浙教版七年级数学下册培优专题—第1讲 平行线性质和判定
- 格式:doc
- 大小:157.00 KB
- 文档页数:13
基础巩固篇第一讲平行线及其判定思维导图重难点分析重点分析:1. 在同一平面内,不相交的两条直线叫做平行线,用符号“∥”表示.2. “三线八角” :两条直线被第三条直线所截,构成八个角,称为“三线八角” ,这八个角中,同位角有四对,内错角有两对,同旁内角有两对.3. 平行线的判定方法:(1)根据定义判定;(2)三个判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;(3)平行的传递性;(4)在同一平面内,垂直于同一条直线的两条直线互相平行.难点分析:1. 平行线必在同一平面内,分别在两个平面内的两条直线,即使不相交,也不一定平行.2. 过已知直线外一点,有且只有一条直线与已知直线平行,这一性质指出了过直线外一点作这条直线的平行线的“存在性”和“唯一性” ,要注意“直线外一点”这一条件.3. 平行线的判定定理是通过角的关系说明直线的位置关系,实现了几何条件之间的转化,应用定理时要注意正确判断角的位置特征.例题精析例1、在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为().A.1 个B.2 个C.3 个D.4 个思路点拨:根据直线的性质公理、相交线的定义、垂线的性质、平行公理对各小题分析判断后即可得解.解题过程:①过两点有且只有一条直线,正确;②两条不相同的直线若相交则有且只有一个公共点,若平行则没有公共点,故错误;③经过直线外一点有且只有一条直线与已知直线垂直,正确;④经过直线外一点有且只有一条直线与已知直线平行,正确;综上所述,正确的有①③④共 3 个. 故选 C.方法归纳:本题考查了平行公理、直线的性质、垂线的性质以及相交线的定义,属于基础概念题,熟记概念是解题的关键.易错误区:两条不相同的直线除了平行外,如果不在同一平面内,也可能没有公共点.例2、如图,标有角号的7 个角中共有对内错角,对同位角,对同旁内角.思路点拨:根据内错角、同位角及同旁内角的定义判断即可求得本题. 解题过程:共有 4 对内错角:分别是∠ 1和∠4,∠2 和∠5,∠6 和∠1,∠5和∠7;2 对同位角:分别是∠ 7 和∠ 1 ,∠ 5 和∠ 6 ;4对同旁内角:分别是∠ 1和∠5,∠3 和∠ 4,∠ 3和∠ 2,∠ 4和∠ 2. 方法归纳:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由这两个角在图形中的相对位置决定. 在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.易错误区:同位角的边构成“ F”形,内错角的边构成“ Z”形,同旁内角的边构成“ U”形. 图形较为复杂,要注意从复杂的图形中分解出基本图形.例3、(1)如图1,AB,CD,EF 是三条公路,且AB⊥EF,CD⊥EF.试判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的条件下,若小路OM平分∠ EOB,通往加油站N的岔道O′N平分∠ CO′ F,试判断OM与O′N 的位置关系.思路点拨:(1)根据在同一平面内,垂直于同一直线的两条直线互相平行,即可证得AB∥ CD;(2)可通过构建直线OM与O′N 的同位角来得出OM∥O′ N的结论.解题过程:(1)∵ AB⊥EF,CD⊥ EF,∴ AB∥ CD(在同一平面内,垂直于同一直线的两条直线互相平行).(2)如图,延长NO′与AB交于点P.∵OM平分∠ EOB,O′ N平分∠ CO′F,∴∠ EOM=∠FO′N=45° .∵∠ FO′ N=∠ EO′ P,∴∠ EOM=∠EO′P=45° .∴ OM∥ O′N(同位角相等,两直线平行).方法归纳:本题主要考查了平行线的判定方法. 解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.易错误区:第(2)题中虽然有∠ EOM与∠ FO′N相等,但它们不是同位角,不能直接用来判定两直线平行.例4、如图,∠ ABD和∠ BDC的平分线交E,BE的延长线交CD于点F,∠ 1+∠2=90°.于点(1)求证:AB∥ CD;(2)试探究∠ 2 与∠3 的数量关系.思路点拨:(1)根据BE,DE分别平分∠ ABD,∠BDC,且∠ 1+∠2=90°,可得∠ ABD+∠ BDC=180°,根据同旁内角互补,可得两直线平行;(2)根据∠ 1+∠ 2=90°,可得∠ BED=90°,从而可得∠3+∠FDE=90°,将等角代换,即可得出∠ 3与∠2 的数量关系解题过(1)证明:∵ BE,DE分别平分∠ ABD,∠ BDC,11 ∴∠1= ∠ ABD,∠ 2= ∠BDC.22 ∵∠ 1+∠2=90°,∴∠ ABD+∠ BDC=180° . ∴ AB∥ CD(同旁内角互补,两直线平行). (2)∵ DE平分∠ BDC,∴∠ 2=∠ FDE. ∵∠ 1+∠2=90°,∴∠ BED=∠ DEF=90°. ∴∠ 3+∠ FDE=90°. ∴∠ 2+∠3=90°. 方法归纳:本题主要考查了角平分线的性质以及平行线的判定,注意题中各角之间的数量关系要理清楚.易错误区:第(2)题中的数量关系不是等量关系,不要误认为∠2=∠3.例5、如图1,已知∠ EAC=90°,∠ 1+∠2=90°,∠ 1=∠ 3,∠ 2=∠4. 求证:(1)DE∥BC;2)若将图形改变为图2、图3,其他条件不变,1)中的结论是否成立?若成立,请选择一个图形予以证明;若不成立,思路点拨:(1)首先证明∠ 1+∠3+∠ 2+∠4=180°,进而证明∠ D+∠B=180°,即可解决问题;(2)在图 2 中,连结CE,证明∠ AEC+∠ACE+∠3+∠ 4=180°,即可解决问题. 解题过程:(1)如图1,∵∠ 1=∠ 3,∠ 2=∠4,∴∠ 1+∠ 3+∠ 2+∠ 4=2(∠ 1+∠2).∵∠ 1+∠ 2=90°,∴∠ 1+∠ 3+∠ 2+∠4=180°.∵∠ D+∠ B+∠ 1+∠3+∠2+∠4=360°,∴∠ D+∠ B=180° .∴DE∥BC(同旁内角互补,两直线平行)(2)成立. 如图,连结EC.∵∠ 1=∠ 3,∠ 2=∠4,且∠ 1+∠2=90°,∴∠ 3+∠ 4=∠ 1+∠2=90°.∵∠ EAC=90°,∴∠ AEC+∠ACE=180° -90 °=90°.∴∠ AEC+∠ACE+∠3+∠ 4=180°. ∴DE∥BC(同旁内角互补,两直线平行)∴(1)中的结论仍成立.图 3 用类似方法可得DE∥ BC.方法归纳:本题考查了平行线的判定问题,解题的关键是灵活运用三角形的内角度数关系(三角形三个内角和等于180°),结合平行线的判定定理来分析、判断、解答易错误图 2 通过连结EC将∠3 和∠ 4的关系用三角形联系起来是本题探究提升例、三条直线两两相交于三点(如图1),共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?四条直线两两相交呢(如图2)?你能发现n 条直线两两相交的规律吗?思路点拨: 解题的关键在于找到每个图形中含有几个三线八角的基本图形, 三条直线两两相交, 共有 3 个三线八角的基本图形;四条直线两两相交有 12 个三线八角的基本图形 .n 条直线中任选两条有 n (n 1) 种选法,然后在剩下的( n-2)条直线中任选一条直线作为截线共有( n-2 )2 种选法,所以 n 条直线两两相交共有 n (n 1)(n 2) 个三线八角的基本图形 .2解题过程: 三条直线两两相交于三点,共有 6 对对顶角, 12 对邻补角, 12 对同位角, 6 对内 错角, 6对同旁内角;四条直线两两相交,共有 12 对对顶角, 24对邻补角, 48 对同位角, 24 对内错角, 24 对同旁内角; n 条直线两两相交,共有 nn-1 对对顶角, 2nn-1 对邻补角, 2nn-1 ( n-2 )对同位角, nn-1 (n-2 )对内错角, nn-1 ( n-2 )对同旁内角 .方法归纳: 对于规律题关键在于找出规律,但在找到规律的同时还需要明确基本图形的特征 . 易错误区: 本题通过分解图形,利用“三线八角”这一基本图形解决问题,仅利用图形找角是 不容易找全的 .专项训练拓展训练A 组3. 如图,请填写一个你认为恰当的条件: ,使 AB ∥ CD.4. 如图,有下列判断:①∠ A 与∠ 1是同位角;②∠ A 与∠ B 是同旁内角;③∠ 4 与∠ 1是内错 角;④∠ 1与∠3是同位角 .其中正确的是 (填序号) .1. 如图,列条件中,能判定 DE ∥ AC 的是( 1 题)②④ ).A. ①②2. 如图,(第 8 题)5. 如图,∠ A=70°, O 是 AB 上一点,直线 CO与 AB 所夹的∠ BOC=82°,当直线 OC 绕点 O 按逆 时针方向至少旋转 °时, OC ∥ AD. 6. 如图,已知∠ 1=∠2,∠ BAC=20°,∠ ACF=80°. ( 1)求∠ 2 的度数; (2)FC 与 AD 平行吗?为什么? (3)根据以上结论,你能确定∠B 组7.在同一平面内,有 l 1,l 2,l 3,l 4四条直线,若 l 1⊥l 2,l 2⊥l 3, l 3⊥l 4, A.l B.lC.lD.l8.如图, AB ⊥ BC ,∠ 1+∠ 2=90°,∠ 2=∠3.求证: BE ∥DF.则( ) .1⊥l 3, 1∥l 3, 1∥l 3, 1∥l 4, l 2 ⊥l 4 l 2 ⊥l 4 l 1 ⊥l 4 l 2 ⊥l 4 9. 如图, BD ⊥ AC 于点 D , EF ⊥ AC 于点 F ,∠ AMD=∠ AGF ,∠1=∠ 2=35° . ( 1)求∠ GFC 的度数;(2)求证: DM ∥ BC.ABCD ,使其拐(第 7题) 走进重高1. 【柳州】如图,与∠ 1 是同旁内角的是( ) .角∠ ABC=150°,∠ BCD=30°,则().A.AB∥BCB.BC∥CDC.AB∥DCD.AB 与CD相交3. 【淄博】如图,一个由4条线段构成的“鱼”形图案,找出图中的平行线,并说明理由.4.如图,已知点E,F在直线AB上,点G在线段CD上,∠GHD.1)求证:CE∥ GF;2)试判断∠ AED与∠ D之间的数量关系,并说明理由;(第 6题)高分夺冠1. 直线a,b,c 在同一平面内,①如果a⊥ b,b⊥c,那么a∥c;②如果a∥ b,b∥c,那么 a ∥ c;③如果a∥b,b⊥c,那么a⊥ c;④如果a与b相交,b与c相交,那么a与c相交.在上述四种说法中,正确的有个.4.将一副三角尺中的两个直角顶点C叠放在一起(如图),其中∠ A=30°,∠ B=60°,∠ D=∠E=45°.1)若∠ BCD=150°,求∠ ACE的度数;2)试猜想∠ BCD与∠ ACE之间的数量关系,并说明理由;(3)若按住三角尺ABC不动,绕顶点 C 转动三角尺DCE,试探究∠ BCD等于多少度时,CD∥ AB,并简要说明理由.(第4题)。
2023年浙教版七下数学第一章平行线章节复习(教师版)一、知识梳理知识点1:平行线的定义1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a ∥b.注意:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.知识点2:同位角、内错角和同旁内角两条直线被第三条线所截,可得八个角,即“三线八角”,如图6所示。
(1)同位角:可以发现∠1与∠5都处于直线l的同一侧,直线a、b的同一方,这样位置的一对角就是同位角。
图中的同位角还有∠2与∠6,∠3与∠7,∠4与∠8。
(2)内错角:可以发现∠3与∠5都处于直线l的两旁,直线a、b的两方,这样位置的一对角就是内错角。
图中的内错角还有∠4与∠6。
(3)同旁内角:可以发现∠4与∠5都处于直线l的同一侧,直线a、b的两方,这样位置的一对角就是同旁内角。
图中的同旁内角还有∠3与∠6。
知识点3:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点4:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。
几何语言:∵∠1=∠2∴ AB∥CD(同位角相等,两直线平行)判定方法(2):两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行。
2022-2023学年浙教版七年级数学下册精选压轴题培优卷专题01 平行线的判定和性质一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•沙坪坝区期末)如图,直线AB,CD被直线EF所截,AB∥CD,∠1=113°,则∠2的度数为( )A.23°B.67°C.77°D.113°解:∵AB∥CD,∴∠CFE=∠1=113°,∠2=180°﹣∠CFE=180°﹣113°=67°,故选:B.2.(2分)(2023春•九龙坡区校级月考)将一块三角板和一块直尺如图放置,若∠1=50°,则∠2的度数为( )A.110°B.120°C.130°D.140°解:如图,∵∠3=∠1,∴∠2=∠A+∠3=140°.故选:D.3.(2分)(2022秋•青云谱区校级期末)如图,已知长方形纸片ABCD,点E,F在AD边上,点G,H在BC边上,分别沿EG,FH折叠,使点D和点A都落在点M处,若α+β=119°,则∠EMF的度数为( )A.57°B.58°C.59°D.60°解:∵长方形ABCD,∴AD∥BC,∴∠DEG=α,∠AFH=β,∴∠DEG+∠AFH=α+β=119°,由折叠得:∠DEM=2∠DEG,∠AFM=2∠AFH,∴∠DEM+∠AFM=2×119°=238°,∴∠FEM+∠EFM=360°﹣238°=122°,在△EFM中,∠EMF=180°﹣(∠FEM+∠EFM)=180°﹣122°=58°,故选:B.4.(2分)(2022春•殷都区校级月考)如图,AB∥CD,则图中α,β,γ三者之间的关系是( )A.α+β+γ=180°B.α﹣β+γ=180°C.α+β﹣γ=180°D.α+β+γ=360°解:如图,延长AE交直线CD于F,∵AB∥CD,∴∠α+∠AFD=180°,∵∠AFD=∠β﹣∠γ,∴∠α+∠β﹣∠γ=180°,故选:C.5.(2分)(2022•绿园区校级模拟)如图,已知锐角∠AOB,按下列步骤作图:①在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;②分别以点C,D为圆心,CD长为半径作弧,交于点M.N;③连MN,OM.则下列结论错误的是( )A.∠COM=∠COD B.若OM=MN,则∠AOB=30°C.MN∥CD D.MN<3CD解:连接ON,MD,由作法得CM=CD=DN,∴∠COM=∠COD,所以A选项正确;∵OM=ON,∴当OM=MN时,△OMN为等边三角形,∴∠MON=60°,∵∠AOB=∠MOA=∠NOB=×60°=20°,所以B选项错误;∵,∴∠MDC=∠DMN,∴MN∥CD,所以C选项正确;∵CM+CD+DN>MN,∴3CD>MN,所以D选项正确.故选:B.6.(2分)(2019秋•淮阴区期末)如图,将长方形ABCD沿线段EF折叠到EB'C'F的位置,若∠EFC'=100°,则∠DFC'的度数为( )A.20°B.30°C.40°D.50°解:由翻折知,∠EFC=∠EFC'=100°,∴∠EFC+∠EFC'=200°,∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°,故选:A.7.(2分)(2021春•奉化区校级期末)如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH =100°,则∠BEG的度数为( )A.30°B.40°C.50°D.60°解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠FAE=80°,∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β,在△AEF中,80°+2α+180﹣2β=180°故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.8.(2分)(2022•博望区校级一模)如图是一款手推车的平面示意图,其中AB∥CD,∠1=24°,∠2=76°,则∠3的度数为( )A.104°B.128°C.138°D.156°解:如图:∵AB∥CD,∠1=24°,∴∠A=∠1=24°,∵∠2=76°,∠2+∠4=180°,∴∠4=180°﹣∠2=180°﹣76°=104°,∴∠3=∠4+∠A=104°+24°=128°.故选:B.9.(2分)(2022秋•南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是( )A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1解:∵AB∥CD∥EF,∴∠2+∠BDC=180°,∠3=∠CDE,又∠BDC=∠CDE﹣∠1,∴∠2+∠3﹣∠1=180°.故选:D.10.(2分)(2022春•青秀区校级期中)已知AB∥CD,点E在BD连线的右侧,∠ABE与∠CDE的角平分线相交于点F,则下列说法正确的是( )①∠ABE+∠CDE+∠E=360°;②若∠E=80°,则∠BFD=140°;③如图(2)中,若∠ABM=∠ABF,∠CDM=∠CDF,则6∠BMD+∠E=360°;④如图(2)中,若∠E=m°,∠ABM=∠CDF,则∠M=()°.A.①②④B.②③④C.①②③D.①②③④解:∵AB∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BEG+∠CDE+∠DEG=360°,即∠ABE+∠BED+∠CDE=360°,①正确,∵∠BED=80°,∠ABE+∠BED+∠CDE=360°,∴∠ABE+∠CDE=280°,∵AB∥CD,∴∠ABF=∠BFH,∠CDF=∠DFH,∴∠BFD=∠BFH+∠DFH=∠ABF+∠CDF=(∠ABE+∠CDE)=140°,②正确,与上同理,∠BMD=∠ABM+∠CDM=(∠ABF+∠CDF),∴6∠BMD=2(∠ABF+∠CDF)=∠ABE+∠CDE,∴6∠BMD+∠E=360°,③正确,由题意,④不一定正确,∴①②③正确,故选:C.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•朝阳区校级期末)如图,已知AC∥BD,∠CAE=30°,∠DBE=35°,则∠AEB等于 65° .解:过点E作EF∥AC,∵AC∥BD,∴AC∥EF∥BD,∴∠AEF=∠CAE=30°,∠BEF=∠DBE=35°,∴∠AEB=∠AEF+∠BEF=65°.故答案为:65°.12.(2分)(2022秋•宛城区校级期末)如图,把一个长方形纸片沿OG折叠后,C,D两点分别落在C',D'两点处,若∠AOD':∠D'OG=4:3,则∠BGO= 54 度.解:∵∠AOD':∠D'OG=4:3,设∠AOD'=4x,则∠D'OG=3x,由翻折可知∠DOG=∠D'OG=3x∵∠AOD'+∠D'OG+∠DOG=180°,即10x=180°,解得x=18°,∵AD∥BC,∴∠BGO=∠DOG=3x=54°,故答案为:54.13.(2分)(2022秋•沙坪坝区校级期末)如图,直线GH分别与直线AB,CD相交于点G,H,且AB∥CD.点M在直线AB,CD之间,连接GM,HM,射线GH是∠AGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠BGM,∠M=∠N+∠HGN,则∠MHG的度数为 45° .解:过M作MF∥AB,过H作HE∥GN,如图:设∠BGM=2α,∠MHD=β,则∠N=∠BGM=2α,∴∠AGM=180°﹣2α,∵GH平分∠AGM,∴∠MGH=∠AGM=90°﹣α,∴∠BGH=∠BGM+∠MGH=90°+α,∵AB∥CD,∴MF∥AB∥CD,∴∠M=∠GMF+∠FMH=∠BGM+∠MHD=2α+β,∵∠M=∠N+∠HGN,∴2α+β=×2α+∠HGN,∴∠HGN=β﹣α,∵HE∥CN,∴∠GHE=∠HGN=β﹣α,∠EHM=∠N=2α,∴∠GHD=∠GHE+∠EHM+∠MHD=(β﹣α)+2α+β=2β+α,∵AB∥CD,∴∠BGH+∠GHD=180°,∴(90°+α)+(2β+α)=180°,∴α+β=45°,∴∠MHG=∠GHE+∠EHM=(β﹣α)+2α=α+β=45°,故答案为:45°.14.(2分)(2022•苏州模拟)如图,把一张长方形纸片ABCD沿EF折叠,∠1=50°,则∠FGE= 80 °.解:由折叠得∠GEF=∠DEF,∵AD∥BC∴∠DEF=∠1∴∠GEF=∠1∵∠FGE+2∠1=180°,∴∠FGE=180°﹣2×50°=80°,故答案为:80.15.(2分)(2022春•大荔县校级月考)如图,在三角形ABC中,点D、E分别在AB、BC上,连接DE,且DE∥AC,∠1=∠2,若∠B=50°,则∠BAF的度数为 130° .解:∵DE∥AC,∴∠2=∠C,∵∠1=∠2,∴∠1=∠C,∴AF∥BC,∴∠B+∠BAF=180°,∵∠B=50°,∴∠BAF=180°﹣50°=130°.故答案为:130°.16.(2分)(2022秋•新会区校级期末)如图,将长方形ABCD沿EF翻折,再沿ED翻折,若∠FEA″=105°,则∠CFE= 155 度.解:由四边形ABFE沿EF折叠得四边形A′B′FE,∴∠A′EF=∠AEF.∵∠A′EF=∠A′ED+∠DEF,∠AEF=180°﹣∠DEF.∴∠A′ED+∠DEF=180°﹣∠DEF.由四边形A′B′ME沿AD折叠得四边形A″B″ME,∴∠A′ED=∠A″ED.∵∠A″ED=∠A″EF+∠DEF=105°+∠DEF,∴∠A′ED=105°+∠DEF.∴105°+∠DEF+∠DEF=180°﹣∠DEF.∴∠DEF=25°.∵AD∥BC,∴∠DEF=∠EFB=25°.∴∠CFE=180°﹣∠EFB=180°﹣25°=155°.故答案为:155.17.(2分)(2022春•思明区校级期末)如图,将长方形纸片ABCD沿EF折叠后,点A,B分别落在A',B'的位置,再沿AD边将∠A'折叠到∠H处,已知∠1=50°,则∠FEH= 15 °.解:由折叠可知:∠BFE=∠B'FE,∠AEF=∠A'EF,∠A'EG=∠HEG,∵∠1+∠BFE+∠B'FE=180°,∠1=50°,∴∠BFE=65°,∵AD∥BC,∴∠AEF+∠BFE=180°,∴∠AEF=115°,∴∠A'EF=115°,过B'作B'M∥AD,则∠DGB'=∠GB'M,∵AD∥BC,∴∠MB'F=∠1,∴∠1+∠DGB'=∠GB'F=90°,∴∠DGB'=90°﹣50°=40°,∴∠A'GE=∠DGB'=40°,∵∠A'=90°,∴∠HEG=∠A'EG=90°﹣40°=50°,∴∠A'EH=2×50°=100°,∴∠FEH=∠A'EF﹣∠A'EH=115°﹣100°=15°.故答案为:15.18.(2分)(2021秋•南岗区校级期中)如图,直线MN与直线AB、CD分别交于点E、F,AB∥CD,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,交MN于点Q,∠HPQ:∠QFP=3:2,则∠EHG= 30° .解:∵AB∥CD,∴∠BEF+∠EFD=180°,∵∠BEF与∠EFD的角平分线交于点P,∴∠PEF=∠BEF,∠PFE=∠EFD,∴∠PEF+∠PFE=(∠BEF+∠EFD)=90°,∵∠EPF=180°﹣(∠PEF+∠PFE)=90°,∵GH⊥EG,∴∠EGH=∠EPF=90°,∴FP∥HG,∴∠FPH=∠PHK,∠QFP=∠EHG,设∠PHK=x°,则∠FPH=∠HPK=∠PHK=x°,∠FPK=∠FPH+∠HPK=2x°,∴∠EPK=∠EPF+∠FPK=90°+2x°,∵PQ平分∠EPK,∴∠QPK=∠EPK=(90°+2x°)=45°+x°,∴∠HPQ=∠QPK﹣∠HPK=45°,∵∠HPQ:∠QFP=3:2,∴∠QFP=30°,∴∠EHG=∠QFP=30°;故答案为:30°.19.(2分)(2021秋•香坊区校级期中)已知AB∥CD,∠ACD=60°,∠BAE:∠CAE=2:3,∠FCD=4∠FCE,若∠AEC=78°,则∠AFC= 88° .解:∵AB∥CD,∴∠CAB=180°﹣∠ACD=180°﹣60°=120°,∵∠BAE:∠CAE=2:3,∴∠CAE=120×=72°,∵∠AEC=78°,∴∠ACE=180°﹣∠AEC﹣∠CAE=180°﹣78°﹣72°=30°,设∠FCE=x,则∠FCD=4x,∴∠ACF=∠ACD﹣∠FCD=60°﹣4x,∴∠ACE=∠ACF+∠ECF=60°﹣3x,∴60°﹣3x=30°,∴x=10°,∴∠ACF=60°﹣40°=20°,∴∠AFC=180°﹣∠ACF﹣∠CAE=180°﹣20°﹣72°=88°,故答案是:88°.20.(2分)(2021春•东港区校级期末)把一张对边互相平行的纸条,折成如图所示,EF是折痕,若∠EFB=32°,则下列结论:①∠C'EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=116°.正确的有 3 个.解:∵AC′∥BD′,∴∠C′EF=∠EFB=32°,所以①正确;∵∠C′EF=∠FEC,∴∠C′EC=2×32°=64°,∴∠AEC=180°﹣64°=116°,所以②错误;∴∠BFD=∠EFD′﹣∠BFE=180°﹣2∠EFB=180°﹣64°=116°,所以④正确;∵∠BGE=∠C′EC=2×32°=64°,所以③正确.故答案为3.三.解答题(共7小题,满分60分)21.(6分)(2022秋•长安区校级期末)如图,直线CD、EF交于点O,OA,OB分别平分∠COE和∠DOE,已知∠1+∠2=90°,且∠2:∠3=2:5.(1)求∠BOF的度数;(2)试说明AB∥CD的理由.解:(1)∵OA,OB分别平分∠COE和∠DOE,∴,,∵∠COE+∠DOE=180°,∴∠2+∠AOC=90°,∵∠COE=∠3,∴,∴,∵∠2:∠3=2:5,∴,∴,∴∠2=40°,∴∠3=100°,∴∠BOF=∠2+∠3=140°;(2)∵∠1+∠2=90°,∠2+∠AOC=90°,∴∠1=∠AOC,∴AB∥CD.22.(6分)(2022秋•市北区校级期末)如图,已知∠1+∠2=180°,∠B=∠E.(1)试猜想AB与CE之间有怎样的位置关系?并说明理由.(2)若CA平分∠BCE,∠B=50°,求∠A的度数.解:(1)AB∥CE,∵∠1+∠2=180°(已知),∴DE∥BC(同旁内角互补,两直线平行),∴∠ADF=∠B(两直线平行,同位角相等),∵∠B=∠E(已知),∴∠ADF=∠E(等量代换),∴AB∥CE(内错角相等,两直线平行).(2)∵AB∥CE,∴∠B+∠BCE=180°,∵∠B=50°,∴∠BCE=130°,∵CA平分∠BCE,∴∠ACE==65°,∵AB∥CE,∴∠A=∠ACE=65°.23.(6分)(2022秋•荆门期末)如图,在△ABC中,AD⊥BC于D,G是BA延长线上一点,AH平分∠GAC.且AH∥BC,E是AC上一点,连接BE并延长交AH于点F.(1)求证:AB=AC;(2)猜想并证明,当E在AC何处时,AF=2BD.(1)证明:∵AH平分∠GAC,∴∠GAF=∠FAC,∵AH∥BC,∴∠GAF=∠ABC,∠FAC=∠C,∴∠ABC=∠C,∴AB=AC.(2)解:当AE=EC时,AF=2BD.理由:∵AB=AC,AD⊥BC,∴BD=DC,∵AF∥BC,∴∠FAE=∠C,∵∠AEF=∠CEB,AE=EC,∴△AEF≌△CEB(ASA),∴AF=BC=2BD.24.(10分)(2022秋•南关区校级期末)已知AM∥CN,点B在直线AM、CN之间,∠ABC=88°.(1)如图1,请直接写出∠A和∠C之间的数量关系: ∠A+∠C=88° .(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 46° .解:(1))过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C=∠CBE.∵∠ABC=88°.∴∠A+∠C=∠ABE+∠CBE=∠ABC=88°.故答案为:∠A+∠C=88°;(2)∠A和∠C满足:∠C﹣∠A=92°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C+∠CBE=180°.∴∠CBE=180°﹣∠C.∵∠ABC=88°.∴∠ABE+∠CBE=88°.∴∠A+180°﹣∠C=88°.∴∠C﹣∠A=92°.(3)设CH与AB交于点F,如图,∵AE平分∠MAB,∴∠GAF=∠MAB.∵CH平分∠NCB,∴∠BCF=∠BCN.∵∠B=88°,∴∠BFC=88°﹣∠BCF.∵∠AFG=∠BFC,∴∠AFG=88°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=92°,∴∠AGH=×92°=46°.故答案为:46°.25.(10分)(2022春•铜梁区校级月考)课题学习:平行线的“等角转化”功能.(1)阅读理解:如图1,已知点A是BC外一点,连接AB、AC,求∠B+∠BAC+∠C的度数.阅读并补充下面推理过程.解:过点A作ED∥BC,∴∠B= ∠EAB ,∠C= ∠DAC ,∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系,使问题得以解决.(2)方法运用:如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数;(3)深化拓展:已知AB∥CD,点C在点D的右侧,∠ADC=50°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在直线AB与CD之间.①如图3,点B在点A的左侧,若∠ABC=36°,求∠BED的度数.②如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,求∠BED度数.(用含n的代数式表示)解:(1)∵ED∥BC,∴∠B=∠EAB,∠C=∠DAC(两直线平行,内错角相等);故答案为:∠EAB;∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D+∠FCD=180°,∵CF∥AB,∴∠B+∠FCB=180°,∴∠B+∠FCB+∠FCD+∠D=360°,∴∠B+∠BCD+∠D=360°;(3)①过E作EG∥AB,∵AB∥DC,∴EG∥CD,∴∠GED=∠EDC,∵DE平分∠ADC,∴,∴∠GED=25°,∵BE平分∠ABC,∴,∵GE∥AB,∴∠BEG=∠ABE=18°,∴∠BED=∠GED+∠BEG=25°+18°=43°;②过E作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠PED=∠EDC=25°,∵BE平分∠ABC,∠ABC=n°,∴,∵AB∥PE,∴∠ABE+∠PEB=180°,∴,∴.26.(10分)(2022春•铁东区校级月考)如图1为北斗七星的位置图,如图2将北斗七星分别标为A,B,C,D,E,F,G,将A,B,C,D,E,F顺次首尾连接,若AF恰好经过点G,且B,G,C在一条直线上,若AF∥DE,∠B=∠C+9°,∠D=∠E=105°.(1)求∠F的度数.(2)计算∠B﹣∠CGF的度数是 115° .(3)连接AD,当∠ADE与∠CGF满足怎样数量关系时,BC∥AD.并说明理由,解:(1)∵AF∥DE,∴∠F+∠E=180°,∴∠F=180°﹣105°=75°;(2)延长DC交AF于K,可得:∠B﹣∠CGF=∠C+10°﹣∠CGF=∠GKC+10°=∠D+9°=114°,故答案为:114°;(3)当∠ADE+∠CGF=180°时,BC∥AD,∵AF∥DE,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180°,∴∠GAD=∠CGF,∴BC∥AD.27.(12分)(2022春•江汉区校级月考)如图1,直线l分别交直线AB、CD于点EF(点在点F的右侧).若∠1+∠2=180°.(1)求证:AB∥CD;(2)如图2,点H在直线AB、CD之间,过点H作HG⊥AB于点G,若FH平分∠EFD,∠2=120°,求∠FHG的度数.(3)如图3,直线MN与直线AB、CD分别交于点M、N,若∠EMN=120°,点P为线段EF上一动点,Q 为直线CD上一动点,请直接写出∠PMN与∠MPQ,∠PQF之间的数量关系.(题中的角均指大于0°且小于180°的角)(1)证明:∵∠1+∠2=180°,∠2+∠DFE=180°,∴∠1=∠DFE(同角的补角相等),∴AB∥CD(同位角相等,两直线平行);(2)解:如图所示,过点H作HP∥AB,则HP∥AB∥CD,∵GH∥AB,即∠EGH=90°,∴∠PHG=180°﹣∠EGH=90°,∵∠2=120°,∴∠EFD=180°﹣∠2=60°,∵FH平分∠EFD,∴∠HFD=30°,∵PH∥CD,∴∠PHF=∠HFD=30°,∴∠FHG=∠PHF+∠PHG=120°;(3)解:如图3﹣1,当点Q在线段FN上时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP=∠MPH,∠PQF=∠HPQ,∴∠MPQ+∠PMN﹣∠PQF=∠MPQ﹣∠HPQ+∠PMN=∠MPH+∠PMN=∠EMP+∠PMN=∠EMN=120°;如图3﹣2,当点Q在FN的延长线上时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP=∠MPH,∠PQF=∠HPQ,∴∠MPQ+∠PMN﹣∠PQF=∠MPQ+∠PMN﹣∠HPQ=∠MPH+∠PMN=∠EMP+∠PMN=∠EMN=120°;如图3﹣3(1),当点Q在NF的延长线上且点Q在直线MP的右侧时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP=∠MPH,∠PQF+∠HPQ=180°,∴∠MPQ+∠PMN+∠PQF=∠MPQ+180°﹣∠HPQ+∠PMN=∠MPH+∠PMN+180°=∠EMP+∠PMN+180°=∠EMN+180°=300°;如图3﹣3(2),当点Q在NF的延长线上且点Q在直线MP的右侧时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP+∠MPH=180°,∠PQF=∠HPQ,∴∠MPQ﹣∠PMN﹣∠PQF=∠MPQ﹣∠PMN﹣∠HPQ=∠MPH﹣∠PMN=180°﹣∠EMP﹣∠PMN=180°﹣∠EMN=60°;综上,∠PMN与∠MPQ,∠PQF之间的数量关系为:∠MPQ+∠PMN﹣∠PQF=120°或∠MPQ+∠PMN+∠PQF=300°或∠MPQ+∠PMN﹣∠PQF=60°。
平行线及其判定(提高)知识讲解【学习目标】1.熟练掌握平行线定义及画法;2.掌握平行公理及其推论;3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行.【要点梳理】要点一、平行线及平行公理1.平行线的定义在同一平面内,不相交的两条直线叫做平行线. 两直线平行,用符号“∥”表示. 如下图,两条直线互相平行,记作AB∥CD或a∥b.要点诠释:(1)同一平面内,两条直线的位置关系:相交和平行.(2)互相重合的直线通常看作一条直线,两条线段或射线平行是指它们所在的直线平行.2.平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.3.平行公理及推论平行公理:经过已知直线外一点,有且只有一条直线与已知直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.4. 两条平行线间的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即两条平行线之间的距离处处相等.要点二、平行线的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:(1)平行线的判定是由角相等或互补,得出平行,即由数推形.(2)今后我们用符号“∵”表示“因为”,用“∴”表示“所以”.【典型例题】类型一、平行公理及推论1.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行. 其中正确的个数为:( ) .A.1个B.2个C.3个D.4个【答案】B【解析】正确的是:(1)(3).【总结升华】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意区分不同表述之间的联系和区别.举一反三:【变式】下列说法正确的个数是() .(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个 B .2个C.3个D.4个【答案】B2.下面两条平行线之间的三个图形,图的面积最大,图的面积最小.【思路点拨】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.【答案】图3,图2【解析】解:因为它们的高相等,三角形的底是8,8÷2=4,梯形的上、下底之和除以2,(2+7)÷2=4.5;5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.【总结升华】根据平行线的性质,得出梯形、三角形、平行四边形的高相等,求出三角形底的一半,梯形上、下底之和的一半,与平行四边形的底进行比较,由此得出正确答案.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.【答案】35类型二、平行线的判定3. 如图,给出下列四个条件:(1)AC=BD;(2)∠DAC=∠BCA;(3)∠ABD=∠CDB;(4)∠ADB=∠CBD,其中能使AD∥BC的条件有().A.(1)(2)B.(3)(4)C.(2)(4)D.(1)(3)(4)【思路点拨】欲证AD∥BC,在图中发现AD、BC被一直线所截,故可按同位角相等、内错角相等、同旁内角互补,两直线平行补充条件.【答案】C【解析】从分解图形入手,即寻找AD、BC的截线.【总结升华】从题目的结论出发分析所要说明的结论能成立,必须具备的是哪些条件,再看这些条件成立又需具备什么条件,直到追溯到已知条件为止.举一反三:【变式】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°【答案】A提示:“方向相同”有两层含义,即路线平行且方向相同,在此基础上准确画出示意图.图B显然不同向,因为路线不平行.图C中,∠1=180°-130°=50°,路线平行但不同向.图D中,∠1=180°-130°=50°,路线平行但不同向.只有图A路线平行且同向,故应选A.4.如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.【思路点拨】利用辅助线把AB、EF联系起来.【答案与解析】解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°.∵∠B=25°,∠E=10°(已知),∴∠B=∠BCM,∠E=∠EDN(等量代换).∴AB∥CM,EF∥DN(内错角相等,两直线平行).又∵∠BCD=45°,∠CDE=30°(已知),∴∠DCM=20°,∠CDN=20°(等式性质).∴∠DCM=∠CDN(等量代换).∴CM∥DN(内错角相等,两直线平行).∵AB∥CM,EF∥DN(已证),∴AB∥EF(平行线的传递性).解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.∵∠BCD=45°,∴∠NCB=135°.∵∠B=25°,∴∠CNB=180°-∠NCB-∠B=20°(三角形的内角和等于180°).又∵∠CDE=30°,∴∠EDM=150°.又∵∠E=10°,∴∠EMD=180°-∠EDM-∠E=20°(三角形的内角和等于180°).∴∠CNB=∠EMD(等量代换).所以AB∥EF(内错角相等,两直线平行).【总结升华】判定两条直线平行的方法有四种,选择哪种方法要根据问题提供的条件来灵活选取.举一反三:【:平行线及判定403102经典例题2】【变式】已知,如图,BE平分∠ABD,DE平分∠CDB,且∠1与∠2互余,试判断直线AB、CD的位置关系,请说明理由.【答案】解:AB∥CD,理由如下:∵BE平分∠ABD,DE平分∠CDB,∴∠ABD=2∠1,∠CDB=2∠2.又∵∠1+∠2=90°,∴∠ABD+∠CDB=180°.∴AB∥CD(同旁内角互补,两直线平行).。
第1章平行线1.1 平行线1.2 同位角、内错角、同旁内角1.3 平行线的判定1.4 平行线的性质1.5 图形的平移1.1 平行线1. 定义:在同一个平面内,不相交的两条直线;如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行.2.在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况.3.平行线的基本事实:经过直线外一点,有且只有一条直线与这条直线平行.这一基本事实实际上就是著名的“平行公理”.4.两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角. 邻补角的性质:邻补角互补.5.两条直线相交所得的四个角中,有公共的顶点,且其中一个角的两边分别是另一个角的两边的反向延长线,这样的两个角叫做对顶角.6.如果两个角的两边互相平行,则这两个角相等或互补.1.2 同位角、内错角、同旁内角1. 认识“三线八角”(1)如图所示,两条直线l1,l2被第三条直线,l3所截,构成8个角,也就是通常所说的“三线八角”.2. 同位角、内错角、同旁内角·同位角如上图所示,观察∠1与∠2的位置,它们都在第三条直线l3的同旁,并且分别位于直线l1,l2的同一侧,这样的一对角叫做同位角.·内错角如上图所示,观察∠7与∠4的位置,它们分别位于第三条直线l3的异侧,并且都在两条直线l1与l2之间,这样的一对角叫做内错角.·同旁内角如上图所示,观察∠7与∠8的位置,它们都在第三条直线l3的同旁,并且在直线l1与l2之间,这样的一对角叫做同旁内角.1.3 平行线的判定1. 平行线的判定方法1(1)基本事实:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单(2)推理形式:∵∠1=∠2,∴l1∥l2(同位角相等,两直线平行).(3)基本事实的推论在同一平面内,垂直于同一条直线的两条直线互相平行,推理形式为:∵l1⊥l3,l2⊥l3,∴l1∥l22.平行线的判定方法2(1)基本事实:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简单说成:内错角相等,两直线平行;(2)推理形式:∵∠1=∠2,∴l1∥l2 (内错角相等,两直线平行).3平行线的判定方法3(1)基本事实:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.(2)推理形式:∠1+∠2=180°∴l1∥l2 (同旁内角互补,两直线平行)1.4 平行线的性质1. 平行线的性质(1)性质1:两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.(2)性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.(3)性质3:两条平行线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补.(4)基本图形如图所示. 应用格式如下:因为AB//CD,所以∠1=∠2.因为AB∥CD、所以∠2=∠3.因为AB/CD,所以∠2+∠4=180°.2. 平行线的性质与判定的区别平行线的性质与判定中的条件和结论恰好相反,在“两条直线被第三条直线所截”的前提下,从同位角相等、内角相等、同旁内角互补推出两直线平行,这是平行线的判定;而从两直线平行推出同位角相等、内错角相等、同旁内角互补,这是平行线的性质.1.5 图形的平移1. 平移的概念一个图形沿某个方向移动,在移动过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移,简称平移.2. 平移的条件物体作平移的两个条件:(1)相同的运动方向;(2)相等的运动距离.3.平移作图平移作图的一般步骤:(1)确定平移的方向和距离;(2)骗定表示围形的关键点;(3)过关键点作平行(或在同一条直线上)且相等的线段,得到关键点的对应点;(4)按原图形依次连结对应点,所得到的图形就是平移后的图形. 其中找出表示图形的关键点和过关键点作平行(或在同一条直线上)且相等的线段是最关键的.4.平移的性质(1)平移不改变图形的形状和大小.(2)一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等. 图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等.注意:在平移作图中,最关键的是找出表示图形的关键点和过关键点作平行(或在同一条直线上)且相等的线段.1.6 应用1. 数对顶角2对对顶角l1 l2 l3 l1 l2 l3 l43组两两对应6组两两对应3*2=6对6*2=12对n条直线n-1+n-2+……+1(n−1+1)(n−1)2=n(n−1)2组×2=n(n-1)对2. 同旁内角特殊数法直线两两相交产生2对同旁内角图中有4条截线,每条截线形成3对交线,共计12组同旁内角数量:2×12=24对①变式图形:∠1与∠2都是同位角图形特征:在形如字母“F”的图形中有同位角②变式图形:∠1与∠2都是内错角图形特征:在形如“Z”的图形中有内错角③变式图形:∠1与∠2都是同旁内角图形特征:在形如“n”的图形中有同旁内角第2章二元一次方程组2.1 二元一次方程2.2 二元一次方程组2.3 解二元一次方程组2.4 二元一次方程组的应用2.5 三元一次方程组及其解法(选学)2.1 二元一次方程1. 二元一次方程定义:含有两个未知数,并且含未知数项的次数为1的整式方程叫二元一次方程.注意:“含有”表示系数不为0,(化简后)例如:x+y=10(√)x+2y=10+x(×)X+2y+z=10(×)“项的次数”,例如x2+y=0(×)xy-5=0(×)“整式”;初中我们就学习整式(排除法)、分式(分母里面有字母)和根式(根号里面有字母),只要是几元几次方程,必然是整式方程一般形式:ax+by+c=0(a≠0,b≠0)2. 二元一次方程的解(1)使二元一次方程左、右两边的值相等两个未知数的值,叫做二元一次方程的解,一般情况下,一个二元一次方程有无数解. (每一个解是一个数对,要用大括号括起来)例:二元一次方程有无数个解,所以它的解是任意数.(×)3. 判定一个方程是二元一次方程必须同时满足三个条件:①方程两边的代数式都是整式----整式方程②含有两个未知数----二元③含有未知数的项的次数为1----一次例题:1、下列方程中,是二元一次方程的有(①⑤⑦) ①2x+y=3 ②x 2+3y=1 ③xy+5y=8 ④3x -2y=4z ⑤4x=y−24 ⑥1x +4y=6 ⑦xπ+y=5 2、下列各式中,属于二元一次方程的个数有( C )②④⑧①xy+2x -y=7 ②4x+1=x -y ③1x +y=5 ④x=y ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x ⑨1x +x=1x +y (所有化简都在整式范围内化简,分式不化简)A.1B.2C.3D.42.2 二元一次方程组1. 二元一次方程组的概念由几个(2个及以上)一次方程组成并且含有两个未知数的方程组,叫二元一次方程组.二元一次方程组不一定由两个二元一次方程合在一起,方程可以超过两个,有的方程可以只有一元(一元方程在这里也可看作另一未知数系数为0的二元方程)如{2x =63x −y =1也是二元一次方程组. {x +1=8y −3=5 {x =8y =5 {x −y =52x +1=83x +y =10例题:下列方程组中,哪些是二元一次方程组:__________ ①{x +y =42x +3y =7 (√) ②{2a −3b =115b −4c =6(×) ③{x +y =8x 2−y =4 (×)④{xy −7=9y =2x(×) ⑤{x =1y =−1 (√) ⑥{2x =1xy =−1 (×) ⑦{2x +y =1y −z =−1 (×) ⑧{2x +y =11y=−1(×)2. 二元一次方程组的解:二元一次方程组的解必须满足方程组中的每一个方程,同时它也必须是一个数对,而不能是一个数.例题:方程组{2x +y =■x +y =3的解为{x =2y =■ ,则被遮盖的前后两个数分别为( C ) A.1、2 B.1、5 C.5、1 D.2、43. 二元一次方程的两种基本解法的一般步骤:·代入消元元法①将方程组中的一个方程变形,使得一个未知数能用含有另一个未知数的代数式表示. ②用这个代数式代替另一个方程中相应的未知数. 得到一个一元一次方程,求得一个未知数的值.③把这个未知数的值代人代数式,求得另一个未知数的值.④写出方程组的解.·加减消元法:①将其中一个未知数的系数化成相同(或互为相反数).②通过相减(或相加)消去这个未知数. 得到一个一元一次方程.③解这个一元一次方程,得到一个未知数的值.④将求得的未知数的值代人原方程且中的存一个方程,求得另一个未知数的值.⑤写出方程组的解.4. 应用二元一次方程组解决实际问题的基本步骤:(1)理解问题:审题,搞清已知和未知,分析数量关系.(2)制订计划:考虑如何根据等量关系设元,列出方程组.(3)执行计划:列出方程组并求解,得到答案.(4)回顾:检查和反思解题过程,检验答案的正确性以及是否符合题意.5.当方程组中的某个方程的某个未知数的系数的绝对值为1,或某个方面的常数项为0时,一般用代入消元法解方程组比较简捷;当方程组中某个未知数的系数的绝对值相同或成倍数关系时,一般用加减消元法解方程组比较简捷;当未知数的系数的绝对值都不同时,找出某一个未知数系数的最小公倍数,同时对两个方程进行变形,使得方程中某个未知数的系数相同(或互为相反数),再用加减法消元求解.6.在解二元一次方程组时,除了代入消元法和加减消元法之外,我们还可以用整体代入法、换元法、设元法等方法求解,应根据题目灵活选择.整体代入法:在求代数式值中应用,求代数式的值最常用的方法,即把字母所表示的数值直接代入,计算求值. 有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难求出字母的值或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入,求值时方便又快捷,这种整体代入的技法经常用到.7.回顾:一元一次方程是指含有一个未知数,并且未知数的项的次数为一次的方程. 例如:x=3x,2x=6x-1,9x-6=2x二元一次方程是指含有两个未知数,并且未知数的项的次数都是一次的方程. 例如x=y+1,(a+b)×2=30第3章整式的乘除3.1 同底数幂的乘法3.2 单项式的乘法3.3 多项式的乘法3.4 乘法公式3.5 整式的化简3.6 同底数幂的除法3.7 整式的除法1.幂的运算法则:注意:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.例题:1.计算(1)(-3)2013·(- 13)2011(2)2·8n ·16n =222,求n 的值.(3)-12016+(π-3.14)0-2×(-3)2.连线a m n a m -a n2.整式的乘除法法则:注意:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和形式,根据多项式的乘法,能得出一个应用比较广泛的公式:(x+a)(x+b)=x2+(a+b)x+ab3.零指数幂和负整数指数幂:(1)a0=1(a≠0). 任何不等于零的数的零次幂都等于1.(a≠0,p是正整数).任何不等于零的数的-p(p是正整数)次幂,等于这个数的(2)a-p=1a pp次幂的倒数.4.乘法公式:在化简求值问题中常会用到乘法公式,使用乘法公式可以简化运算.在利用完全平方公式求值时,注意公式的变形及整体代入思想,通常用到以下几种变形:(1)a2+b2=(a+b)2-2ab(2)a2+b2=(a-b)2+2ab(3)(a+b)2=(a-b)2+4ab(4)(a-b)2=(a+b)2-4ab第4章因式分解4.1 因式分解4.2 提取公因式法4.3 用乘法公式分解因式4.1 因式分解(1)因式分解的概念一般地,把一个多项式化成几个整式的积的形式,叫做因式分解,有时我们也把这一过程叫分解因式.(2)多项式的因式分解与整式的乘法是互逆关系. 整式的乘法运算是把几个整式的积变形为多项式的形式,特征是向着“积化和差”的形式发展;而多项式的因式分解则是把一个多项式化为几个整式乘积的形式,特征是向着“和差化积”的形式发展.★注意:分解因式必须进行到每一个多项式因式都不能再分解为止,即分解因式要彻底.例(台州中考)把多项式2x2-8分解因式,结果正确的是()A. 2(x2-8)B. 2(x-2)2C. 2(x+2)(x-2)D. 2x(x -4)x解析:2x2-8=2(x2-4)=2(x+2)(x-2).故选C.4.2 提取公因式法1. 公因式的定义及其确定(1)公因式的定义:一般地,一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式. 如m是多项式ma+mb各项的公因式,2ab是多项式2ab+4abc各项的公因式.(2)公因式的确定方法:多项式的各项系数的最大公因数(当系数是整数时)与各项都含有的相同字母的最低次幂的积就是多项式的公因式.公因式可以是单项式,也可以是多项式.★公因式的确定方法:(1)系数:取多项式各项系数的最大公约数.(2)字母:取多项式各项都含有的相同字母(或多项式因式)的最低次幂.2. 用提取公因式法因式分解(1)定义:如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行因式分解. 这种分解因式的方法,叫做提取公因式法. 提取公因式法是因式分解的一种最基本的方法.(2)提取公因式法的一般步骤确定应提取的公因式;用公因式去除这个多项式,所得的商作为另一个因式;把多项式写成这两个因式的积的形式.3. 添括号法则括号前面是“+”号,括到括号里的各项都不变号;括号前面是“-”号,括到括号里的各项都变号.4.3 用乘法公式分解因式1. 运用平方差公式分解因式a2-b2=(a+b)(a-b).语言叙述:两个数的平方差,等于这两个数的和与这两个数的差的积.例(杭州中考)分解因式:m3n-4mn=________________解析:m3n-4mn =mn(m2 - 4)=mn(m+2)(m -2).答案:mn(m+2)(m -2)2. 运用完全平方公式分解因式a2+2ab+b2= (a+b)2a2-2ab+b2=(a-b)2.语言叙述:两数的平方和,加上(或者减去)这两数的积的2倍,等于这两数和(或者差)的平方.★注意:公式中所说的“两个数”是a,b,而不是a2,b2,其中a,b既可以是单项式,也可以是多项式.3. 形如x2+(p+q)x+pq型式子的因式分解X2 +(p+ q)x+ pq=(x+p)(x+q),利用该式可将某些二次项系数是]的二次三项式分解因式. 如:x2-6x-7=(x-7)(x+1),x2+5x-6=(x+6)(x -1).4. 综合运用提取公因式法和公式法分解因式(1)多项式的因式分解,有的可用提取公因式法,有的可用公式法,有的则两种方法综合应用. 一般地,利用公式a2-b2=(a+b)(a-b),或a2±2ab+b2=(a±b)2把一个多项式分解因式的方法,叫做公式法.(2)分解因式的一般步骤▲当多项式的各项有公因式时,应首先提取公因式.▲当多项式是二项式时,应考虑用平方差公式,当多项式为三项式时,应考虑用完全平方公式,观察是否符合公式的特点,并确定公式中的a,b.★特别注意:当分解因式后的某一因式有公因式或符合公式时,应继续分解,直到每个因式再也不能分解为止.★当多项式不能直接分解因式时,应先对多项式进行整理变形,再分解.5. 换元法当复杂的多项式中,某一部分重复出现时,我们用字母将其替换,从而简化这个多项式,例如:(a+b)2+2(a+b)+1,(x2-4x+2)(x2-4x+6)+46. 因式分解的方法7. 添括号法则括号前面是“+”号,括到括号里的各项都不变号;括号前面是“-”号,括到括号里的各项都变号.要点三、乘法公式1、平方差公式:(a+b)(a-b)=a2-b2两个数的和与两个数的差的积,等于这两个数的平方差;注意:在这里,a、b既可以是具体数字,也可以是单项式或多项式;平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方. 2、完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.注意:公式的特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.8. 因式分解常用12种方法及应用【因式分解的12种方法】把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下:(1)提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.例1:分解因式x3-2x2-x (2003淮安市中考题)x3-2x2-x=x(x2-2x-1)(2)应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2:分解因式a2+4ab+4b2(2003南通市中考题)解:a2+4ab+4b2=(a+2b)2(3)分组分解法★分解因式:mx+nx+my+ny=(mx+nx)+(my+ny)=x(m+n)十y(m+n)=(m+n)(x+y),这种分解因式的方法称为分组分解法.★要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,井提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)请用分组分解法分解因式:(1)a2-b2+a2b-ab2.原式=(a2-b2)+(a2b-ab2)=(a+b)(a-b)+ab(a-b)=(a-b)(a+b+ab).(2)a2-a2b+ab2-a+b-b2.原式=(a2-b2)-(a2b-ab2)-(a-b)=(a+b)(a-b)-ab(ab)-(a-b)=(a-b)(a+b-ab-1)=(a-b)[(b-1)-a(b-1)]=(a-b)(b-1)(1-a).例3:分解因式m2+5n-mn-5m解:m2+5n-mn-5m=m2-5m-mn+5n=(m2-5m)+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)例:2x4-x3-6x2-x+2=(2x4-x3)-(6x2+x-2)=x3(2x-1)-(2x-1) (3x+2)=(2x-1) ( x3-3x-2)(4)十字相乘法对于mx2+px+q形式的多项式,如果a×b=m,c×d=q且ad+bc=p,则多项式可因式分解为(ax+d)(bx+c)用“十字相乘法”分解因式2x2-x-3.(1)二次项系数2=1×2.(2)常数项-3=-1×3=1×(-3),验算“交叉相乘之和”.(3)发现第③个“交叉相乘之和”的结果-1为一次项系数,即(x+1)(2x-3)=2x2-3x+2x-3 =2x2-x-3,则2x2-x-3=(x+1)(2x-3). 像这样,通过十字交叉线的帮助,把二次三项式分解因式的方法,叫做十字相乘法.例4:分解因式7x2-19x-6分析:1×7=7,2×(-3)=-61×2+7×(-3)=-19解:7x2-19x-6=(7x+2)(x-3)(5)配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例5:分解因式x2+6x-40解x2+6x-40=x2+6x+9-9-40=(x+ 3)2-(7)2=[(x+3)+7][(x+3)-7]=(x+10)(x-4)(6)拆、添项法可以把多项式拆成若干部分,再用进行因式分解.例6:分解因式bc(b+ c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)(7)换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.例7.分解因式2x4-x3-6x2-x+2(也叫相反式,在这里以二次项系数为中心对称项的系数是相等的,如四次项与常数项对称,系数相等,解法也是把对称项结合在一起)解:2x4-x3-6x2-x+2=(2x4-x3)-(6x2+x-2)=x3(2x-1)-(2x-1) (3x+2)=(2x-1) ( x3-3x-2)例7.分解因式2x4-x3-6x2-x+2 (也叫相反式,在这里以二次项系数为中心对称项的系数是相等的,如四次项与常数项对称,系数相等,解法也是把对称项结合在一起)解:2x4-x3-6x2-x+2=2(x4+1)-x(x2+1)-6x2=x2{2[x2+(1x )2]-(x+1x)-6}令y=x+1x,x2{2[x2+(1x )2]-(x+1x)-6}=x2[2(y2-2)-y-6]= x2(2y2-y-10)= x2(y+2)(y-5)= x2(x+1x +2)(2x+1x−5)=(x2+2x+1)(2x2-5x+2)=(x+1)2(2x-1)(x-2)(8)求根法令多项式f(x)=0,求出其根为x1,x2,x3,……x n,则多项式可因式分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-x n)(一般情况下是试根法,并且一般试-3,-2,-1,0,1,2,3这些数是不是方程的根)例8.分解因式2x4+7x3-2x2-13x+6解:令f(x)=2x4+7x3-2x2-13x+6=0通过综合除法可知,f(x)=0根为,-3,-2,1,12则2x+7x-2x-13x+6=(2x-1)(x+3)(x-1)(9)图象法(这种方法在以后学函数的时候会用到. 现在只是作为了解内容,它和第八种方法是类似的)令y=f(x),做出函数y=f(x)的图象,找到函数图象与x轴的交点x1,x2,x3,……x n,则多项式可因式分解为f(x)=f(x)=(x-x1)(x-x2 )(x-x3).....(x-x n)例9.因式分解x3+2x2-5x-6解:令y=x3+2x2-5x-6作出其图象,可知与x轴交点为-3,-1,2则x3+2x2-5x-6=(x+1)(x+3)(x-2)(10)主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.例10.分解因式a2(b-c)+b2(c-a)+c2(a-b)分析:此题可选定a为主元,将其按次数从高到低排列解:a2(b-c)+b2(c-a)+c2(a-b)= a2 (b-c)-a(b2-c2)+bc(b-c)=(b-c)[ a2-a(b+c)+bc]=(b-c)(a-b)(a-c)(11)利用特殊值法将2或10(或其它数)代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.例11.分解因式x3+9x2+23x+15解:令x=2,则x3+9x2+23x+15=8+36+46+15=105将105分解成3个质因数的积,即105=3×5×7注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值则x3+9x2+23x+15=(x+1)(x+3)(x+5)(12)待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.例12.分解因式x4-x3-5x2-6x-4如果已知道这个多项式没有一次因式,因而只能分解为两个二次因式.解:设x4+-x3-5x2-6x-4=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(ac+b+d)x2+(ad+bc)x+bd从而a+c=-1,ac+b+d=-5,ad+bc=-6,bd=-4所以解得则x4+-x3-5x2-6x-4=(x2+x+1)(x2-2x-4)【专题综述】因式分解初中代数中一种重要的恒等变形,也是中考数学试题中比较常见的题型,对于因式分解,除了掌握其方法外,还应注意观察题目的本身特点,正确的选择方法,同时,由于种种原因,因式分解时常常会出现这样或那样的错误,下面举例予以剖析,望有则改之,无则加勉.9. 方法解读(1)曲解概念,局部分解 例1:分解因式:(x+y)2+(x+y)+14错解:原式=(x+y)(x+y+1)+ 14 正解:原式=(x+y)2+2×12(x+y )+(12)2=(x+y+12)2【解读】尽管结果的第一项是积的形式,但从整体上看还是和的形式. 错因在于曲解了分解因式的意义,误认为只要结果中有整式的积即可,而忽视了整个结果必须是积的形式这一本质.【举一反三】下列各式从左到右的变形是因式分解的是( )A.x 2+2x+3=(x+1)2+2B.(x+y)(x -y)=x 2-y 2C.x 2-xy+y 2=(x -y)2D.2x -2y=2(x -y)【答案】D【解析】选项A. x 2+2x+3=(x+1)2+2不是因式分解选项B.(x+y)(x -y)=x 2-y 2不是因式分解选项C. x 2-xy+y 2=(x -y)2不是因式分解选项D. 2x -2y=2(x -y)是因式分解(2)提公因式,不翼而飞例2:分解因式:4a 2b -6ab 2+2ab.错解:原式=2ab(2a -3b).正解:原式=2ab(2a -3b+l)【解读】当各项的公因式恰与某一项相同(或互为相反数)时,提取公因式后.该项的位置必须由l (或-l )“留守”,而错解忽视了这一点,致使第三项“1”不翼而飞. 【举一反三】 因式分解:ab 2-2ab+a=_______________【答案】a(b -1)2【解析】ab 2-2ab+a=a(b 2-2b+1)=a(b -l)2,故本题的答案为a(b -1)2本题考查略因式分解的提公因式法与公式法,解题的关键在于判断公因式并熟练地运用完全平方式.(3)盲目变换,符号出错例3:分解因式:3q(p-1)2-2(1-p)3.错解:原式=3q(p-1)2-2(p-1)3=(p-1)2[3q-2(p-1)]=(p-1)2(3q-2p +2).正解:原式=3q(l-p) 2-2(1-p)3=(1-p)2(3q-2+2p)【解读】错因在于把(l-p)3化为(p-1)3时出现了符号错误,误认为(l-p)3=(p-1)3.事实上,当n为偶数时,(l-p)m=(p-1)m;当n为奇数时,(l-p)m=-(p-1)m,所以本题中若选择把(p-1)2化为(l-p)2,可避免符号的干扰【举一反三】因式分解:x(x-2)-3(2-x)【答案】(x-2)(x+3)【解析】试题分析:提公因式(x-2)进行因式分解;解:原式=(x-2)(x+3)(4)忘记初衷,背道而融例4:分解因式:(2x+y)2-(x-2y)2.错解:原式=[(2x+y)+(x-2y)][(2x+3)-(x-2y)]=( 3x-y)( x+3y)=3x2+8 x y-3 y2.正解:原式=(3x-y)(x+3y).【解读】错解的最后一步与因式分解背道而驰,是整式乘法. 这种走“回头路”的现象,其原因是混淆了分解因式与整式乘法的本质区别,对分解因式的目标就是“把多项式化为几个整式积的形式”不够明确.【举一反三】分解因式:9(a+b)2-4(a-b)2【答案】(5a+b)(a+5b)【解析】利用平方差公式即可分解因式.解:9(a+b)2-4(a-b)2,=[3(a+b)+2(a-b)][3(a+b)-2(a-b)],=(5a+b)(a+5b)(5)半途而废,前功尽弃例5:分解因式:(x2+4)2-16x2错解:原式=(x2+4)2-(4x)2=(x2+4+4x)(x2+4-4x).正解:原式=(x2+4+4x)(x2+4-4x)=(x+2)2(x-2)2【解读】错因在于分解因式不彻底. 因为结果中的两个因式都是完全平方式,还可以继续分解,所以错解由于半途而废,而导致“前功尽弃”.【举一反三】分解因式:4x2-16=___________【答案】4(x+2)(x-2)【解析】4x2-16.=4(x2-4)=4(x+2)(x-2)10. 强化训练1.下列等式中,从左到右的变形是因式分解的是()A.(x+y)(x-y)=x2-y2;B.42=2×3×7;C.x2-x-2=(x-2)(x+l);D.2x2-x-l=x(2x-1)-1.【答案】C【解析】A.(x+y)(x-y)=x2-y2是乘法运算,故不正确;B.42=2×3×7是分解因数,故不正确;C.x2-x-2=(x-2)(x+1)是因式分解;D.2x2-x-l=x(2x-1)-1的右边不是积的形式,不是因式分解,故不正确.2.对于非零的两个实数a,b.规定a@b=a3-ab,那么将a@16结果再进行分解因式,则为()A. a(a+2)(a-2)B.a(a+4)(a-4)C.(a+4)(a-4)D.a(a2+4)【答案】B【解析】∵a@b=a3-ab∴a@16=a3-16a=a (a2-16)=a(a+4)(a-4).故选B.3.因式分解:(1)2a(y-x)-3b(x-y);(2)x3-x【答案】(1)( y-x)(2a+3b) (2)x(x+1)(x-1).【解析】试题分析:(1)将原式第二项括号里面变形为y-x,再将y-x提取出来即可;(2)先提取公因式x,再用平方差公式因式分解即可.试题解析:(1)原式=2a(y-x)+3b(y-x)=(y-x)( 2a+3b):(2)原式=x(x2-1)=x(x+1)(x-1).4.分解因式:x5-2x3-8x【答案】x(x+2)(x-2)(x2+2)【解析】本题考查了综合运用提公因式法和公式法进行因式分解. 先提公因式x,然后连续运用两次平方差公式求解,分解因式时必须分解到每个因式不能再分解为止.原式=x(x4-2x3-8)=x(x2-4)(x2+2)=x(x+2)(x-2)(x2+2)5.下列各式从左到右的变形中,是因式分解的为()A.x(a-b)=ax-bxB.x2-1+y2=(x-1)(x+l)+y2C.x2-1=(x+1)(x-1)D.ax+bx+c=x(a+b)+c【答案】C【解析】A.是多项式乘法,不是因式分解,错误;B.不是化为几个整式的积的形式,错误;C.是公式法,正确;D.不是化为几个整式的积的形式,错误;故选:C.6.代数式2x2-18因式分解,结果正确的是()A. 2(x2-9)B. 2(x-3)2C.2(x+3)(x-3)D.2(x+9)(x-9)【解析】∵2x2-18=2(x2-9)=2(x+3)(x-3),∴C中的结果是正确结果.故选C7.因式分解:①5x3y-20xy3;②(x-1)(x-3)-8【海南省定安县2017-2018学年八年级上学期期末考试数学试题】【答案】①5xy(x+2y)(x-2y);②)(x-5)(x+1)【解析】①用提公因式法5x3y-20xy3=5xy(x2-4y2)=5xy(x+2y)(x-2y)②用十字相乘法(x-1)(x-3)-8=x2-4x-5=(x-5)(x+1)8.因式分解:(1)2x2-8(2)m3n-10m2n+25mn(3)a2(a-b)+9(b-a)【答案】(1)2(x+2)(x-2);(2)mm(m-5)2;(3)(a+3)(a-3)(a-b).【解析】试题分析:(1)原式提取2,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式变形后提取公因式,再利用平方差公式分解即可.试题解析:(1)原式=2(x2-4)=2(x+2)(x-2);(2)原式=mn(m2-10m+25)=mn(m-5)2;(3)原式=a2(a-b)-9(a-b)=(a-b)(a+3(a-3).(1)10a-5a2-5;(2)(x2+3x)2-(x-1)2.【答案】(1)-5(a-1)2;(2)(x2+4x-1)(x+1)2.【解析】(1)提取公因式-5后,再用完全平方式进行分解即可10a-5a2-5=-5(a2-2a+1)=-5(a-1)2(2)原式运用平方差公式进行分解后,再用完全平方式进行分解即可(x2+3x)2-(x-1)2=(x2+3x+x-1)(x2+3x-x+1)=(x2+4x-1)(x2+2x+1)=(x2+4x-1)(x+1)210.把下列各式因式分解(1 )a(a-3)+2(3-a)(2)(a+b+c)2-(a-b-c)2(3)4(x+y)2-20(x+y)+25(4) 4a2-b2+6a-3b【答案】(1)(a-3)(a-2) (2)4a(b+c) (3)(2x+2y-5)2(4)(2a-b)(2a+b+3)【解析】试题分析:(1)先把原式化为a(a-3)-2(a-3),再用“提公因式法”分解即可;(2)先用“平方差公式”分解,再提“公因式”即可;(3)用“完全平方公式”分解即可;(4)先把原式分组化为(4a-b)+(6a-3b),两组分别分解后,再提“公因式”即可.试题解析:(1)a(a-3)+2(3-a)=a(a-3)-2(a-3)=(a-3)(a-2)(2)(a+b+c)2-(a-b-c)2=[(a+b+c)+(a-b-c) ] [(a+b+c)-(a-b-c)]=(a+b+c+a-b-cXa+b+c-a+b+c)=2a(2b+2c)=4a(b+c)(3)4(x+y)2-20(x+y)+25=[2(x+y) ]2-20(x+y)+25=[2(x+y) ]2-20(x+y)+52=(2x+2y-5)2(4)4a2-b2+6a-3b=(4a2-b2)+(6a-3b)=(2a+b)(2a-b)+3(2a-b)=(2a-b)(2a+b+3)第5章分式5.1 分式5.2 分式的基本性质5.3 分式的乘法5.4 分式的加减5.5 分式的方程1、分式有无意义及分式值为零的条件:分式中字母的取值不能使分母为零. 当分母的值为零时,分式就没有意义;当分母的值不为零时,分式有意义;当分子的值等于零而分母的值不等于零时,分式的值是零.1.分式AB 中,要使分式有意义,则需分母B≠0;要使AB=0,则需A=0且B≠0.2.分式的基本性质:AB =A×MB×M,AB=A÷MB÷M(其中M是不等于零的整式).3.分式约分的结果必须是整式或最简分式.分式的运算:1、分式的乘法:ba ·cd= bcad分式的除法:ba ÷cd=ba·dc=bdac分式的加减:(1)同分母分式相加减:ab ±cb=a±cb(2)异分母分式相加减:ab ±cd=abbd±cbbd=ab±cdbd分式的乘方:(ab)n=a n/b n(其中n是正整数)。
初一数学下册《平行线》知识点总结浙教版初一数学下册《平行线》知识点总结浙教版一、平行线1、平行线的定义:在同一平面内,永不相交的两条直线叫做平行线. 如:AB平行于CD,写作AB∥CD2、平行公理:过直线外一点有且只有一条直线与已知直线平行.推论(平行线的传递性):平行同一直线的两直线平行.∵a∥c,c∥b∴a∥b.二、同位角内错角同旁内角1.在截线的同旁;2.在被截两直线的同方向;3同位角通常是成对出现的。
小窍门:平面内的n(n大于等于3)条直线相交,可得同位角最少有2(n-1)(n-2)对。
三、平行线的判定在同一平面内,两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
1.同位角相等两直线平行在同一平面内,两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
2.内错角相等两直线平行在同一平面内,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
四、平行线的性质1. 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2. 两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3 . 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
五、图形的平移1.概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。
2.性质:(1)平移前后图形全等;(2)对应点连线平行或在同一直线上且相等。
3.平移的作图步骤和方法:(1)分清题目要求,确定平移的方向和平移的距离;(2)分析所作的图形,找出构成图形的关健点;(3)沿一定的方向,按一定的距离平移各个关健点;(4)连接所作的各个关键点,并标上相应的字母;(5)写出结论。
4321CDBA第1讲 平行线性质和判定模块一 平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行.这就需要更简单易行的判定方法来判定两条直线平行. 判定方法1: 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简称:内错角相等,两直线平行. 判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简称:同旁内角互补,两直线平行.如上图:若已知∠1=∠2,则AB ∥CD (同位角相等,两直线平行); 若已知∠1=∠3,则AB ∥CD (内错角相等,两直线平行); 若已知∠1+∠4=180°,则AB ∥CD (同旁内角互补,两直线平行).例题1、(1)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( ).A .两直线平行,同位角相等;B .内错角相等,两直线平行;4321ABC D EF HGNMC .同旁内角互补,两直线平行;D .同位角相等,两直线平行.答案:B(2)如图,点E 在AC 的延长线上,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A =∠DCE ;④∠D =∠DCE ;⑤∠A +∠ABD =180°;⑥∠A +∠ACD =180°⑦AB =CD .能说明AC ∥BD 的条件有__________________.答案:②④⑤例题2、如图,已知∠1=∠2,∠3+∠4=180°,说明:AB ∥EF .解:∵∠1=∠2,( )∴AB ∥______.(_______________,__________________) ∵∠3+∠4=180°,()∴CD ∥_______,(_______________,__________________) ∵AB ∥_______,CD ∥_______,()∴AB ______EF .(_______________ __________________)答案:已知,CD ,内错角相等,两直线平行。
已知,EF ,同旁内角互补,两直线平行,CD ,EF ,已证,∥,等量代换例题3、(1)如图,∠1=∠2,∠CNF =∠BME ,说明:AB ∥CD ,MP ∥NQ .21FCGDEABACDFEB解:∵∠CNF=∠BME ,且∠BME=∠AMN , ∴∠AMN=∠CNF , ∴AB ∥CD , ∴∠BMN=∠DNF , 又∠1=∠2, ∴∠PMN=∠QNF , ∴MP ∥NQ .(2)如图,∠1=∠A ,∠2与∠B 互余,AC ⊥BC .说明:AC ∥DE ,AB ∥CD . 解:∵∠1=∠A E ∴AC ∥ED , ∵AC ⊥BC ,∴∠2与∠BCD 互余, ∵∠2与∠B 互余, ∴∠B =∠BCD ∴A B ∥GQ .(3)如图,∠B =102°,∠DEF =70°,说明:AB ∥CD . 解:∵CD 与BF 相交于点E ∴∠DEF=∠BEC ∵ ∠DEF =70°∴∠BEC =70°∵∠B =102° ∴∠B+∠BEC=180° ∴AB ∥CD321ABCFE M GDN(4)如图,∠A +∠B =180°,∠EFC =∠DCG ,说明:AD ∥EF .解:∵∠A+∠B=180°, ∴AD ∥BC , ∵∠EFC=∠DCG , ∴EF ∥BC , ∴AD ∥EF模块二 平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如图已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的关系.这就是平行线的性质. 性质1: 两条直线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2: 两条直线被第三条直线所截,内错角相等简称:两直线平行,内错角相等性质3: 两条直线被第三条直线所截,同旁内角互补 简称:两直线平行,同旁内角互补例题4、(1)如图,已知AB ∥CD ,∠1=70°,∠2=40°,求∠3的度数. 解:∵AB ∥CD∴∠2=∠BEN321DCBA∵∠2=40° ∴∠BEN =40°∵∠1+∠3+∠BEN=180°,∠1=70° ∴∠3=70°(2)如图,已知AB ∥CD ,∠1=50°,GM 平分∠HGB 交直线CD 于点M ,求∠3的度数. ∵∠1=50°,∴∠BGF=180°-∠1=130°, ∵GM 平分∠BGF , ∴∠BGM=12∠BGF=65°, ∵∠1=∠2=50°, ∴AB ∥CD , ∴∠3=∠BGM=65°(3)如图,已知BC ∥AD ,CA 平分∠BCD ,∠1=35°,求∠D 的度数.解:∵BC ∥AD , ∴∠1=∠2=35°, 又∵∠2=∠3, ∴∠2=∠3=35°, 则∠BCD=70°,∴∠D=180°-∠BCD=110°.模块三平行线的判定与性质综合一般,题目会综合考查平行线的判定和性质,例如,可以先由题目中某些角相等或互补的条件,得到两条线相互平行(判定);再由此平行线推出其它的同位角、内错角相等或同旁内角互补(性质),从而得到新的角度关系.熟练掌握、灵活运用平行线的判定和性质,是解平行线导角以及证明类题型的关键.例题5、(1)如图,AD⊥BC,EF⊥BC,垂足分别为D、F,∠1+∠FEA=180°.说明:∠CDG=∠B.解:∵AD⊥BC,EF⊥BC,∴AD∥EF,∴∠2=∠3,∵∠1+∠FEA=180°,∠2+∠FEA=180°,∴∠1=∠2.(同角的补角相等),∴∠1=∠3,∴DG∥AB,∴∠CDG=∠B(两直线平行,同位角相等)(2)如图,点E在直线BC上,直线AE交CD于F,AB∥CD,∠1=∠2,∠3=∠4.说明:AD∥BE.BCAEF D解:∵AB ∥CD , ∴∠1=∠ACD , ∵∠1=∠2, ∴∠2=∠ACD ,∴∠2+∠CAE=∠ACD+∠CAE , ∴∠DAC=∠4, ∵∠3=∠4, ∴∠DAC=∠3, ∴AD ∥BE(3)如图,AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE . ①若∠ABC =40°,∠CDE =30°,求∠BFD ; ②求∠C 和∠F 的关系.解:①根据模型可知,∠ABC +∠CDE =∠BFD∴∠BFD=70°②∠C =2∠F课后作业模块一 平行线的判定1、(1)如图,下列说法正确的有__________________. ① 由∠1=∠2,得AB ∥CD ; ② 由∠5=∠6,∠3=∠4,得AB ∥CD ;③ 由∠1+∠3=∠2+∠4,得AE ∥CH ;④ 由∠SAF =∠SCG ,得AF ∥CG .图1-1 图1-2(2)如图,下列条件中,不能判断直线l 1∥l 2的是( ). A .∠2=∠3 B .∠1=∠3C .∠4=∠5D .∠2+∠4=180°答案:1(1)① ③④ (2)A2、如图,已知AC ⊥AB ,BD ⊥AB ,∠CAE =∠DBF ,说明:AE ∥BF . 解:∵AC ⊥AB ,BD ⊥AB ,( )∴∠CAB =90°,∠______=90°,( ) ∴∠CAB =∠______,( ) ∵∠CAE =∠DBF ,( ) ∴∠BAE =∠______,()∴_____∥_____.(_______________,__________________)742136FEBGHDACSFAGBEH C D21FCGDEAB答案:解:∵AC ⊥AB ,BD ⊥AB (已知), ∴∠CAB=90°,∠DBA=90°(垂直定义), ∴∠CAB=∠ABD , ∵∠CAE=∠DBF (已知) ∴∠BAE=∠ABF , ∴AE ∥BF .3、(1)如图,FE ⊥CD 于点E ,∠FEH =64°,∠HGB =26°,说明:AB ∥CD . 解:∵FE ⊥CD ∴∠FED=90° ∵∠FEH =64° ∴∠DEH=26°∵∠HGB =26° ∴AB ∥CD(2)如图,∠1=∠A ,∠2与∠B 互余,DE ⊥BC 于点F ,说明AB ∥CD .解:∵∠1=∠A ∴AC ∥ED ∵DE ⊥BC ∴AC ⊥BC ∴∠ABC=90°∴∠2+∠BCD=90° ∵∠2与∠B 互余 ∴∠B=∠BCD ∴AB ∥CD模块二平行线的性质4、(1)如右图,已知AB∥CD,AD∥BC,∠B=60°,∠EDA=50°,求∠CDO的度数.解:∵AB∥CD,∠B=60°,∴∠DCO=∠B=60°,∵AD∥BC,∠EDA=50°,∴∠DOC=∠EDA=50°,∴∠CDO=180°-∠DCO-∠DOC=180°-60°-50°=70°(2)如图,已知AB∥CD,CM平分∠BCD,∠B=74°,CM⊥CN,求∠NCE的度数.解:∵AB∥CD,∴∠BCD=180°-∠B=180°-74°=106°,∠BCE=∠B=74°;∵CM平分∠BCD,∴∠BCM=106°÷2=53°,∵MC⊥CN,∴∠BCN=90°-∠BCM=37°,∴∠NCE=∠BCE-∠BCN=74°-37°=37°.(3)如图,已知AB∥CD,AD⊥AC,∠ADC=32°,求∠CAB的度数.解:∵AD⊥AC,21E C B A G D F H ∴∠CAD=90°,∵AB ∥CD ,∴∠BAD=∠ADC=32°,∴∠BAC=90°+32°=122°.模块三 平行线的综合运用5、(1)如图,已知∠1=∠2,∠B =∠C ,试说明AB ∥CD .解:∵∠1=∠CGD ,∠1=∠2,∴∠2=∠CGD ,∴CE ∥BF ,∴∠C=∠DFH ,∵∠B=∠C ,∴∠DFH=∠B ,∴AB ∥CD .(2)如图,已知∠1与∠2互补,∠3=∠B ,说明∠AFE =∠ACB .∵∠1+∠FDE=180°,∠1+∠2=180°,∴∠FDE=∠2,∴DF ∥AB ,∴∠3=∠AEF ,∵∠3=∠B ,∴∠AEF=∠B ,∴EF ∥CB ,∴∠AFE=∠ACB (两直线平行,同位角相等),(3)如图,AB∥DE,BF、DF分别平分∠ABC、∠CDE,若∠ABC=140°,∠CD3=130°,分别求出∠C和∠F的度数.解:有模型可知∠ABC+∠CDE+∠C=360°,∴∠C=360°-(∠ABC+∠CDE)=90°∵BF、DF分别平分∠ABC,∠CDE,∴∠AFB+∠EDF=12(∠ABC+∠CDE)=135°由模型可知∠BFD=∠ABF+∠EDF=135°(4)如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H,∠GFH+∠BHC=180°,说明∠1=∠2.解:∵∠BHC=∠FHD,∠GFH+∠BHC=180°,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD,∵BD平分∠ABC,∴∠2=∠ABD,∴∠1=∠2挑战试着说明三角形ABC三个内角的和等于180 .解延长BA,过A作AE∥BC,∵AE∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即三角形的内角和等于180°.。