实数fuxi练习题二
- 格式:doc
- 大小:257.50 KB
- 文档页数:6
实数总复习题及答案一、选择题1. 下列哪个数不是实数?A. √2B. πC. -3D. 1/02. 实数集R中的元素包括:A. 有理数B. 无理数C. 复数D. A和B3. 以下哪个表达式等于0?A. √4B. 1 - 1C. 2^0D. 1/∞4. 绝对值的定义是什么?A. 一个数的平方B. 一个数的立方C. 一个数的平方根D. 一个数的正数或05. 如果a是一个正实数,那么1/a是一个:A. 正实数B. 负实数C. 零D. 复数二、填空题6. 一个实数的绝对值总是_________或0。
7. 两个相反数的和是_________。
8. 无理数是_________的数。
9. 实数的运算包括加法、减法、乘法、除法以及_________。
10. 一个数的相反数是_________。
三、解答题11. 证明:对于任意实数a和b,如果a > b,则a - b > 0。
12. 解释实数的完备性。
13. 给出一个无理数的例子,并说明为什么它是无理数。
14. 计算下列表达式的值:(-3)^2 + √4 - 2π。
15. 讨论实数集R的性质。
四、应用题16. 一个圆的半径是5,求圆的周长和面积。
17. 如果一个物体从静止开始以恒定加速度运动,经过2秒后,求其位移和速度。
18. 一个水库的水位在24小时内下降了3米,如果下降速率是恒定的,求每小时的平均下降速率。
答案一、选择题1. D2. D3. B4. D5. A二、填空题6. 非负数7. 08. 不能表示为两个整数的比9. 幂运算10. 与原数符号相反的数三、解答题11. 证明:设a和b是任意实数,且a > b。
根据实数的性质,我们可以定义一个数c = a - b。
由于a > b,c是一个正数。
因此,a - b > 0。
12. 实数的完备性指的是,任意实数序列的极限仍然是一个实数。
这意味着实数集没有“漏洞”,即不存在任何“缺失”的数。
中考数学复习《实数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.与2(9)-结果相同的是( )A.3±B.|3|C.23D.方程281x =的解2.下列说法正确的是( )A.81-平方根是-B.81的平方根是9C.平方根等于它本身的数是1和0D.21a +一定是正数3.一个正方体的棱长为a ,体积为b ,则下列说法正确的是( )A.b 的立方根是a ±B.a 是b 的立方根C.a b =D.b a =4.下列关于5说法错误的是( ) A.5是无理数 B.数轴上可以找到表示5的点C.5相反数是5-D.53>5.估计11832的运算结果介于( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间6.若实数a ,b 满足13a b +=( )A.a ,b 都是有理数B.a b -的结果必定为无理数C.a ,b 都是无理数D.a b -的结果可能为有理数7.如图,在ABC △中90ACB ∠=︒,AC=3,BC=1,AC 在数轴上,点A 所表示的数为1,以点A 为圆心,AB 长为半径画弧,在点A 左侧交数轴于点D ,则点D 表示的数是( )10 B.10- C.110-1018.若1014M -=,12N =则M ,N 的大小关系是( )A.M N <B.M N =C.M N >D.无法比较9.已知实数tan30sin 45cos60a b c =︒=︒=︒,,,则下列说法正确的是( )A.b a c >>B.a b c >>C.b c a >>D.a c b >>10.定义运算:若,则,例如328=,则2log 83=.运用以上定义,计算:53log 125log 81-=( )A.1-B.2C.1D.411.在下列计算中,正确的是( )A.()56+-=-B.122=C.()26⨯-=D.3sin 30︒= 12.式子52的倒数是( ) A.52 B.52- C.25+ D.52213.对于实数a 、b ,定义22()*2()a b ab a b a b ab a b a b +-≥⎧=⎨--<⎩,则结论正确的有( )①5*31=;②22272(1)*(21)451(1)m m m m m m m m ⎧-+-<-=⎨-+≥⎩; ③若1x ,2x 是方程2560x x --=的两个根,则12*16x x =或17-;④若1x ,2x 是方程210x mx m +--=的两个根12*4x x =,则m 的值为3-或.A.1个B.2个C.3个D.4个二、填空题14.在实数: 中无理数有______个.15a 是一个无理数,且13a <<,请写出一个满足条件的a 值_____.16.011|3|(3π)()tan 45162--+-+-+︒+=______. 17.若m 为7的整数部分,n 为7的小数部分,则)7m n =______. 18.实数a ,b ,c 在数轴上的点如图所示,化简222()()a a b b c +-=____________.三、解答题19.计算m a b =log (0)a b m a =>6-(1)11233- (2)12632322⨯- (3)2245tan 30cos60︒+⋅︒︒20.计算:)102cos6031(16)27--︒-+-. 21.设5a 是一个两位数,其中a 是十位上的数字(9a ≤≤).例如,当a =时5a 表示的两位数是45.尝试:①当1a =时2152251210025=⨯⨯+=;①当2a =时2256252310025==⨯⨯+;①当3a =时2351225==______;…… 归纳:()25a 与()100125a a ++有怎样的大小关系? 验证:请论证“归纳”中的结论正确.22.若正整数a 是4的倍数,则称a 为“四倍数”,例如:8是4的倍数,所以8是“四倍数”.(1)已知p 是任意三个连续偶数的平方和,设中间的数为2n (n 为整数),判断p 是不是“四倍数”,并说明理由;(2)已知正整数k 是一个两位数,且10k x y =+(19x y ≤<≤,其中x ,y 为整数),将其个位上的数字与十位上的数字交换,得到新数m .若m 与k 的差是“四倍数”,求出所有符合条件的正整数k . 参考答案1.答案:C 解析:2(9)819-==33=239=方程281x =的解为9x =±. 故选C.2.答案:D解析:A 、81-是负数,负数没有平方根,不符合题意;B 、819= 9的平方根是3±,不符合题意;C 、平方根等于它本身的数是0,1的平方根是1±,不符合题意;D 、21>0a + 正数的算术平方根大于0,符合题意.故选:D.3.答案:B 解析:一个正方体的棱长为a ,体积为b∴3b a =,即:3a b =∴a 是b 的立方根故选:B.4.答案:D 解析:①5 2.2365857......≈属于无限不循环小数 ①5是无理数,故A 选项正确;①数轴上可以表示任意实数 ①数轴上可以找到表示5的点,故B 选项正确;①5相反数是5,故C 选项正确; ①5 2.2365857......≈①53<,故D 选项错误,符合题意故选:D.5.答案:C 解析:1183232223=+33=+; 132<<4335∴<<;故选:C.6.答案:D解析:A 、当2a =时13213b ==--a 是有理数,b 是无理数,故A 错误;B 、当1322a b ==-,那么0a b -=,所以B 错误; C 、当2a =时13b =-,a 是有理数,故选项C 错误;D 、当1322a b ==-,那么0a b -=,所以选项正确,D 正确. 故选:D.7.答案:C 解析:在Rt ABC △中3AC =,BC=1 22223110AB AC BC ∴=++=∴点D 表示的数为:110故选:C.8.答案:C 解析:1014M -=12= 1011103424M N ∴-=-=103> 0M N ∴->M N ∴>.故选C.9.答案:A 解析:321tan 30sin 45cos 602a b c =︒==︒==︒= 132232<< ∴b a c >> 故选:A.10.答案:A解析:35125= 4381=5log 1253∴= 3log 814=53log 125log 81∴-34=-1=-.故选:A.11.答案:A解析:A 、5(6)561+-=-=-正确,符合题意; B 、1222=原计算错误,不符合题意; C 、3(2)6⨯-=-原计算错误,不符合题意;D 、1sin 302=︒原计算错误,不符合题意. 故选: A.12.答案:A 解析:()()1521 52525252⨯==--+式子5的倒数是52式子5的倒数是52,故选:A.13.答案:C 解析:①5*32523531=⨯+⨯-⨯=,故①正确;②当21m m ≥-时即1m ≤时()()()22*212221212422272m m m m m m m m m m m m -=+---=+--+=-+-当21m m <-时即1m >时 ()()()22*21221214221451m m m m m m m m m m m m -=----=---+=-+()()222721*21451(1)m m m m m m m m ⎧-+-≤∴-=⎨-+>⎩,故②错误; ③1x ,2x 是方程2560x x --=的两个根 125x x ∴+= 126x x =-当12x x ≥时()()121212*225616x x x x x x =+-=⨯--= 当12x x <时()()121212*226517x x x x x x =-+=⨯--=-,故③正确;④1x ,2x 是方程210x mx m +--=的两个根12x x m ∴+=- 121x x m =--当12x x ≥时()()121212*22114x x x x x x m m m =+-=----=-+= 解得:3m =-当12x x <时()()121212*221()24x x x x x x m m m =-+=⨯----=--=解得:6m =-综上可知:①③④正确 故选:C.14.答案:4 解析:3644= 其中8 ⋯ π -2是无理数,共4个 故答案为:4.15.答案:2解析:2123<< 2a ∴=.故答案:2(答案不唯一).16.答案:7 解析:0113(3π)()tan 45162-+-+-+︒+31(2)14=++-++7=.17.答案:3 解析:479<<273∴<2m ∴= 72n = )7(72)(72)743m n ==-=∴故答案为3.18.答案:0解析:由数轴可知0b c a <<<则0a b +< 0b c -<222()||()a a b c b c +---()()a a b c b c =-+++-a abc b c =--++-0=.故答案为:0.19.答案:(1)1(2)5 (3)76解析:(1)(133********===; (2)12632322⨯- 22126322⨯=+632=-+5=;(3)2245tan 30cos60︒+⋅︒︒2312222=+⨯⎝⎭ 21113=+⨯ 76=. 20.答案:532 解析:)102cos6031(16)27--︒-+- 1113133222=-+=53.21.答案:尝试3410025⨯⨯+ 归纳()()25100125a a a =++ 验证:见解析解析:尝试:当3a =时2351225==3410025⨯⨯+; 归纳:()()25100125a a a =++; 验证:等号左边222(5)(105)10010025a a a a =+=++ 等号右边2100(1)2510010025a a a a ++=++ 所以,等号左边=等号右边,等式成立,即证.22.答案:(1)p 是“四倍数”;理由见解析(2)15,19,26,37,48,59解析:(1)p 是“四倍数”,理由如下:①()()()22222222p n n n ++=+-()22128432n n =+=+①p 是“四倍数”;(2)由题意得10m y x =+,则()()10109m k y x x y y x -=+-+=-. ①19x y ≤<≤,其中x ,y 为整数①18y x ≤-≤.若()9y x -.是4的倍数,则4y x -=或8y x -=.当4y x -=时符合条件的k 是15,26,37,48,59; 当8y x -=时符合条件的k 是19.①所有符合条件的正整数k 是15,19,26,37,48,59.。
最新初中数学实数知识点总复习含答案(2)一、选择题1.下列说法正确的是( )A .任何数的平方根有两个B .只有正数才有平方根C .负数既没有平方根,也没有立方根D .一个非负数的平方根的平方就是它本身【答案】D【解析】A 、O 的平方根只有一个即0,故A 错误;B 、0也有平方根,故B 错误;C 、负数是有立方根的,比如-1的立方根为-1,故C 错误;D 、非负数的平方根的平方即为本身,故D 正确;故选D .2.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是,除数是2,则q 与r 的和( )A .4B .6C .4D .4 【答案】A【解析】【分析】根据2=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】∵2=7=45,的整数部分是4, ∴商q =4,∴余数r =a ﹣bq =2×4=8,∴q +r =4+8=4.故选:A .【点睛】本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q即2的整数部分.3的平方根是( )A.2 B C.±2 D.【答案】D【解析】【分析】,然后再根据平方根的定义求解即可.【详解】,2的平方根是,.故选D.【点睛】正确化简是解题的关键,本题比较容易出错.4.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.5.估计65的立方根大小在( )A .8与9之间B .3与4之间C .4与5之间D .5与6之间 【答案】C【解析】【分析】先确定65介于64、125这两个立方数之间,从而可以得到34655<<,即可求得答案. 【详解】 解:∵3464=,35125=∴6465125<< ∴34655<<.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.6.如图,数轴上的点P 表示的数可能是( )A 5B .5C .-3.8D .10-【答案】B【解析】【分析】【详解】5 2.2≈,所以P 点表示的数是5-7.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;3a -=﹣3a ;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个 【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.8.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.9.下列说法正确的是()A.﹣81的平方根是±9 B.7C.127的立方根是±13D.(﹣1)2的立方根是﹣1【答案】B【解析】【分析】由平方根、算术平方根及立方根的定义依次判定各项即可解答.【详解】选项A,﹣81没有平方根,选项A错误;选项B,7B正确;选项C,127的立方根是13,选项C错误;选项D,(﹣1)2的立方根是1,选项D错误.故选B.【点睛】本题考查了平方根、算术平方根及立方根的应用,熟知平方根、算术平方根及立方根的定义是解决问题的关键.10.如图,数轴上A,B两点表示的数分别为-1和3,点B关于点A的对称点为C,则点C所表示的数为()A.3B.3C.3D.3【答案】A【解析】【分析】由于A,B两点表示的数分别为-13OC的长度,根据C在原点的左侧,进而可求出C的坐标.【详解】∵对称的两点到对称中心的距离相等,∴CA=AB,33,∴3C点在原点左侧,∴C表示的数为:3故选A.【点睛】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.11.25的算数平方根是A5B.±5 C.5D.5【答案】D【解析】【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0 负数没有算术平方根,但i的平方是-1,i是一个虚数,是复数的基本单位.【详解】=,255∴25的算术平方根是:5.故答案为:5.【点睛】本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.12.如图,数轴上表示实数3的点可能是( )A .点PB .点QC .点RD .点S【答案】A【解析】【分析】 33的点可能是哪个.【详解】∵132, 3的点可能是点P .故选A .【点睛】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.13.若一个正数的平方根是2a ﹣1和﹣a+2,则这个正数是( )A .1B .3C .4D .9【答案】D【解析】∵一正数的两个平方根分别是2a −1与−a +2,∴(2a −1)+(−a +2)=0,解得a =−1.∴−a +2=1+2=3,∴这个正数为32=9.故选:D.14.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.15.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( )A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a =c ,b =7,P (a ,7),故有PQ ∥y 轴,PQ =7-3=4,由于其扫过的图形是矩形可求得a ,代入即可求得结论.【详解】∵且|a -c =0,∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7-3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形,∴4a =20,∴a=5,∴c =5,∴a +b +c =5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ ∥y 轴,进而求得PQ 是解题的关键.16.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.17.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C.【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.18.估计值应在()2A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】=解:2<<∵91216<<∴34<<∴估计值应在3到4之间.2故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.19.下列命题中,真命题的个数有()①带根号的数都是无理数;②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根;④有且只有一条直线与已知直线垂直A.0个B.1个C.2个D.3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;20.25的平方根是()A.±5 B.5 C.﹣5 D.±25【答案】A【解析】【分析】如果一个数 x的平方是a,则x是a的平方根,根据此定义求解即可.【详解】∵(±5)2=25,∴25的立方根是±5,故选A.【点睛】本题考查了求一个数的平方根,解题的关键是掌握一个正数的平方根有两个,这两个互为相反数.。
专题二 实数一、选择题1、36的算术平方根是( )A .±6B .6C .±6D .62、下列各数中没有平方根的数是( )A .-(-2)3B .3-3 C .a 0D .-(a 2+1)3、7-2的算术平方根是A.71 B.7 C.41 D.44、若x <0,则332x x -等于( )A.xB.2xC.0D.-2x5、若规定误差小于1,那么60的估算值为( )A.3B.7C.8D.7或8 6、立方根等于本身的数是( )A.-1B.0C.±1D.±1或06、下列说法正确的是( )A .无限小数都是无理数B .带根号的数都是无理数C .开方开不尽的数是无理数D .π是无理数,故无理数也可能是有限小数7、已知实数a 、b 、c 在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是( )A .a+cB .-a-2b+cC .a+2b-cD .-a-c8、已知a-b=23-1,ab=3,则(a+1)(b-1)的值为( )A .3-B .33C .22D .22- 二、填空题9.已知0≤x ≤3,化简2x +2)3(-x =__________。
10.若|x -2|+3-y =0,则x·y =______。
11、a 是10的整数部分,b 是5的整数部分,则a 2+b 2=____________。
12、大于-317且小于310的整数有________________。
13、下列各数中:-41,7,3.14159,π,310,-34,0,0.⋅3,38,16,2.121122111222…其中有理数有___________________________;无理数有_________________________________。
14、已知:10404=102,x =0.102,则x =________。
三、解答题15、通过估算,比较下列数的大小.(1)215-和21(2)5117+与10916、已知某数有两个平方根分别是a +3与2a -15,求这个数。
2020中考复习实数中无理数的估值专题训练试题(二)姓名:___________班级:___________考号:___________一、选择题3最接近的整数是1.下列整数中,与√25A. 2B. 3C. 4D. 52.估计√7+1的值().A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间3.整数n满足n<2√6<n+1,则n的值为A. 4B. 5C. 6D. 74.如图,数轴上点P表示的数可能是()A. √17B. √13C. √7D. √35.若√7的整数部分为x,小数部分为y,则x(y−√7)的值是()A. √7B. −4C. 4D. −√76.如图,已知数轴上的点A、B、C、D分别表示数−2、−1、1、2,则表示1−√7的点P应落在线段A. AB上B. OB上C. OC上D. CD上7.若√40.40≈6.356,则√0.404的值约为A. 63.56B. 0.006356C. 635.6D. 0.63568.定义:对任意实数,表示不超过的最大整数,如,,.对数字进行如下运算:①;②;③,这样对数字运算次后的值就为,像这样对一个正整数总可以经过若干次运算后值为,则数字经过()次运算后的结果为.A. B. C. D.二、填空题9.满足√5<x<√18的整数x的值是_________.10.大于−√2,小于√10的整数有__________个.11.把无理数√17,√11,√5,−√3表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是______.12.规定:[x]表示不超过x的最大整数,例如:[3.69]=3,[−3.69]=−4,[√3]=1.计算:[−√17]−1=______ .13.已知5a+2的立方根是3,3a+b−1的算术平方根是4,c是√13的整数部分.则a−b−c的值为_____.+2=x的正实数根为x0,设m<x0<n,其中m、n是两个连续的整数,14.若方程4x则m+n=_________.三、解答题3的整数部分,求a+2b+c的15.已知√2a−1=3,3a+b−1平方根是±4,c是√75平方根.16.已知实数√3+1的整数部分为m,小数部分为n.(1)求m,n的值;(2)在平面直角坐标系中,试判断点(m−1,n−1)位于第几象限;(3)若m,n+1为一个直角三角形的斜边与一条直角边的长,求这个直角三角形的面积.17.在学习《实数》内容时,我们通过“逐步逼近”的方法可以计算出√2的近似值,得出1.4<√2<1.5。
实数性质相关计算课后练习(一)题一:化简:(1)2=______;(2)3+=______.的整数部分是,小数部分是.互为相反数,求253ab+的值.题四:已知x,y(0y-=,那么x y= .题五:已知a是64的立方根,3a+b的平方根是±4,c的整数部分,求a+2b+c的算术平方根.题六:请确定下列各数的整数部分与小数部分.1;(2)10-.题七:若实数x、y满足关系式6y=,请计算2x+y的立方根.实数性质相关计算课后练习参考答案题一: (1)ab ,|ab |;(2)2a .详解:(1)2ab =ab =;(2)3()()2a b a b a =++-=.题二: 22.详解:∵2<3,的整数部分为22.题三:.互为相反数,∴24930a b -++=,即235a b =--, ∴25355133a b b b+--+==-. 题四:.(0y -=(10y -=,所以,1+x =0,y =0,解得x ,y =1,所以,x y .题五: 4. 详解:根据题意,得a,3a +b ,解得a =5,b =2,又有7<8,c c =7,∴a +2b +c =5+4+7=16,∴a +2b +c 的算术平方根为4.题六: (1)5,4;(2),3-详解:(1) ∵45,∴4,1的整数是4+1=54;(2)∵23<<,∴整数部分为,小数部分为1073-=-.题七: 4.故可得x =29,y =6,从而可得2x +y =64, 故可得2x +y 的立方根是4.。
2020中考复习实数中无理数的估值专题训练试题(二)姓名:___________班级:___________考号:___________一、选择题1.下列整数中,与最接近的整数是A. 2B. 3C. 4D. 52.估计的值.A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间3.整数n满足,则n的值为A. 4B. 5C. 6D. 74.如图,数轴上点P表示的数可能是A. B. C. D.5.若的整数部分为x,小数部分为y,则的值是A. B. C. 4 D.6.如图,已知数轴上的点A、B、C、D分别表示数、、1、2,则表示的点P应落在线段A. AB上B. OB上C. OC上D. CD上7.若,则的值约为A. B. C. D.8.定义:对任意实数,表示不超过的最大整数,如,,对数字进行如下运算:;;,这样对数字运算次后的值就为,像这样对一个正整数总可以经过若干次运算后值为,则数字经过次运算后的结果为.A. B. C. D.二、填空题9.满足的整数x的值是_________.10.大于,小于的整数有__________个11.把无理数,,,表示在数轴上,在这四个无理数中,被墨迹如图所示覆盖住的无理数是______.12.规定:表示不超过x的最大整数,例如:计算:______ .13.已知的立方根是3,的算术平方根是4,c是的整数部分.则的值为_____14.若方程的正实数根为,设,其中m、n是两个连续的整数,则_________.三、解答题15.已知,平方根是,c是的整数部分,求的平方根.16.已知实数的整数部分为m,小数部分为n.求m,n的值;在平面直角坐标系中,试判断点位于第几象限;若m,为一个直角三角形的斜边与一条直角边的长,求这个直角三角形的面积.17.在学习实数内容时,我们通过“逐步逼近”的方法可以计算出的近似值,得出。
利用“逐步逼近”法,请回答下列问题:介于连续的两个整数a和b之间,且,那么,;若x是的小数部分,y是的整数部分,求的平方根。
人教版七年级数学下册第六章第三节实数考试复习题二(含答案)在下列实数中,无理数是( )AB C.3.14 D.13【答案】A【解析】分析:根据无理数的定义逐项识别即可.详解:A. 是无理数;B. 2=是有理数;C. 3.14是有理数;D. 13是有理数;故选A.点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅(0的个数一次多一个).12.数学课上,李老师出示了下列4道计算题:① |4|;②-22;③④8÷(-2).其中运算结果相同的题目是()A.①②B.①③C.②④D.③④【答案】C【解析】分析:根据绝对值的意义,有理数的运算及平方根的性质,先求出每个小题的结果,再比较即可求解.详解:①| 4 | =4;②-22=-4;±4 ;④8÷(-2)=-4∴运算结果相同的题目是:②④故选:C.点睛:此题主要考查了绝对值,平方根,有理数的乘方,有理数的除法,灵活利用绝对值,平方根,有理数的乘方,有理数的除法化简各式是解题关键,比较容易.13的值应在()A.5和6之问B.4和5之问C.3和4之间D.2和3之间【答案】B【解析】.分析:根据16<17<25∴4 5故选:B.点睛:此题主要考查了无理数的估算,关键是根据常用平方数确定要求算数平方根的数的近似值.142,0,-1,其中负数是()A B.2 C.0 D.-1【答案】D【解析】【分析】根据负数的定义,负数小于0 即可得出答案.【详解】根据题意 :负数是-1,故答案为:D.【点睛】此题主要考查了实数,正确把握负数的定义是解题关键.15.下列叙述中,正确的是( )A .有理数分正有理数和负有理数B .绝对值等于本身的数是0和1C .互为相反数的两个数的三次方根仍是互为相反数D .2是分数 【答案】C【解析】【分析】分别根据有理数的分类、绝对值的性质、相反数的定义及立方的意义、实数的分类进行解答即可得.【详解】A 、有理数分为正有理数和负有理数和0,故A 选项错误;B 、0和正数的绝对值都等于本身,故B 选项错误;C 、互为相反数的两个数的三次方根仍是互为相反数,正确;D 、π2是无理数,故D 选项错误,【点睛】本题考查了有理数的分类、绝对值的性质、相反数的定义及立方的意义、实数的分类,熟记相关知识是解答此题的关键.16.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④5的平方根.其中正确的是有()A.0个B.1个C.2个D.3个【答案】B【解析】分析:①根据有理数与数轴上的点的对应关系即可判定;②根据有理数的定义即可判定;③根据立方根的定义即可判定;④根据平方根的定义即可解答.详解:①实数和数轴上的点一一对应,故①说法错误;②不带根号的数不一定是有理数,如π,故②说法错误;③负数有立方根,故③说法错误;④∵5的平方根5的一个平方根.故④说法正确.故选:B.点评:此题主要考查了实数的定义和计算.有理数和无理数统称为实数,要求掌握这些基本概念并迅速做出判断.17.实数a、b、c在数轴上的对应点的位置如图所示,下列各项成立的是( )A.c-b>a B.b+a>c C.ac>b D.ab>c【答案】A【分析】根据数轴可以判断a、b、c的大小与正负情况,从而判断选项中的式子是否正确,本题得以解决.【详解】由数轴可得,a<0<b<c,|b|<|a|<|c|,∴c−b>0>a,故选项A正确;b+a<0<c,故选项B错误;ac<0<b,故选项C错误;ab<0<c,故选项D错误;故选A.【点睛】本题考查实数与数轴,解题的关键是明确数轴的特点,可以根据数轴判断a、b、c的大小与正负情况.18.下列比较两个数的大小正确的是( )B.-π<C<0.5 DA23【答案】D【解析】【分析】根据实数比较大小的方法进行比较即可.【详解】A中两边平方7小于64,所以A错;9B中π2<10,所以B错;,所以C错;C>12D D对.故选D.【点睛】本题考查了无理数与有理数比较大小的方法,有理数与无理数比较一般在分情况下对两边平方再比较,若两边都大于1,两边平方再比较,两边都小于-1,两边平方符号相反再比较.192的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间【答案】B【解析】【分析】的值.【详解】∵42=16,52=25,所以45,在6到7之间.故选B.20、0.31、3 、17、3.602 4×103 1.212 212 221 …(每两个1之间依次多一个2)中,无理数的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】根据无理数的定义进行判断即可.【详解】 ,π3,1.212 212 221 …(每两个1之间依次多一个2)共3个, 故答案为:C .【点睛】本题主要考查对无理数的定义的理解和掌握,能熟练地根据无理数的定义进行判断是解此题的关键.。
北师大版八年级数学上册第二章实数期末复习练习题(含答案)一.选择题1.在实数,,﹣,0.0,π,,0.301300130001…(3与1之间依次增加一个0)中,无理数的个数为()A.3B.4C.5D.62.4的算术平方根是()A.±2B.2C.±16D.163.的平方根是()A.±5B.5C.±D.4.一个正数的两个平方根分别是2a﹣5和﹣a+1,则这个正数为()A.4B.16C.3D.95.如果a,b,c满足|a﹣2|++(c﹣3)2=0,则a+b﹣c的值为()A.5B.5+C.5+5D.5﹣56.下列说法正确的是()A.是2的平方根B.﹣1的立方根是1C.1的平方根是1D.﹣3没有立方根7.有一个数值转换器,原理如图所示,当输入的数x为﹣512时,输出的数y的值是()A.﹣B.C.﹣2D.28.若的整数部分为x,小数部分为y,则x﹣y的值是()A.1B.C.3﹣3D.39.已知数a,b,c的大小关系如图,下列说法:①ab+ac>0;②﹣a﹣b+c<0;③;④|a ﹣b|+|c+b|﹣|a﹣c|=﹣2b;⑤若x为数轴上任意一点,则|x﹣b|+|x﹣a|的最小值为a﹣b.其中正确结论的个数是()A.1B.2C.3D.410.计算()A.2B.C.D.3二.填空题11.已知某数的一个平方根是,那么它的另一个平方根是.12.已知:≈1.421267…,≈4.494441…,则(精确到0.1)≈.13.已知≈1.2639,≈2.7629,则≈.14.若x2=(﹣5)2,=﹣5,那么x+y的值是.15.①=.②=.③写出﹣和之间的所有整数.16.比较大小:24.17.若|x|=,则实数x=.18.如图,长方形OABC放在数轴上,OA=2,OC=1,以A为圆心,AC长为半径画弧交数轴于P点,则P点表示的数为.19.式子在实数范围内有意义,则x 的取值范围是.20.已知a ≥﹣1,化简=.三.解答题21.无限循环小数如何化为分数呢?请你仔细阅读下列资料:由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、千分之几等等的数.转化时需要先去掉无限循环小数的“无限小数部分”.一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍…使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就剪掉了.例题:例如把0.和0.2化为分数请用以上方法解决下列问题(1)把0.化为分数(2)把0.3化为分数.22.定义:等号两边都是整式,只含有⼀个未知数,且未知数的最高次数是2的⼀程,叫做⼀元⼀次⼀程.如x2=9,(x﹣2)2=4,3x2+2x﹣1=0…都是⼀元⼀次⼀程.根据平⼀根的特征,可以将形如x2=a(a≥0)的⼀元⼀次⼀程转化为⼀元⼀次⼀程求解.如:解⼀程x2=9的思路是:由x=±,可得x1=3,x2=﹣3.解决问题:(1)解⼀程(x﹣2)2=4.解:∵x﹣2=±,∴x﹣2=2,或x﹣2=.∴x1=4,x2=.(2)解⼀程:(3x﹣1)2﹣25=0.23.已知2a﹣1的平方根是,3a+b﹣1的算术平方根是6,求a+4b的平方根.24.已知某正数的两个平方根分别是﹣1和a﹣4,b﹣12的立方根为2.(1)求a,b的值.(2)求a+b的平方根.25.求出下列x 的值:(1)4x 2﹣16=0; (2)3(x +1)3=24.26.如果有理数a 、b 、c 在数轴上的位置如图所示,根据图回答下列问题: (1)比较大小:a ﹣1 0;b +1 0;c +1 0;(2)化简﹣|a ﹣1|+|b +1|+|c +1|.27.计算:(1)2﹣2+; (2)×﹣;(3); (4)(π﹣3)0+(﹣)﹣1+|﹣|+.28.计算:(1)(+10)+(﹣11.5)+(﹣10)﹣4.5; (2)(﹣6)2×(﹣)﹣23;(3)(﹣270)×+0.25×21.5+(﹣8)×(﹣0.25); (4)﹣+6÷(﹣)×.29.操作探究:已知在纸面上有一数轴(如图所示)(1)折叠纸面,使表示的点1与﹣1重合,则﹣2表示的点与 表示的点重合; (2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②表示的点与数 表示的点重合;③若数轴上A 、B 两点之间距离为9(A 在B 的左侧),且A 、B 两点经折叠后重合,此时点A 表示的数是 、点B 表示的数是(3)已知在数轴上点A 表示的数是a ,点A 移动4个单位,此时点A 表示的数和a 是互为相反数,求a 的值.30.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为正整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=,b=;(2)若a+4=(m+n)2,且a、m、n均为正整数,求a的值;(3)化简:.参考答案一.选择题1.【解答】解:=2,,﹣,0.0都是有理数,而π,,0.301300130001…(3与1之间依次增加一个0)都是无限不循环小数,因此是无理数,所以无理数的个数有3个,故选:A.2.【解答】解:∵22=4,∴4的算术平方根是2.故选:B.3.【解答】解:∵=5,∴的平方根是±,故选:C.4.【解答】解:∵正数的两个平方根分别是2a﹣5和﹣a+1,∴(2a﹣5)+(﹣a+1)=0,解得a=4,∴2a﹣5=3,∴这个正数为32=9,故选:D.5.【解答】解:根据题意得:a﹣2=0,b﹣5=0,c﹣3=0,解得a=,b=5,c=,则a+b﹣c=2+5﹣=5﹣.故选:A.6.【解答】解:A、是2的平方根,正确;B、﹣1的立方根是﹣1,故本选项错误;C、1的平方根是±1,故本选项错误;D、﹣3的立方根是﹣,故本选项错误;故选:A.7.【解答】解:由题中所给的程序可知:把﹣512取立方根,结果为﹣8,因为﹣8是有理数,所以再取立方根为﹣2,﹣2是有理数,所以再取立方根为=,因为是无理数,所以输出,故选:A.8.【解答】解:∵1,∴x=1,y=﹣1,∴x﹣y=×1﹣(﹣1)=1,故选:A.9.【解答】解:由题意b<0,c>a>0,|c|>|b|>|a|,则①ab+ac>0,故原结论正确;②﹣a﹣b+c>0,故原结论错误;③++=1﹣1+1=1,故原结论错误;④|a﹣b|+|c+b|﹣|a﹣c|=a﹣b+c+b﹣(﹣a+c)=2a,故原结论错误;⑤当b≤x≤a时,|x﹣b|+|x﹣a|的最小值为a﹣b,故原结论正确.故正确结论有2个.故选:B.10.【解答】解:原式=1+(2×)2016×2=1+2=3.故选:D.二.填空题11.【解答】解:若一个数的一个平方根是,则它的另一个平方根是.故答案为:.12.【解答】解:∵≈4.494,∴≈44.9(精确到0.1),故答案为:44.9.13.【解答】解:∵≈1.2639,∴==×=﹣×≈﹣0.12639.故答案为:﹣0.12639.14.【解答】解:根据题意得:x=﹣5或5,y=﹣5,当x=﹣5时,x+y=﹣5﹣5=﹣10;当x=5时,x+y=5﹣5=0.故答案为:﹣10或0.15.【解答】解:①因为>2,所以|2﹣|=﹣2;故答案为:﹣2;②×===2;故答案为:2;③因为﹣3<﹣、<4,所以﹣和之间的所有整数:﹣2,﹣1,0,1,2,3.故答案为:2,﹣1,0,1,2,3.16.【解答】解:2=,4=,∵28<32,∴<,∴2<4.故答案为:<.17.【解答】解:∵,则实数x=,故答案为:.18.【解答】解;∵四边形OABC是长方形,∴∠AOC=90°,∴AC===,∵以A为圆心,AC长为半径画弧交数轴于P点,∴AP=AC=,∴OP=AP﹣OA=﹣2,∴点P表示的数是2﹣,故答案为:2﹣.19.【解答】解:由题意得:5﹣x≥0,解得:x≤5,故答案为:x≤5.20.【解答】解:∵a≥﹣1,∴a+1≥0,则原式==|a+1|=a+1,故答案为:a+1.三.解答题21.【解答】解(1)∵0.×100=17.∴0.×100﹣0.=17.﹣0.0.×(100﹣1)=17,0.=,(2)∵0.3×10=3.①0.3×1000=313.•②∴由②﹣①得0.3×1000﹣0.3×10=313.﹣3.,0.3(1000﹣10)=310,0.3=.22.【解答】解:(1)∵x﹣2=±,∴x﹣2=2,或x﹣2=﹣2.∴x1=4,x2=0.(2)∵(3x﹣1)2﹣25=0∴(3x﹣1)2=25,∴3x﹣1=±,∴3x﹣1=5,或3x﹣1=﹣5.∴x1=2,x2=﹣.故答案为:﹣2,0.23.【解答】解:根据题意,得2a﹣1=17,3a+b﹣1=62,解得a=9,b=10,所以,a+4b=9+4×10=9+40=49,∵(±7)2=49,∴a+4b的平方根是±7.24.【解答】解:(1)由题意得,a﹣4=1,b﹣12=8,所以a=5,b=20;(2)由(1)得,a+b=25,所以.25.【解答】解:(1)4x2﹣16=0,4x2=16,x2=4,x=±2;(2)3(x+1)3=24,(x+1)3=8,x+1=2,x=1.26.【解答】解:(1)从数轴可知:b<﹣1<c<0<a<1,所以a﹣1<0,b+1<0,c+1>0,故答案为:<,<,>;(2)由(1)可知:a﹣1<0,b+1<0,c+1>0,所以﹣|a﹣1|+|b+1|+|c+1|=a﹣1﹣b﹣1+c+1=a﹣b+c﹣1.27.【解答】解:(1)2﹣2+=2×3﹣2×+=6﹣+=6;(2)×﹣=﹣=6﹣7=﹣1;(3)=3+4﹣4﹣=7﹣4﹣1=6﹣4;(4)(π﹣3)0+(﹣)﹣1+|﹣|+=1﹣3+2﹣2=﹣4+2.28.【解答】解:(1)原式=﹣11.5﹣4.5+(10﹣10)=﹣16+0=16;(2)(﹣6)2×(﹣)﹣23=36×﹣36×﹣8=12﹣18﹣8=﹣14;(3)(﹣270)×+0.25×21.5+(﹣8)×(﹣0.25)=×(﹣270+21.5+8)=×(﹣240)=﹣60;(4)﹣+6÷(﹣)×=﹣6﹣9×(﹣2)=﹣6+18=12.29.【解答】解:(1)折叠纸面,使表示的点1与﹣1重合,折叠点对应的数为=0,设﹣2表示的点所对应点表示的数为x,于是有=0,解得x=2,故答案为2;(2)折叠纸面,使表示的点﹣1与3重合,折叠点对应的数为=1,①设5表示的点所对应点表示的数为y,于是有=1,解得y=﹣3,②设表示的点所对应点表示的数为z,于是有=1,解得z=2﹣,③设点A所表示的数为a,点B表示的数为b,由题意得:=1且b﹣a=9,解得:a=﹣3.5,b=5.5,故答案为:﹣3,2﹣,﹣3.5,5.5;3)①A往左移4个单位:(a﹣4)+a=0.解得:a=2.②A往右移4个单位:(a+4)+a=0,解得:a=﹣2.答:a的值为2或﹣2.30.【解答】解:(1)∵(m+n)2=m2+6n2+2mn,a+b=(m+n)2,∴a=m2+3n2,b=2mn.故答案为m2+3n2,2mn;(2)∵(m+n)2=m2+3n2+2mn,a+4=(m+n)2,∴a=m2+3n2,mn=2,∵m、n均为正整数,∴m=1、n=2或m=2,n=1,∴a=13或7;(3)===2+1,则====﹣1.。
实数练习题二
一、判断题
(1)带根号的数一定是无理数( ); (2)无理数都是无限小数( ); (3)无理数包含正无理数、0、负无理数( );(4)4的平方根是2( );
(5)无理数一定不能化成分数( ); (6)5是5的平方根( ); (7)一个正数一定有两个平方根( ); (8)±25的平方根是5±( ) (9)互为相反数的两数的立方根也互为相反数( ); (10)负数的平方根、立方根都是负数( ); (11)①无理数是无限小数( );②无限小数是无理数( );③开方开不尽
的数是无理数( );④两个无理数的和是无理数( );⑤无理数的平方一定是有理数( );
二、填空题
(12)把下列各数填入相应的集合中(只填序号):
①25.0 ②π- ③16- ④39- ⑤0 ⑥1010010001.0 ⑦3 ⑧2
1
3-
有理数集合:{ …}无理数集合:{ …}正实数集合:{ …}负实数集合:{ …} (13)把下列各数填入相应的集合中(只填序号):
①3.14 ②2
π
-
③17
9
-
④3100 ⑤0 ⑥ 212212221.1 ⑦3 ⑧0.15 有理数集合:{ …}正数集合{ …}
无理数集合:{ …}负数集合{ …}
(14)36的算术平方根是 ,1.44的平方根是 ,11的平方根是 ,
的平方根是23
±,2)3.4(-的算术平方根是 , 410是 的平方。
(15) 2
1
-
的相反数是 、倒数是 、绝对值是 。
(16) 满足32<<-x 的整数x 是 .
(17) 一个正数的平方等于144, 则这个正数是 , 一个负数的立方等于27,
则这个负数是 , 一个数的平方等于5, 则这个数是 . (18). 若误差小于10, 则估算200的大小为 .
(19) 比较大小216- 2
1
2+.(填“>”或“<”)
(20). 化简:
8125= , 810--= , 5
1= . (21) .9的算术平方根是 ___、3的平方根是 ___, 0的平方根是 ___,-2的平
方根是 .
(22). –1的立方根是 ,271
的立方根是 , 9的立方根是 .
(23) .2的相反数是 , 倒数是 , -36的绝对值是 . (24). 比较大小
310;
填“>”或“<”)
(25).
=-2)4( . =-3
3)6( , 2)196(= .
(26).一个数的平方根与立方根相等,这个数是______;立方根等于本身的数
是_________. 平方根等于本身的数是________;算术平方根等于本身的数是_____________. 大于0小于π的整数是_________;3-满足<x <8的整数x 是
__________.
(27).._______a ,2)2(2的取值范围是则若a a -=-
.
____)(,)34(________
1683)33(._________)3(1,31)32(._________
,01)a )31(.________,0)2(1)30(.________1)1()29(.
________b)-a ,032)28(22232222003200222=--=+-+-=-+-<<=+=+-++++==-+-=++-==++-a b b b a x x x c b a c a b b a n
m
n m b a b a b a 如图所示,化简在数轴上对应点的位置已知实数计算则若则已知(则
已知互为相反数,则与若则(已知πππ
(35)_____2x x 则在实数范围内有意义,.
(36)使________x 11的值是在实数范围内有意义的-+-x x (37)已知
._______1
9191=-+-x
x x 有意义,则 一、 选择题:
1. 边长为1的正方形的对角线长是( )
A. 整数
B. 分数
C. 有理数
D. 不是有理数 2. 在下列各数中是无理数的有( )
-0.333…,
4, 5, π-, 3π, 3.1415, 2.010101…(相邻两个1之间有1
个0),76.0123456…(小数部分由相继的正整数组成).
A.3个
B.4个
C. 5个
D. 6个 3. 下列说法正确的是( )
A. 有理数只是有限小数
B. 无理数是无限小数
C. 无限小数是无理数
D. 3
π
是分数
4. 下列说法错误的是( )
A. 1的平方根是1
B. –1的立方根是-1
C.
2是2的平方根 D. –3是2)3(-的平方根
5. 若规定误差小于1, 那么60的估算值为( )
A. 3
B. 7
C. 8
D. 7或8 6. 下列平方根中, 已经简化的是( ) A. 3
1
B. 20
C. 22
D. 121
7.
81的平方根是( )
A. 9
B. ±9
C. 3
D. ±3 8. 下列说法正确的是( )
A. 无限小数都是无理数
B. 带根号的数都是无理数
C. 开方开不尽的数是无理数
D. π是无理数, 故无理数也可能是有限小数
9.方根等于本身的数是( )
A. –1
B. 0
C. ±1
D. ±1或0 10. ππ--14.3的值是( )
A. 3.14-π2
B. 3.14
C. –3.14
D. 无法确定 11. a 为大于1的正数, 则有( )
A. a a =
B. a a >
C. a a <
D. 无法确定 12. 下面说法错误的是( )
A. 两个无理数的和还是无理数
B. 有限小数和无限小数统称为实数
C. 两个无理数的积还是无理数
D. 数轴上的点表示实数 13.下列说法中不正确的是( )
A.42的算术平方根是4
B. 24的算术平方根是
C.332的算术平方根是
D. 981的算术平方根是
14. 121的平方根是±11的数学表达式是( )
A. 11121=
B.11121±=
C. ±11121=
D.±11121±= 15.如果,162=x 则x=( )
A.16
B.16
C.±16
D.±16 16. 364的平方根是( )
A.±8
B.±2
C.2
D.±4 17.下列说法中正确的是( )
A.±64的立方根是2
B.
3
1271±的立方根是 C.两个互为相反数的立方根互为相反数 D.(-1)2的立方根是-1
18、-38-的平方根是( )A.±√2 B.-√2 C.±2 D.2 19、估计的大小应在76( )
A.7~8之间
B. 8.0~8.5之间
C. 8.5~9.0之间
D.9.0~9.5之间 20、在实数范围内,下列说法中正确的是( )
b
a b a D b
a b a C b a b a B b a b a A >>======则若则若则若则若,.,.,..,.2
2
3
3
22
四、 化简:
①44.1-21.1; ②2328-+; ③92731⋅+; ④0)31(3
3122-++.
⑤)31)(21(-+. ⑥2)52(-;
⑦2)3322(+. ⑧)32)(32(-+
五、解答题
1.在数轴上作出3对应的点.
2.估算下列各式的值
)1(3误差小于
)
(9.
误差小于
30
(
143
)2(
)1
1.0
3.解方程(1)0
49
-x(2)0
162=
-
x
-
)1
64
3(2=
4.b
-12求(
-
+的值.
已知(=
b ab)
,0
2
2a)
5..已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的平方根
6. 自由下落的物体的高度h(米)与下落时间t(秒)的关系为h=4.92t.有一学生不慎让一个玻璃杯从19.6米高的楼上自由下落, 刚好另有一学生站在与下落的玻璃杯同一直线的地面上, 在玻璃杯下落的同时楼上的学生惊叫一声. 问这时楼下的学生能躲开吗? (声音的速度为340米/秒)
7.小芳想在墙壁上钉一个三角架(如图), 其中两直角边长度之比为3:2, 斜边
长520厘米, 求两直角边的长度.
8. 小东在学习了
b a b
a =
后, 认为b
a
b a =也成立,因此他认为一个化简过程: 545520520-⨯-=--=--5
45-⋅-=
=24=是正确的. 你认为他的化简对吗?如果不对请写出正确解题过程。