模糊控制的理论基础
- 格式:ppt
- 大小:1.72 MB
- 文档页数:71
模糊控制——理论基础(4模糊推理)1、模糊语句将含有模糊概念的语法规则所构成的语句称为模糊语句。
根据其语义和构成的语法规则不同,可分为以下⼏种类型:(1)模糊陈述句:语句本⾝具有模糊性,⼜称为模糊命题。
如:“今天天⽓很热”。
(2)模糊判断句:是模糊逻辑中最基本的语句。
语句形式:“x是a”,记作(a),且a所表⽰的概念是模糊的。
如“张三是好学⽣”。
(3)模糊推理句:语句形式:若x是a,则x是b。
则为模糊推理语句。
如“今天是晴天,则今天暖和”。
2、模糊推理常⽤的有两种模糊条件推理语句:If A then B else C;If A AND B then C下⾯以第⼆种推理语句为例进⾏探讨,该语句可构成⼀个简单的模糊控制器,如图3-11所⽰。
其中A,B,C分别为论域U上的模糊集合,A为误差信号上的模糊⼦集,B为误差变化率上的模糊⼦集,C为控制器输出上的模糊⼦集。
常⽤的模糊推理⽅法有两种:Zadeh法和Mamdani法。
Mamdani推理法是模糊控制中普遍使⽤的⽅法,其本质是⼀种合成推理⽅法。
注意:求模糊关系时A×B扩展成列向量,由模糊关系求C1时,A1×B1扩展成⾏向量3、模糊关系⽅程①、模糊关系⽅程概念将模糊关系R看成⼀个模糊变换器。
当A为输⼊时,B为输出,如图3-12所⽰。
可分为两种情况讨论:(1)已知输⼊A和模糊关系R,求输出B,这是综合评判,即模糊变换问题。
(2)已知输⼊A和输出B,求模糊关系R,或已知模糊关系R和输出B,求输⼊A,这是模糊综合评判的逆问题,需要求解模糊关系⽅程。
②、模糊关系⽅程的解近似试探法是⽬前实际应⽤中较为常⽤的⽅法之⼀。
第二章 模糊控制理论基础知识2.1 模糊关系一、模糊关系R ~所谓关系R ,实际上是A 和B 两集合的直积A ×B 的一个子集。
现在把它扩展到模糊集合中来,定义如下:所谓A ,B 两集合的直积A ×B={(a,b)|a ∈A ,b ∈B} 中的一个模糊关系R ~,是指以A ×B 为论域的一个模糊子集,其序偶(a,b)的隶属度为),(~b a Rμ,可见R ~是二元模糊关系。
若论域为n 个集合的直积,则A 1×A 2×A 3×……A n 称为n 元模糊关系R ~,它的隶属函数是n 个变量的函数。
例如,要求列出集合X={1,5,7,9,20}“序偶”上的“前元比后元大得多”的关系R ~。
因为直积空间R=X ×X 中有20个“序偶”,序偶(20,1)中的前元比后元大得多,可以认为它的隶属度为1,同理认为序偶(9,5)的隶属于“大得多”的程度为0.3,于是我们可以确定“大得多”的关系R ~为R ~=0.5/(5,1)+ 0.7/(7,1)+ 0.8/(9,1)+ 1/(20,1)+ 0.1/(7,5)+0.3/(9,5)+ 0.95/(20,5)+ 0.1/(9,7)+0.9/(20,7)+ 0.85/(20,9)综上所述,只要给出直积空间A ×B 中的模糊集R ~的隶属函数),(~b a Rμ,集合A 到集合B 的模糊关系R ~也就确定了。
由于模糊关系,R ~实际上是一个模糊子集,因此它们的运算完全服从第一章所述的Fuzzy 子集的运算规则,这里不一一赘述了。
一个模糊关系R ~,若对∀x ∈X ,必有),(~x x R μ=1,即每个元素X 与自身隶属于模糊关系R ~的隶属度为1。
称这样的R ~为具有自返性的模糊关系。
一个模糊R ~,若对∀x ,y ∈X ,均有),(~y x Rμ=),(~x y Rμ 即(x,y)隶属于Fuzzy 关系R ~和(y,x)隶属于Fuzzy 关系R ~的隶属度相同,则称R ~为具有对称性的Fuzzy 关系。
从中可见,随着实验次数n 的增加,27岁对“青年人”的频率基本稳定在0.78附近,近似可取()78.027~=A μ。
②例证法此法是扎德教授于1972年提出的。
基本思想—从模糊子集~A的有()x A ~μ的值,估计出论域U 上~A 的隶属函数。
例如:取论域U 是实数域R 中的一部分[0,100], ~A 是U 上―较大的数‖,虽然~A 是U 上的模糊子集。
为确定()x A ~μ的分布,选定几个语言真值(即一句话为真的程度)中的一个,来回答[0,100]中的某数是否算―较大‖。
如果语言真值分为―真的‖、―大致真的‖、―半真半假‖、―大致假的‖、“假的”。
把这些语言真值分别用[0,1]之间的数字表示,即分别为1,0.75,0.5,0.25和0。
对[0,100]用的αϕ个不同的数都作为样本进行询问,就可得~A 的模糊分布()x A ~μ的离散表示法。
③专家评分法(德尔菲法)该法40年代以来就已广泛应用于经济与管理科学的各个领域,典型的例子是在体操比赛中对运动员的评分,“技术好”是运动员集上的一个模糊 ,所有评委打分的平均值(有时去掉一个最高分和一个最低分)就是运动员“技术好”的隶属度。
这种方法也可以用来求模糊分布,在应用时,为了区别专家的学术水平和经验的多少,还可以采用加权平均法。
§2—2 模糊子集的特性及运算法则前面已讨论过普通集合的基本运算,下面对模糊子集的运算另作定义。
一、 模糊子集的运算法则 ① Fuzzy 子集的包含与相等设~A 、~B 为论域U 上的两个模糊子集,对于U 中的每一个元素x ,都有()x A ~μ≥()x B ~μ,则称~A 包含~B ,记作~A ⊇~B 。
如果,~A ⊇~B 且~B ⊇~A ,则说~A 与~B 相等,记作~A =~B 。
或者,若对所有x ∈U ,都有()x A ~μ=()x B ~μ,则~A =~B 。
②模糊子集的并、交、补运算设~A 、~B 为论域U 上的两个模糊子集,规定~A ~B 、~A ~B 、~A 的隶属函数分别为~~BAμ、~BAμ、~A μ,并且对于U 的每一个元素x 都有~~BAμ()∆x ()x A ~μ∨()x B ~μ=max[()x A ~μ,()x B ~μ] —~A ,~B 的并~~BAμ()∆x ()x A ~μ∧()x B ~μ=min[()x A ~μ,()x B ~μ]— ~A ,~B 的交~Aμ()∆x 1–()x A ~μ —~A 的补eg,设论域U={}4321,,,x x x x ,~A 、~B 是论域U 上的两个模糊集。
模糊控制理论与应用研究随着科技的发展和人工智能的兴起,控制理论也得到了越来越广泛的应用。
其中,模糊控制理论作为一种新型的控制方法,被许多领域所采用,如机器人、汽车、电子设备等。
那么模糊控制理论是什么?它又有哪些应用呢?一、模糊控制理论的基本概念和原理模糊控制理论是在人工智能和控制理论的基础上发展起来的一种新型控制方法。
相较于传统的控制方法和系统,模糊控制更加灵活和适应性强。
其核心原理是模糊逻辑,即在给定的条件下,将模糊概念映射到具体的控制行为上。
模糊控制涉及到很多数学和计算机算法,比如模糊集合、模糊规则、模糊推理等,这些都是构成模糊控制系统的基础。
二、模糊控制理论的应用1.机器人控制机器人是模糊控制的一个典型应用领域。
机器人控制需要根据外部环境和任务需求来实现运动控制和路径规划等功能,而传统的控制方法很难涵盖这些功能。
因此,模糊控制可以实现对机器人的高自适应性控制,使其可以适应多种环境和不同的任务需求。
2.汽车控制在汽车控制领域,模糊控制也被广泛应用,其中最典型的应用是自动驾驶。
自动驾驶需要能够对行车环境进行识别和处理,并根据车辆的速度、方向、加速度等信息,实现自主控制。
3.电子设备控制除了机器人和汽车控制,模糊控制在电子设备控制领域也有广泛的应用。
电子设备控制中,需要对输入信号进行分析和处理,根据控制目标,制定相应的控制策略。
而模糊控制可以实现对信号的快速处理,从而减少控制误差和能耗。
总的来说,模糊控制理论和应用是一种可以帮助人们更好的解决控制问题的方法,不论是在机器人、汽车、电子设备等领域,模糊控制都可以帮助我们更好的实现自主控制和智能化控制,从而为我们的生产生活带来更多的便利和效益。
43. 如何评估模糊控制的技术成熟度?43、如何评估模糊控制的技术成熟度?在当今科技飞速发展的时代,模糊控制作为一种重要的控制技术,在众多领域得到了广泛的应用。
然而,要准确评估模糊控制的技术成熟度并非易事。
这不仅需要对其理论有深入的理解,还需要结合实际应用中的各种因素进行综合考量。
首先,我们来了解一下什么是模糊控制。
简单来说,模糊控制是一种基于模糊逻辑的控制方法,它能够处理和利用那些不精确、不确定的信息,从而实现对复杂系统的有效控制。
与传统的精确控制方法不同,模糊控制不需要对系统进行精确的数学建模,而是通过模糊规则和模糊推理来做出控制决策。
那么,如何评估模糊控制的技术成熟度呢?一个重要的方面是考察其理论基础的完善程度。
模糊控制的理论基础包括模糊集合理论、模糊逻辑运算、模糊推理方法等。
如果这些理论基础已经经过了充分的研究和验证,并且形成了一套相对完整和成熟的体系,那么这在一定程度上表明模糊控制技术具有较高的成熟度。
控制算法的性能和稳定性是另一个关键的评估指标。
一个成熟的模糊控制算法应该能够在不同的工作条件下保持良好的控制效果,具有较强的鲁棒性和适应性。
例如,它能够应对系统参数的变化、外界干扰等因素的影响,依然能够稳定地将系统控制在期望的状态。
我们可以通过大量的实验和仿真来测试算法的性能,观察其控制精度、响应速度、超调量等指标是否达到了预期的要求。
在实际应用中,系统的可靠性和可维护性也是评估技术成熟度的重要因素。
如果模糊控制系统在长期运行过程中很少出现故障,并且在出现故障时能够方便快捷地进行诊断和修复,那么这说明该技术已经相对成熟。
此外,系统的可扩展性也很重要,如果能够方便地对系统进行升级和改进,以适应新的控制需求,这也是技术成熟的一个表现。
技术的应用范围和普及程度也能反映其成熟度。
如果模糊控制技术在众多领域都得到了广泛的应用,并且取得了显著的成果,那么这无疑证明了它的有效性和成熟性。
例如,在工业自动化、智能家居、交通运输等领域,如果模糊控制技术已经成为了一种常见的控制手段,并且被广大用户所接受和认可,那么这就说明该技术已经相对成熟。
模糊控制的基本原理模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础的控制,它是模糊数学在控制系统中的应用,是一种非线性智能控制。
模糊控制是利用人的知识对控制对象进行控制的一种方法,通常用“if条件,then结果”的形式来表现,所以又通俗地称为语言控制。
一般用于无法以严密的数学表示的控制对象模型,即可利用人(熟练专家)的经验和知识来很好地控制。
因此,利用人的智力,模糊地进行系统控制的方法就是模糊控制。
模糊控制的基本原理如图所示:模糊控制系统原理框图它的核心部分为模糊控制器。
模糊控制器的控制规律由计算机的程序实现,实现一步模糊控制算法的过程是:微机采样获取被控制量的精确值,然后将此量与给定值比较得到误差信号E;一般选误差信号E作为模糊控制器的一个输入量,把E的精确量进行模糊量化变成模糊量,误差E的模糊量可用相应的模糊语言表示;从而得到误差E的模糊语言集合的一个子集e(e实际上是一个模糊向量)。
再由e和模糊控制规则R(模糊关系)根据推理的合成规则进行模糊决策,得到模糊控制量u为:式中u为一个模糊量;为了对被控对象施加精确的控制,还需要将模糊量u进行非模糊化处理转换为精确量:得到精确数字量后,经数模转换变为精确的模拟量送给执行机构,对被控对象进行一步控制;然后,进行第二次采样,完成第二步控制……。
这样循环下去,就实现了被控对象的模糊控制。
模糊控制(Fuzzy Control)是以模糊集合理论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制。
模糊控制同常规的控制方案相比,主要特点有:(1)模糊控制只要求掌握现场操作人员或有关专家的经验、知识或操作数据,不需要建立过程的数学模型,所以适用于不易获得精确数学模型的被控过程,或结构参数不很清楚等场合。
(2)模糊控制是一种语言变量控制器,其控制规则只用语言变量的形式定性的表达,不用传递函数与状态方程,只要对人们的经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。
模糊控制介绍附件:一、模糊控制概况模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。
1965年,美国的L.A.Zadeh创立了模糊集合论;1973年他给出了模糊逻辑控制的定义和相关的定理。
1974年,英国的E.H.Mamdani 首先用模糊控制语句组成模糊控制器,并把它应用于锅炉和蒸汽机的控制,在实验室获得成功。
这一开拓性的工作标志着模糊控制论的诞生。
模糊控制实质上是一种非线性控制,从属于智能控制的范畴。
模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。
模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是在日本,却得到了迅速而广泛的推广应用。
近20多年来,模糊控制不论从理论上还是技术上都有了长足的进步,成为自动控制领域中一个非常活跃而又硕果累累的分支。
其典型应用的例子涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等的模糊控制;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制等。
二、模糊控制基础模糊控制的基本思想是利用计算机来实现人的控制经验,而这些经验多是用语言表达的具有相当模糊性的控制规则。
模糊控制器(Fuzzy Controller,即FC)获得巨大成功的主要原因在于它具有如下一些突出特点:模糊控制是一种基于规则的控制。
它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。
由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取、动态特性不易掌握或变化非常显著的对象非常适用。
模糊控制——(1)基本原理1、模糊控制的基本原理模糊控制是以模糊集理论、模糊语⾔变量和模糊逻辑推理为基础的⼀种智能控制⽅法,它是从⾏为上模仿⼈的模糊推理和决策过程的⼀种智能控制⽅法。
该⽅法⾸先将操作⼈员或专家经验编成模糊规则,然后将来⾃传感器的实时信号模糊化,将模糊化后的信号作为模糊规则的输⼊,完成模糊推理,将推理后得到的输出量加到执⾏器上。
2、模糊控制器模糊控制器(Fuzzy Controller—FC):也称为模糊逻辑控制器(Fuzzy Logic Controller—FLC),由于所采⽤的模糊控制规则是由模糊理论中模糊条件语句来描述的,因此模糊控制器是⼀种语⾔型控制器,故也称为模糊语⾔控制器(Fuzzy Language Controller—FLC)。
(1)模糊化接⼝(Fuzzy interface)模糊控制器的输⼊必须通过模糊化才能⽤于控制输出的求解,因此它实际上是模糊控制器的输⼊接⼝。
它的主要作⽤是将真实的确定量输⼊转换为⼀个模糊⽮量。
(2)知识库(Knowledge Base—KB)知识库由数据库和规则库两部分构成。
①数据库(Data Base—DB)数据库所存放的是所有输⼊、输出变量的全部模糊⼦集的⾪属度⽮量值(即经过论域等级离散化以后对应值的集合),若论域为连续域则为⾪属度函数。
在规则推理的模糊关系⽅程求解过程中,向推理机提供数据。
②规则库(Rule Base—RB)模糊控制器的规则司基于专家知识或⼿动操作⼈员长期积累的经验,它是按⼈的直觉推理的⼀种语⾔表⽰形式。
模糊规则通常有⼀系列的关系词连接⽽成,如if-then、else、also、end、or等,关系词必须经过“翻译”才能将模糊规则数值化。
最常⽤的关系词为if-then、also,对于多变量模糊控制系统,还有and等。
(3)推理与解模糊接⼝(Inference and Defuzzy-interface)推理是模糊控制器中,根据输⼊模糊量,由模糊控制规则完成模糊推理来求解模糊关系⽅程,并获得模糊控制量的功能部分。