是它可以推论出所有的情况。
它可以解决那些需要证明一个性质对于一切正整数都成立的问题。
然而,完全归纳推理有一个前提条件,就是必须首先证明基础步骤成立,这是基本实例的验证步骤。
如果基础步骤不能成立,那么我们无法使用完全归纳推理。
除了完全归纳推理,还有不完全归纳推理。
不完全归纳推理是一种缩小归纳范围的方法。
它不要求证明所有的情况,而只要求证明一部分情况即可。
例如,我们要证明一些性质对于一部分正整数成立,可以通过选择一个最小的正整数m,并证明该性质对于m成立。
然后,假设该性质对于所有比m大的正整数n成立,并通过归纳推理来证明该性质对于n+1成立。
虽然不完全归纳推理只考虑了一部分情况,但在一些情况下,它仍然能够证明一般情况的有效性。
总结起来,完全归纳推理和不完全归纳推理是数学中使用的两种常用推理方法。
For personal use only in study and research; not forcommercial use完全归纳推理和不完全归纳推理1.完全归纳推理先看一个实例:当着天文学家对太阳系的大行星运行轨道进行考察的时候,他们发现:水星是沿着椭圆轨道绕太阳运行的,金星是沿着椭圆轨道绕太阳运行的,地球是沿着椭圆轨道绕太阳运行的,火星是沿着椭圆轨道绕太阳运行的,木星是沿着椭圆轨道绕太阳运行的,土星是沿着椭圆轨道绕太阳运行的,天王星是沿着椭圆轨道绕太阳运行的,海王星是沿着椭圆轨道绕太阳运行的,冥王星是沿着椭圆轨道绕太阳运行的,而水星、金星、地球、火星、土星、木星、天王星、海王星、冥王星是太阳系的全部大行星。
由此,他们便得出如下结论:所有的太阳系大行星都是沿着椭圆轨道绕太阳运行的。
这一结论,就是运用完全归纳推理得出的。
可见,完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,发现它们每一个都具有某种性质,因而得出结论说:该类事物都具有某种性质。
根据完全归纳推理的这一定义,它的逻辑形式可表示如下(S表示事物,P表示属性),S1--PS2--P……………Sn--P(S1,S2……Sn是S类的所有分子)所以,S--P从公式可见,完全归纳推理在前提中考察的是某类事物的全部对象,而不是某一部分对象,因此,其结论所断定的范围并未超出前提所断定的范围。
所以其结论是根据前提必然得出的,即其前提与结论的联系是必然的。
就此而言,完全归纳推理具有演绎的性质。
由于完全归纳推理要求对某类事物的全部对象一一列举考察,所以,它的运用是有局限性的。
如果某类事物的个别对象是无限的(如天体、原子)或者事实上是无法一一考察穷尽的(如工人,学生),它就不能适用了。
这时就只能运用不完全归纳推理了。
2.不完全归纳推理不完全归纳推理是这样一种归纳推理:根据对某类事物部分对象的考察,发现它们具有某种性质,因而得出结论说,该类事物都具有某种性质。
初中数学归纳推理教案教学目标:1. 理解归纳推理的概念和基本思想,能够区分完全归纳推理和不完全归纳推理。
2. 掌握数学归纳法的原理和基本步骤,能够运用数学归纳法证明一些简单的数学命题。
3. 通过实例和练习,培养学生的归纳、推理和证明能力,提高学生的思维能力和创新意识。
教学内容:1. 归纳推理的概念和分类。
2. 数学归纳法的原理和基本步骤。
3. 数学归纳法在证明数学命题中的应用。
教学重点:1. 完全归纳推理和不完全归纳推理的区别。
2. 数学归纳法的原理和基本步骤。
3. 运用数学归纳法证明一些简单的数学命题。
教学难点:1. 理解归纳推理的概念和基本思想。
2. 掌握数学归纳法的原理和基本步骤。
3. 运用数学归纳法证明较为复杂的数学命题。
教学方法:1. 通过实例和问题导入,引导学生自主探究归纳推理的概念和基本思想。
2. 通过讲解和演示,帮助学生掌握数学归纳法的原理和基本步骤。
3. 通过练习和讨论,鼓励学生应用数学归纳法证明一些简单的数学命题,培养学生的思维能力和创新意识。
教学过程:1. 导入:通过实例引入归纳推理的概念和分类,引导学生自主探究归纳推理的基本思想。
2. 讲解:介绍数学归纳法的原理和基本步骤,通过演示帮助学生理解数学归纳法的应用。
3. 练习:给出一些简单的数学命题,鼓励学生运用数学归纳法证明,培养学生的思维能力和创新意识。
4. 讨论:组织学生进行小组讨论,交流学习心得和应用体会,加深对数学归纳法的理解和掌握。
5. 小结:总结本节课的主要内容和知识点,强调数学归纳法在数学学习和科学研究中的重要性。
普通逻辑(科学版)授课教案第五章归纳推理第三节不完全归纳推理一、什么是不完全归纳推理不完全归纳推理,就是根据某类中的部分对象具有(或不具有)某种属性,从而推出该类所有对象都具有(或不具有)该属性的推理。
由于不完全归纳推理的前提考察的事例,只是对某类事物的部分对象的认识,结论是关于该类事物的全部对象的认识,它的结论超出了前提所反映的事物情况的范围,即使前提真实,结论也未必可靠。
因而,不完全归纳推理是或然性推理。
不完全归纳推理的特点是结论所断定的范围超出了前提所断定的范围,它往往是透过部分个体的现象去发现去揭示一些普遍的规律。
因而在认识上大大拓展了我们认识的广度和深度。
不完全归纳推理根据前提是否分析了被考察对象与属性之间的因果关系,可分为简单枚举归纳推理和科学归纳推理等。
二、简单枚举归纳推理简单枚举归纳推理就是根据某类事物中的部分对象具有(或不具有)某种属性,并且在已考察的事例中没有遇到相反情况,从而推出该类事物的全部对象都具有(或不具有)该属性的归纳推理。
例如,某地发生一起碎尸案,死者尸体被分为40余块。
为查明死者是谁,公安人员需要刻画死者的年龄特征。
法医勘验尸体发现,死者是一萌生智齿的女性。
那么,萌生智齿的女性年龄应为多大呢?为此,公安人员在该市抽查50多名萌生智齿的女性,结果发现,她们的年龄都在19~21岁之间,没有发现小于19岁和大于21岁的情况。
于是得出结论:“凡已萌生智齿的女性,年龄都在19~21岁之间。
”这里运用的就是简单枚举归纳推理。
其推理形式为:第一名萌生智齿的女性,年龄为19岁,第二名萌生智齿的女性,年龄为20岁,第三名萌生智齿的女性,年龄为21岁,……第四十九名萌生智齿的女性,年龄为21岁,第五十名萌生智齿的女性,年龄为19岁,(这50多名女性都是该市萌生智齿的女性,并且是萌生智齿的女性中的部分对象,考察事例中未遇到不同情况。
)所以,所有该市萌生智齿的女性,年龄都在19岁~21岁之间。