[精品]2018届中考数学横向复习 第二单元 方程与不等式 第6讲 一次方程(组)考点测试题
- 格式:doc
- 大小:64.00 KB
- 文档页数:4
中考数学知识点复习 第二章 方程(组)与不等式(组)第5讲 一次方程(组)及其应用(时间60分钟 满分95分)一、选择题(本大题共8小题 ,每小题4分,共32分)1.(2017·杭州)设x ,y ,c 是实数,(B )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y3c,则2x =3y 2.(2017·深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程(D )A .10%x =330B .(1-10%)x =330C .(1-10%)2x =330D .(1+10%)x =3303.若关于x 的方程2x -m =x -2的解为x =3,则m 的值为(B )A .-5B .5C .-7D .7 4.(2017·天津)方程组⎩⎪⎨⎪⎧y =2x ,3x +y =15的解是(D ) A.⎩⎪⎨⎪⎧x =2y =3 B.⎩⎪⎨⎪⎧x =4y =3C.⎩⎪⎨⎪⎧x =4y =8D.⎩⎪⎨⎪⎧x =3y =65.设某数是x ,若比它的2倍大3的数是8,可列方程为(B )A .2x -3=8B .2x +3=8C.12x -3=8D.12x +3=8 6.(2017·随州)小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元,设每支铅笔x 元,每本笔记本y 元,则可列方程组(B )A.⎩⎪⎨⎪⎧20x +30y =11010x +5y =85B.⎩⎪⎨⎪⎧20x +10y =11030x +5y =85C.⎩⎪⎨⎪⎧20x +5y =11030x +10y =85D.⎩⎪⎨⎪⎧5x +20y =11010x +30y =85 7.已知方程|x |=2,那么方程的解是(C )A .x =2B .x =-2C .x 1=2,x 2=-2D .x =48.已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x +y =3m -5,x -y =m -1,若x +y >3,则m 的取值范围是(D )A .m >1B .m <2C .m >3D .m >5二、填空题(本大题共7小题 ,每小题3分,共21分)9.(2017·金华)若a b =23,则a +b b =__53__. 10.(2017·南宁)已知⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧x -2y =0,2x +y =5的解,则3a -b =__5__.11.我们规定一种运算:a *b =2a -3b ,则方程x *2=3*x 的解为__x =125__. 12.(2017·宁夏)某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为__4__元.13.若(a -1)x 2-|a |-3=0是关于x 的一元一次方程,则a 的值为__-1__.14.若x ,y 互为相反数,且(x +y +3)(x -y -2)=6,则x =__2__.15.(2017·荆门)已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为__12__岁.三、解答题(本大题共6小题 ,共42分)16.(5分)(2017·武汉)解方程:4x -3=2(x -1).解:4x -3=2(x -1),4x -3 =2x -2,4x -2x =-2+3,2x =1,x =12.17.(5分)解方程:6x +1=3(x +1)+4.解:去括号得:6x +1=3x +3+4,移项合并得:3x =6,解得:x =2.18.(6分)(2017·广州)解方程组⎩⎪⎨⎪⎧x +y =5,2x +3y =11.解:⎩⎪⎨⎪⎧x +y =5 ①,2x +3y =11 ②,①×3-②得:x =4,把x =4代入①得:y =1,则方程组的解为⎩⎪⎨⎪⎧x =5,y =1.19.(7分)已知二元一次方程组⎩⎪⎨⎪⎧2x +y =14,-3x +2y =21的解为x =a ,y =b ,求a +b 的值. 解:∵⎩⎪⎨⎪⎧2x +y =14,-3x +2y =21,解得 ⎩⎪⎨⎪⎧x =1,y =12, ∴a =1,b =12,∴a +b =13.20.(9分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?解:该店有客房8间,房客63人.21.(10分)(2018·原创)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)解:(1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请甲组需要的费用:300×12=3600元,单独请乙组需要的费用:24×140=3360元,答:单独请乙组需要的费用少;(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲、乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;∵5120<6000<8160,∴甲、乙合作损失费用最少.答:甲、乙合作施工更有利于商店.第6讲 一元二次方程(时间60分钟 满分95分)一、选择题(本大题共8小题 ,每小题4分,共32分)1.(2017·嘉兴)用配方法解方程x 2+2x -1=0时,配方结果正确的是(B )A .(x +2)2=2B .(x +1)2=2C .(x +2)2=3D .(x +1)2=32.(2017·广东)如果2是方程x 2-3x +k =0的一个根,则常数k 的值为(B )A .1B .2C .-1D .-23.(2017·苏州)关于x 的一元二次方程x 2-2x +k =0有两个相等的实数根,则k 的值为(A )A .1B .-1C .2D .-24.(2017·绵阳)关于x 的方程2x 2+mx +n =0的两个根是-2和1,则n m 的值为(C )A .-8B .8C .16D .-165.(2017·江西)已知一元二次方程2x 2-5x +1=0的两个根为x 1,x 2,下列结论正确的是(D )A .x 1+x 2=-52B .x 1·x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是正数6.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的12,设人行通道的宽度为x 千米,则下列方程正确的是(A )A .(2-3x )(1-2x )=1B.12(2-3x )(1-2x )=1 C.14(2-3x )(1-2x )=1 D.14(2-3x )(1-2x )=2 7.下列关于x 的一元二次方程中,有两个相等实数根的是(D )A .x 2+1=0B .x 2+x -1=0C .x 2+2x -3=0D .4x 2-4x +1=08.(2017·烟台)若x 1,x 2是方程x 2-2mx +m 2-m -1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为(D )A .-1或2B .1或-2C .-2D .1二、填空题(本大题共5小题 ,每小题3分,共15分)9.方程(x -2)2=3x (x -2)的解为__x =2或x =-1__.10.(2017·大连)关于x 的方程x 2+2x +c =0有两个不相等的实数根,则c 的取值范围为__c <1__.11.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是__k >-1且k ≠0__.12.(2017·菏泽)关于x 的一元二次方程(k -1)x 2+6x +k 2-k =0的一个根是0,则k 的值是__0__.13.(2017·成都)已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 12-x 22=10,则a =__214__. 三、解答题(本大题共7小题 ,共48分)14.(5分)(2017·丽水)解方程:(x -3)(x -1)=3.解:方程化为x 2-4x =0,x (x -4)=0,∴x 1=0,x 2=4.15.(5分)解方程:3x 2+5(2x +1)=0.解:3x 2+5(2x +1)=0,整理得:3x 2+10x +5=0,∵a =3,b =10,c =5,∴b 2-4ac =100-60=40>0,∴x =-10±2106=-5±103, 则原方程的解为x 1=-5+103,x 2=-5-103. 16.(5分)解方程:x 2-6x -4=0.解:移项得x2-6x=4,配方得x2-6x+9=4+9,即(x-3)2=13,开方得x-3=±13,∴x1=3+13,x2=3-13.17.(7分)(2017·玉林)已知关于x的一元二次方程:x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为相反数?请说明理由.(1)证明:在方程x2-(t-1)x+t-2=0中,b2-4ac=[-(t-1)]2-4×1×(t-2)=t2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根;(2)解:设方程的两根分别为m、n,∵方程的两个根互为相反数,∴m+n=t-1=0,解得t=1.∴当t=1时,方程的两个根互为相反数.18.(8分)(2017·绥化)已知关于x的一元二次方程x2+(2m+1)x+m2-4=0.(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.解:(1)∵方程x 2+(2m +1)x +m 2-4=0有两个不相等的实数根, ∴b 2-4ac =(2m +1)2-4(m 2-4)=4m +17>0, 解得m >-174.∴当m >-174时,方程有两个不相等的实数根;(2)设方程的两根分别为a 、b ,根据题意得:a +b =-2m -1,ab =m 2-4. ∵2a 、2b 为边长为5的菱形的两条对角线的长,∴a 2+b 2=(a +b )2-2ab =(-2m -1)2-2(m 2-4)=2m 2+4m +9=52=25, 解得m =-4或m =2.∵a >0,b >0,∴a +b =-2m -1>0, ∴m =-4.∴若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m 的值为-4.19.(9分 )新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?解:每件玩具的售价定为32元时,月销售利润恰为2520元.20.(9分)(2017·襄阳)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?解:(1)这两年该企业年利润平均增长率为20%;(2)该企业2017年的利润能超过3.4亿元.第7讲分式方程(时间50分钟满分80分)一、选择题(本大题共7小题,每小题4分,共28分)1.(2017·哈尔滨)方程2x+3=1x-1的解为(C)A.x=3 B.x=4 C.x=5 D.x=-52.解分式方程2x-1+x+21-x=3时,去分母后变形正确的是(D)A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D .2-(x +2)=3(x -1)3.(2017·成都)已知x =3是分式方程kxx -1-2k -1x =2的解,那么实数k 的值为(D )A .-1B .0C .1D .24.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为(B )A.420x -420x -0.5=20B.420x -0.5-420x =20C.420x -420x -20=0.5D.420x -20-420x =0.55.(2017·聊城)如果解关于x 的分式方程mx -2-2x 2-x=1时出现增根,那么m 的值为(D )A .-2B .2C .4D .-4 6.(2016·十堰)用换元法解方程x 2-12x-4xx 2-12=3时,设x 2-12x=y ,则原方程可化为(B )A .y -1y -3=0B .y -4y-3=0C .y -1y +3=0D .y -4y+3=07.(2017·龙东地区)若关于x 的分式方程2x -a x -2=12的解为非负数,则a 的取值范围是(C )A .a ≥1B .a >1C .a ≥1且a ≠4D .a >1且a ≠4二、填空题(本大题共4小题 ,每小题3分,共12分) 8.(2017·南京)方程2x +2-1x =0的解是__x =2__.9.(2017·泸州)若关于x 的分式方程x +mx -2+2m2-x=3的解为正实数,则实数m 的取值范围是__m <6且m ≠2__.10.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:__160x =200x +5__.11.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12000步与小博步行9000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,则小博每消耗1千卡能量需要行走__30__步.三、解答题(本大题共6小题 ,共40分) 12.(5分)解方程:x -3x -2+1=32-x.解:方程两边同乘以(x -2), 得:x -3+(x -2)=-3, 解得x =1,检验:x =1时,x -2≠0, ∴x =1是原分式方程的解.13.(5分)(2017·宁夏)解方程:x +3x -3-4x +3=1.解:去分母得(x +3)2-4(x -3)=(x -3)(x +3), 去括号得x 2+6x +9-4x +12=x 2-9, 合并同类项得2x =-30, 系数化为1得x =-15, 当x =-15时,(x -3)(x +3)≠0, ∴原分式方程的解为x =-15.14.(5分)(2017·上海)解方程:3x 2-3x -1x -3=1.解:方程两边同乘x (x -3)得3-x =x 2-3x , ∴x 2-2x -3=0, ∴(x -3)(x +1)=0, 解得x =3或x =-1, 经检验x =3是原方程的增根, ∴原方程的解为x =-1.15.(7分)(2017·广州)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5∶8,求乙队平均每天筑路多少公里. 解:(1)60×43=80(公里).答:乙队筑路的总公里数为80公里;(2)设乙队平均每天筑路8x 公里,则甲队平均每天筑路5x 公里, 根据题意得:605x -808x =20,解得:x =0.1,经检验,x =0.1是原方程的解, ∴8x =8×0.1=0.8.答:乙队平均每天筑路0.8公里.16.(8分)(2017·通化)一汽车从甲地出发开往相距240 km 的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快14,比原计划提前24 min 到达乙地,求汽车出发后第1小时内的行驶速度.解:汽车出发后第1小时内的行驶速度是80千米/小时.17.(10分)某公司计划对面积为1800 m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成的绿化面积是乙队每天能完成的绿化面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天时间.(1)求甲、乙两工程队每天能完成的绿化面积;(2)若公司每天需付给甲队的绿化费用为0.4万元,付给乙队的绿化费用为0.25万元,要使这次的绿化总费用不超过8万元,则至少应安排甲队工作多少天?解:(1)甲、乙两工程队每天能完成绿化的面积分别是100 m2、50 m2;(2)至少应安排甲队工作10天.第8讲不等式(组)及其应用(时间60分钟满分100分)A卷一、选择题(本大题共10小题,每小题4分,共40分) 1.(2017·杭州)若x+5>0,则(D)A.x+1<0 B.x-1<0C.x5<-1 D.-2x<122.一元一次不等式x+1≥2的解在数轴上表示为(A)3.(2017·株洲)已知实数a,b满足a+1>b+1,则下列选项错误的为(D) A.a>b B.a+2>b+2C.-a<-b D.2a>3b4.(2017·西宁)不等式组⎩⎪⎨⎪⎧-2x +1<3,x ≤1的解集在数轴上表示正确的是(B )5.(2017·齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买(A )A .16个B .17个C .33个D .34个6.(2017·恩施州)关于x 的不等式组⎩⎪⎨⎪⎧x -m <0,3x -1>2(x -1)无解,那么m 的取值范围为(A )A .m ≤-1B .m <-1C .-1<m ≤0D .-1≤m <07.(2017·大庆)若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为(D )A .2B .3C .4D .58.不等式组⎩⎪⎨⎪⎧3(x +2)>2x +5,x -12≤x 3的最小整数解是(B )A .-1B .0C .1D .29.已知x >y ,若对任意实数a ,以下结论:甲:ax >ay ;乙:a 2-x >a 2-y ;丙:a 2+x ≤a 2+y ;丁:a 2x ≥a 2y .其中正确的是(D )A .甲B .乙C .丙D .丁10.(2017·金华)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x <m 的解是x <5,则m 的取值范围是(A )A .m ≥5B .m >5C .m ≤5D .m <5二、填空题(本大题共7小题 ,每小题3分,共21分) 11.(2016·陕西)不等式-12x +3<0的解集是__x >6__.12.(2017·哈尔滨)不等式组⎩⎪⎨⎪⎧5-2x ≤1,x -3<0的解集是__2≤x <3__.13.已知关于x 的不等式(1-a )x >3的解集为x <31-a ,则a 的取值范围是__a >1__.14.(2017·台州)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为__10__元/千克.15.(2017·烟台)运行程序如图所示,从“输入实数x ”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是__x <8__.16.(2017·宜宾)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x -y =2m +1x +3y =3的解满足x +y >0,则m 的取值范围是__m >-2__.17.定义一种法则“⊕”如下:a ⊕b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ),例如:1⊕2=2,若(-2m -5)⊕3=3,则m 的取值范围是__m ≥-4__.三、解答题(本大题共3小题,共19分)18.(6分)(2017·北京)解不等式组:⎩⎪⎨⎪⎧2(x +1)>5x -7,x +103>2x .解:⎩⎪⎨⎪⎧2(x +1)>5x -7①,x +103>2x ②,由①式得x <3,由②式得x <2, ∴不等式组的解集是x <2.19.(6分)解不等式组:⎩⎪⎨⎪⎧x +2>0,3(x -1)+2≥2x ,并判断-1,3这两个数是否为该不等式组的解.解:解不等式x +2>0,得x >-2, 解不等式3(x -1)+2≥2x ,得x ≥1, ∴不等式组的解集为x ≥1, ∵-1<1,3>1,∴3是该不等式组的解.20.(7分)(2017·常州)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?解:(1)每个篮球和每个足球的售价分别为100元,120元; (2)最多可购买25个足球.B 卷1.(3分)(2017·百色)关于x 的不等式组⎩⎪⎨⎪⎧x -a ≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是(B )A .3B .2C .1 D.232.(3分)已知,关于x 的不等式组⎩⎪⎨⎪⎧x -a >0,2-x >0的整数解共有两个,那么a 的取值范围是__-1≤a <0__.3.(5分)(2017·天津)解不等式组⎩⎪⎨⎪⎧x +1≥2 ①,5x ≤4x +3②,请结合题意填空,完成本题的解答. (1)解不等式①,得__x ≥1__; (2)解不等式②,得__x ≤3__;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为__1≤x≤3__.解:(3)把不等式①和②的解集在数轴上表示出来:4.(9分)(2017·聊城)在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A 乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生用电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的15少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?解:(1)该型号的学生用电脑的单价为0.19万元,教师用笔记本电脑的单价为0.3万元; (2)设能购进的学生用电脑m 台,则能购进的教师用笔记本电脑为(15m -90)台,依题意得:0.19m +0.3×(15m -90)≤438,解得m ≤1860.∴15m -90=15×1860-90=282(台). 答:至多能购进的学生用电脑1860台,教师用笔记本电脑为282台.第二章 方程(组)与不等式(组)自我测试(时间60分钟 满分105分)一、选择题(本大题共10小题 ,每小题4分,共40分) 1.(2017·常州)若3x >-3y ,则下列不等式中一定成立的是(A ) A .x +y >0 B .x -y >0 C .x +y <0 D .x -y <02.(2017·安徽)不等式4-2x >0的解集在数轴上表示为(D )3.(2017·泰安)一元二次方程x 2-6x -6=0配方后化为(A ) A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=34.不等式组⎩⎪⎨⎪⎧x -3≤0,13(x -2)<x +1的解集在数轴上表示正确的是(A )5.(2017·岳阳)解分式方程2x -1-2xx -1=1,可知方程的解为(D )A .x =1B .x =3C .x =12D .无解6.(2017·宜宾)一元二次方程4x 2-2x +14=0的根的情况是(B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法判断7.(2017·安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足(D )A .16(1+2x )=25B .25(1-2x )=16C .16(1+x )2=25D .25(1-x )2=168.(2017·内江)不等式组⎩⎪⎨⎪⎧3x +7≥2,2x -9<1的非负整数解的个数是(B )A .4B .5C .6D .79.(2017·娄底)“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,答错了y 道题(不答视为答错),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是(A )A.⎩⎪⎨⎪⎧x +y =60x -7y =4B.⎩⎪⎨⎪⎧x +y =60y -7x =4C.⎩⎪⎨⎪⎧x =60-y x =7y -4D.⎩⎪⎨⎪⎧y =60-x y =7x -4 10.(2017·凉山州)若关于x 的方程x 2+2x -3=0与2x +3=1x -a有一个解相同,则a的值为(B )A .0B .-1C .2D .-3二、填空题(本大题共7小题 ,每小题3分,共21分) 11.方程(2a -1)x 2+3x +1=4是一元一次方程,则a =__12__.12.(2017·襄阳)不等式组⎩⎪⎨⎪⎧2x -1>x +1,x +8≥4x -1的解集为__2<x ≤3__.13.(2017·乌鲁木齐)一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是__100__元.(导学号 35694137)14.(2017·枣庄)已知关于x 的一元二次方程ax 2-2x -1=0有两个不相等的实数根,则a 的取值范围是__a >-1且a ≠0__.15.(2017·包头)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3,2x -ay =5的解是⎩⎪⎨⎪⎧x =b ,y =1,则a b 的值为__1__.16.(2017·北京)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为__⎩⎪⎨⎪⎧x -y =34x +5y =435__.17.(2017·西宁)若x 1,x 2是一元二次方程x 2+3x -5=0的两个根,则x 12x 2+x 1x 22的值是__15__.三、解答题(本大题共6小题,共44分)18.(6分)(2017·广州)解方程组⎩⎪⎨⎪⎧x +y =5,2x +3y =11.解:⎩⎪⎨⎪⎧x +y =5 ①,2x +3y =11 ②,①×3-②得x =4,把x =4代入①得y =1,则方程组的解为⎩⎪⎨⎪⎧x =4,y =1.19.(6分)解方程1-x x -2+1=x2x -4.解:方程两边同乘以2(x -2),得:2(1-x )+2x -4=x , 解得x =-2,把x =-2代入原分式方程中,方程两边相等, 经检验x =-2是分式方程的解.20.(7分)(2017·长沙)解不等式组⎩⎪⎨⎪⎧2x ≥-9-x5x -1>3(x +1),并把它的解集在数轴上表示出来.解:解不等式2x≥-9-x,得x≥-3,解不等式5x-1>3(x+1),得x>2,则不等式组的解集为x>2,将解集表示在数轴上如解图.21.(7分)(2017·广东)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?答:男生志愿者有12人,女生志愿者有16人.22.(9分)(2017·日照)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?解:(1)实际每年绿化面积为54万平方米;(2)实际平均每年绿化面积至少还要增加45万平方米.23.(9分)(2017·宁波)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?解:(1)甲种商品的销售单价为900元,乙种商品的销售单价为600元;(2)至少销售甲种商品2万件.第31 页共31 页。
第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。
(系数不为0)的整式方程。
形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。
解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。
一般形式: ax+by=c ,有无数组解。
2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。
⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。
【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。
2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。
第6讲一元一次方程与分式方程及其应用1.一元一次方程及解法2.分式方程及解法1.(2016·杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A .518=2(106+x )B .518-x =2×106C .518-x =2(106+x )D .518+x =2(106-x )2.(2017·宁波)分式方程2x +13-x =32的解是____________________.3.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:____________________.4.(2017·金华)解分式方程:2x +1=1x -1.【问题】给出以下五个代数式:2x -4,x -2,x ,12,3.(1)选取其中的几个代数式,组成一个一元一次方程和一个分式方程; (2)解出(1)中所选的一元一次方程和分式方程.【归纳】通过开放式问题,归纳、疏理一元一次方程和分式方程的概念,以及它们的解法.类型一 等式性质和方程的解的含义例1 (1)(2017·杭州)设x ,y ,c 是实数,( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y 3c,则2x =3y(2)已知关于x 的方程2x +a -9=0的解是x =2,则a =________.(3)已知关于x 的方程3x +n2x +1=2的解是负数,则n 的取值范围为______________.【解后感悟】(1)熟记等式的性质并根据等式的性质求解是解题关键;(2)本题利用方程的思想,通过方程的解来构造关于a 的一元一次方程,求出a 值;(3)本题是分式方程的解和解一元一次不等式,关键是得出n -2<0和n -2≠-12,注意题目中的隐含条件2x +1≠0不要忽略.1.(1)已知等式3a =2b +5,则下列等式中不一定成立的是( )A .3a -5=2bB .3a +1=2b +6C .3ac =2bc +5D .a =23b +53(2)如果方程x +2=0与方程2x -a =0的解相同,那么a =____________________. (3)(2017·成都)已知x =3是分式方程kx x -1-2k -1x=2的解,那么实数k 的值为( )A .-1B .0C .1D .2类型二 一元一次方程的解法例2 解方程:x -x -12=2-x +23.【解后感悟】(1)去分母,方程两边同乘各分母的最小公倍数时,不要漏乘没有分母的项(尤其是常数项),若分子是多项式,则要把它看成一个整体加上括号;(2)去括号可用分配律,注意符号,勿漏乘.2.解方程:(1)(2016·贺州)解方程:x 6-30-x4=5;(2)7x -12⎣⎢⎡⎦⎥⎤x -12(x -1)=23(x -1).类型三 分式方程的解法例3 (2015·营口)若关于x 的分式方程2x -3+x +m3-x=2有增根,则m 的值是( )A .m =-1B .m =0C .m =3D .m =0或m =3【解后感悟】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程:③把增根代入整式方程即可求得相关字母的值.例4 (1)(2017·湖州)解方程:2x -1=1x -1+1; (2)(2017·陕西模拟)解方程:2-x x -3=13-x -2.【解后感悟】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.解分式方程:(1)x x -3=x -63-x+3;(2)x x +1-4x2-1=1.类型四 一元一次方程和分式方程的应用例5 (2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?【解后感悟】此题主要考查了分式方程的应用,此题关键是正确理解题意,找到合适的等量关系,列出方程.注意不要忘记检验.4.(2017·黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【探索规律题】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接. (1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人? (2)若用餐的人数有90人,则这样的餐桌需要多少张?【方法与对策】根据寻找的规律,每增加1张这样的餐桌可增加4人求解即可.这是探索规律题(图形的变化类),并利用方程思想来解决.它是中考热点题之一.【解分式方程去分母时,漏乘整式项,忘记验根】 解分式方程:x2-4x x2-1+1=2xx +1.参考答案第6讲 一元一次方程与分式方程及其应用【考点概要】1.整式 等式 等式 相等 一 1 括号 同类项 2.未知数 整式 最简公分母 不为03.间接 等量关系【考题体验】 1.C2.x =13.160x =200x +54.x =3 【知识引擎】【解析】(1)答案不唯一,2x -4=3和2x -4x -2=12;(2)2x -4=3,解得x =3.5;2x -4x -2=12,解得x =2,代入方程x =2是方程的增根,舍去,所以,方程无解.【例题精析】例1 (1)B ;(2)5;(3)解方程3x +n 2x +1=2得x =n -2.∵关于x 的方程3x +n2x +1=2的解是负数,∴n -2<0.解得:n <2.又∵原方程有意义的条件为:x ≠-12,∴n -2≠-12,即n ≠32.∴n <2且n ≠32. 例2 6x-3(x -1)=12-2(x +2),6x -3x +3=12-2x -4,3x +3=8-2x ,3x +2x =8-3,5x =5,∴x =1. 例3 方程两边都乘以(x -3)得,2-x -m =2(x -3),∵分式方程有增根,∴x -3=0,解得x =3,∴2-3-m =2(3-3),解得m =-1.故选A . 例4 (1)方程两边都乘以x -1得:2=1+x -1,解得:x =2,检验:∵当x =2时,x -1≠0,∴x =2是原方程的解,即原方程的解为x =2. (2)方程的两边同乘(x -3),得:2-x =-1-2(x -3),解得:x =3,检验:把x =3代入(x -3)=0,即x =3不是原分式方程的解.则原方程无解. 例5 (1)设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得:x +2x -600=6600,解得:x =2400,2x -600=4200,答:B 花木数量为2400棵,则A 花木数量是4200棵; (2)设安排a 人种植A 花木,由题意得:420060a =240040(26-a ),解得:a =14,经检验:a =14是原分式方程的解,26-a =26-14=12,答:安排14人种植A 花木,12人种植B 花木.【变式拓展】1.(1)C (2)-4 (3)D 2. (1)x =30; (2)x =-573.3.(1)解得x =3,经检验x =3是增根,分式方程无解. (2)x =-3.4.设文学类图书平均每本的价格为x 元,则科普类图书平均每本的价格为(x +5)元.根据题意,得12000x +5=5000x .解得x =257.经检验,x =257是原方程的解,且符合题意,则科普类图书平均每本的价格为257+5=607元,答:文学类图书平均每本的价格为257元,科普类图书平均每本的价格为607元.【热点题型】【分析与解】(1)寻找规律:1张这样的餐桌四周可坐6人,2张这样的餐桌拼接起来四周可坐6+4人,3张这样的餐桌拼接起来四周可坐6+4×2人,4张这样的餐桌拼接起来四周可坐6+4×3人,…n 张这样的餐桌拼接起来四周可坐6+4(n -1)人.∴4张这样的餐桌拼接起来四周可坐18人,8张这样的餐桌拼接起来四周可坐34人.(2)∵n 张这样的餐桌拼接起来四周可坐6+4(n -1)人,∴若用餐的人数有90人,则6+4(n -1)=90,解得n =22.∴若用餐的人数有90人,则这样的餐桌需要22张.【错误警示】原方程变形为x2-4x (x +1)(x -1)+1=2x x +1.方程两边同乘(x +1)(x -1),得x 2-4x +(x +1)(x -1)=2x(x -1).整理得x 2-4x +x 2-1=2x 2-2x ,即2x =-1,x =-12.检验:当x =-12时,(x +1)(x -1)≠0,所以x =-12是原方程的根.。
第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。
2018中考数学:方程与不等式第二单元方程与不等式[创新训练]一、选择题1.(05·陕西·4)一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元.设这件商品的成本价为x元,根据题意,下面所列的方程正确的是A.x·40%×80%=240B.x(1+40%)×80%=240C.240×40%×80%=xD.x·40%=240×80%2.(05·安徽·3)根据下图所示,对a、b、c三种物体的重量判断正确的是A.acD.b3.(05·浙江·9)根据下列表格的对应值x3.233.243.253.26ax2+bx+c-0.06-0.020.030.09判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解x的范围是A.34.(?05·宁夏·7)买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%,设买甲种水x桶,乙种水y桶,则所列方程组中正确的是A.8x+6y=250y=75{%xB.8x+6y=250x=75{%yC.6x+8y=250y=75{%xD.6x+8y=250x=75{%y5.(05·山东潍坊·8)若x+1x=3,求x2x4+x2+1的值是A.18B.110C.12D.146.(05·山东潍坊·9)为了改善住房条件,小亮的父母考察了某小区的A、B两套楼房,A 套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的总房价相同,第3层楼和第5层楼每平方米的价格分别是平均价格的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息得出了下列方程组.其中正确的是A.0.9x=1.1yy-x{=24B.1.1x=0.9yx-y{=24C.0.9x=1.1yx-y{=24D.1.1x=0.9yy-x{=247.(05·广州·7)用计算器计算22槡-12-1,32槡-13-1,42槡-14-1,52槡-15-1,…,根据你发现的规律,判断P=n2槡-1n-1与Q=(n+1)2槡-1(n+1)-1(n为大于1的整数)的值的大小关系为A.PC.P%26gt;QD.与n的取值有关8.(04·重庆北碚·7)关于x的不等式2x-a≤-1的解集如图所示,则a的取值是A.0B.-3C.-2D.-19.(04·河北鹿泉·5)如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为10.(04·青海湟中·5)设A、B、C表示三种不同的物体,现用天平称了两次,情况如图所示,那么“A”、“B”、“C”这三种物体按质量从大到小的顺序排应为A.ABCB.CBAC.BACD.BCA二、填空题1.(05·江西·6)若方程x2-m=0有整数根,则m的值可以是(只填一个).2.(05·浙江·15)在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,用上述方法产生的密码是:(写出一个即可).3.(05·浙江宁波·18)已知a-b=b-c=35,a2+b2+c2=1,则ab+bc+ca的值等于.4.(05·福建厦门·15)一根蜡烛在凸透镜下成一实像,物距u,像距v和凸透镜的焦距f满足关系式:1u+1v=1f.若f=6厘米,v=8厘米,则物距u=厘米.5.(04·青海湟中·12)正在修建的西塔(西宁—塔尔寺)高速公路上,有一段工程,若甲、乙两个工程队单独完成,甲工程队比乙工程队少用10天;若甲、乙两队合作,12天可以完成.若设甲单独完成这项工程需要x天.则根据题意,可列方程为.三、解答题1.(05·河南·16)有一道题“先化简,再求值:(x-2x+2+4xx2-4)&pide;1x2-4,其中x槡=-3.”小玲做题时把“x槡=-3”错抄成了“x槡=3”,但她的计算结果也是正确的,请你解释这是怎么回事?2.(05·安徽·19)2004年12月28日,我国第一条城际铁路—合宁铁路(合肥至南京)正式开工建设.建成后,合肥至南京的铁路运行里程将由目前的312km缩短至154km,设计时速是现行时速的2.5倍,旅客列车运行时间将因此缩短约3.13h.求合宁铁路的设计时速.3.(05·浙江·23)据了解,火车票价按“全程参考价×实际乘车里程数总里程数”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名ABCDEFGH各站至H站的里程数(单位:千米)15001130910622402219720 例如,要确定从B站至E站火车票价,其票价为180×(1130-402)1500=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元);(2)旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的?(要求写出解答过程).4.(05·宁夏·20)已知方程ax+12=0的解是x=3,求不等式(a+2)x%26lt;-6的解集.5.(05·山东潍坊·20)为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共在多少个交通路口安排值勤?6.(05·广东佛山·22)某酒店客房部有三人间、双人间客房,收费数据如下表.普通(元/间/天)豪华(元/间/天)三人间150300双人间140400为吸引游客,实行团体入住五折獉獉优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房,若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?7.(05·浙江宁波·20)已知关于x的方程a-x2=bx-33的解是x=2,其中a≠0且b≠0,求代数式ab-ba的值.8.(05·浙江宁波·24)已知关于x的方程x2-2(m+1)x+m2=0.(1)当m取何值时,方程有两个实数根;(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.9.(04·四省(区)灵武、开福、曲沃、乌海·18)在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离.10.(05·黑龙江·27)某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表AB成本(万元/套)2528售价(万套)3034(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a%26gt;0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?注:利润=售价-成本11.(05·福建泉州·26)某校初一、初二两年段学生参加社会实践活动,原计划租用48座客车若干辆,但还有24人无座位坐.(1)设原计划租用48座客车x辆,试用含x的代数式表示这两个年段学生的总人数;(2)现决定租用60座客车,则可比原计划租48座客车少2辆,且所租60座客车中有一辆没有坐满,但这辆车已坐的座位超过36位.请你求出该校这两个年段学生的总人数.。
第二单元 方程与不等式
第6讲 一次方程(组)
1.(2017·桂林)如果a +3=0,那么a 的值是(B )
A .3
B .-3
C .13
D .-13
2.利用消元法解方程组⎩
⎪⎨⎪
⎧2x +5y =-10,①5x -3y =6.②下列做法正确的是(D )
A .要消去y ,可以将①×5+②×2
B .要消去x ,可以将①×3+②×(-5)
C .要消去y ,可以将①×5+②×3
D .要消去x ,可以将①×(-5)+②×2
3.(2017·天津)方程组⎩
⎪⎨⎪
⎧y =2x ,3x +y =15的解是(D )
A .⎩⎪⎨⎪⎧x =2y =3
B .⎩⎪⎨⎪⎧x =4
y =3 C .⎩⎪⎨
⎪
⎧x =4y =8 D .⎩⎪⎨⎪
⎧x =3y =6
4.(2017·杭州)设x ,y ,c 是实数,(B ) A .若x =y ,则x +c =y -c B .若x =y ,则xc =yc
C .若x =y ,则x c =y c
D .若x 2c =y 3c
,则2x =3y
5.已知a ,b 满足方程组⎩
⎪⎨⎪⎧a +5b =12,
3a -b =4.则a +b 的值为(B )
A .-4
B .4
C .-2
D .2
6.(2017·滨州)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是(D )
A .22x =16(27-x)
B .16x =22(27-x)
C .2×16x =22(27-x)
D .2×22x =16(27-x)
7.(2017·内江)端午节前夕,某超市用1 680元购进A ,B 两种商品共60件,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件,B 型商品y 件,依题意列方程组正确的是(B )
A .⎩⎪⎨⎪⎧x +y =6036x +24y =1 680
B .⎩⎪⎨⎪⎧x +y =6024x +36y =1 680
C .⎩⎪⎨⎪⎧36x +24y =60x +y =1 680
D .⎩⎪⎨⎪⎧24x +36y =60x +y =1 680
8.(2017·长沙)方程组⎩⎪⎨⎪⎧x +y =13x -y =3的解是⎩
⎪⎨⎪⎧x =1y =0. 9.关于x 的方程3x +2k +5=0的解为x =1,则k =-4.
10.(2017·宁夏)某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为4元.
11.(2017·武汉)解方程:4x -3=2(x -1).
解:4x -3=2x -2, 4x -2x =-2+3, 2x =1,
x =12.
12.解方程组:⎩
⎪⎨⎪⎧3x -5y =3,①
3x -2y =6.②
解:②-①,得3y =3,即y =1. 将y =1代入①,得x =8
3.
则方程组的解为⎩⎪⎨⎪⎧x =83,
y =1.
13.(2017·昆明市官渡区一模)小明想从“天猫”某网店购买计算器,经查询,某品牌A 型号计算器的单价比B 型号计算器的单价多12元,5台A 型号的计算器与7台B 型号的计算器的价钱相同,问A ,B 两种型号计算器的单价分别是多少元?
解:设某品牌A 型号计算器的单价为x 元,则 5x =7(x -12).解得x =42. 则x -12=30.
答:A ,B 两种型号计算器的单价分别是42元,30元.
14.(2017·红河州个旧市一模)为了抓住2017年六一儿童节的商机,某商场决定购进甲、乙两种玩具进行销售,若购进甲种玩具1件,乙种玩具2件,需要160元,购进甲种玩具2件,乙种玩具3件,需要280元.则购进甲、乙两种玩具每件各需要多少元?
解:设购进甲种玩具每件需要x 元,购进乙种玩具每件需要y 元.根据题意,得
⎩⎪⎨⎪⎧x +2y =160,2x +3y =280.解得⎩
⎪⎨⎪⎧x =80,y =40. 答:购进甲种玩具每件需要80元,购进乙种玩具每件需要40元.
15.甲、乙两家商店5月份共盈利5.7万元,分别比4月份增长10%和20%,4月份甲商店比乙商店多盈利1万元.4月份甲、乙两家商店各盈利多少万元?
解:设4月份甲商店盈利x 万元,乙商店盈利y 万元.根据题意,得
⎩⎪⎨⎪⎧x -y =1,(1+10%)x +(1+20%)y =5.7.解得⎩
⎪⎨⎪⎧x =3,y =2. 答:4月份甲商店盈利3万元,乙商店盈利2万元.
16.目前节能灯在城市已基本普及,今年云南省面向县级及农村地区推广,为响应号召,某商场计划用3 800元购进节能灯120只,这两种节能灯的进价、售价如下表:
(1)(2)全部售完120只节能灯后,该商场获利润多少元?
解:(1)设商场购进甲种节能灯x 只,购进乙种节能灯y 只.由题意,得
⎩⎪⎨⎪⎧25x +45y =3 800,x +y =120.解得⎩
⎪⎨⎪⎧x =80,y =40. 答:甲、乙两种节能灯分别进80只、40只. (2)80×(30-25)+40×(60-45)=1 000(元).
答:全部售完120只节能灯后,该商场获利润1 000元.
17.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5 m 长的彩绳截成2 m 或1 m 长的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法(C )
A .1
B .2
C .3
D .4
18.(2017·遵义)明代数学家程大位的《算法统宗》中有这样一个问题,其大意为:有一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,请问:所分的银子共有46两.(注:明代时1斤=16两,故有“半斤八两”这个成语) 19.(2016·株洲)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A 等.
(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?
(2)某同学测试成绩为70分,他的综合评价得分有可能达到A 等吗?为什么? (3)如果一个同学综合评价要达到A 等,他的测试成绩至少要多少分? 解:(1)设孔明同学测试成绩为x 分,平时成绩为y 分.依题意,得
⎩⎪⎨⎪⎧x +y =185,80%x +20%y =91.解得⎩⎪⎨⎪⎧x =90,y =95.
答:孔明同学测试成绩和平时成绩各得90分、95分. (2)80-70×80%=24,24÷20%=120>100. 故不可能.
(3)设平时成绩为满分,即100分. 综合成绩为100×20%=20(分), 所以综合成绩还差80-20=60(分).
故测试成绩应该至少为60÷80%=75(分).
20.(人教七下教材P 90T 4变式)有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,
问笼中各有几只鸡和兔.设笼中有x 只鸡,y 只免,可列方程组⎩
⎪⎨⎪⎧x +y =30
2x +4y =84.。