铝合金微弧氧化和铝合金硬阳处理比较
- 格式:docx
- 大小:16.77 KB
- 文档页数:1
硬质xx氧化与一般xx氧化的差别一、铝合金硬质氧化的优势:1、铝合金硬质氧化后表面硬度最高可达HV500左右。
2、氧化膜厚度25-250um。
3、附着力强,依据硬质氧化所生成的氧化特色:所生成的氧化膜有50%浸透在铝合金内部,50%附着在铝合金表面(双向生长)。
4、绝缘性好:击穿电压可达2000V(完美的封孔)。
5、耐磨性能好:关于含铜量未超出2%的铝合金其最大的磨耗指数为3."5mg/1000转。
其余全部的合金磨耗指数不该超出1."5mg/1000转。
6、无毒:氧化膜和用来生产阳极氧化膜的电化学工艺应付人体无害。
所以好多行业为了减少产品的重量、机械加工的方便、环保低毒等要求,当前有的部分产品中的部份零零件由铝合金硬质氧化来取代不锈钢、电镀硬铬等工艺。
二、硬质xx氧化和一般xx氧化的差别:硬质氧化的氧化膜有50%浸透在铝合金内部,50%附着在铝合金表面,所以硬质氧化后产品外面尺寸变大,内孔变小。
(一)操作条件方面的差别:1/31、温度不一样:一般氧化18-22℃左右,有增添剂的能够到30℃,温度过高易出现粉末或裂纹;硬质氧化一般在5℃以下,相对来说温度越低硬质越高。
2、浓度差别:一般氧化一般20%左右;硬质氧化一般在15%或更低。
3、电流/电压差别:一般氧化电流密度一般:1-1."5A/dm2;而硬质氧化:1."5-5A/dm2;一般氧化电压≤18V,硬质氧化有时高达120V。
(二)膜层性能方面的差别:1、膜层厚度:一般氧化膜层厚度相对较薄;硬质氧化一般膜层厚度>15μm,过低达不到硬度≥300HV的要求。
2、表面状态:一般氧化表面较圆滑,而硬质氧化表面较粗拙(微观,和基体表面粗拙度相关)。
3、孔隙率不一样:一般氧化孔隙率高;而硬质氧化孔隙率低。
4、一般氧化基本是透明膜;硬质氧化因为膜厚,为不透明膜。
5、合用处合不一样:一般氧化合用于装修为主;而硬质氧化以功能为主,一般用于耐磨、耐电的场合。
铝及其合金的表面处理技术全球铝的产量仅次于铁。
铝和铝合金密度小且易加工。
并且可以制造成形状十分复杂的零件,因而它在工业中的应用日益广泛,但是铝及其合金易产生晶间腐蚀,表面硬度低、不耐磨损。
国内外都在采取各种方法对铝及其合金表面进行改质处理,以获得各项优良性能,拓宽其应用范围。
作者讨论了铝及其合金的表面处理技术,简述了其应用,并对该领域目前研究的热门课题——微弧氧化及激光处理进行了介绍。
1电镀、抛光和砂面处理铝及其合金的电镀一般是为了改善装饰性,提高表面硬度和耐磨性,降低摩擦系数,改善润滑性,提高表面导电性和反光率等而进行的。
由于铝对氧有很强的亲和力,表面总是有氧化膜存在,铝属于两性金属,在酸性溶液和碱性溶液中都不稳定。
铝的膨胀系数较绝大多数金属的大,铬为7X10-6),所以镀层易脱落,又由于镀铝常含有砂眼、气孔等缺陷.在电镀过程中,砂眼和气孔中常会滞留溶液和氢气。
影响镀层与基体的结合力,所以直接在铝及其合金上电镀很困难。
铝及其合金的电镀效果主要取决于表面准备情况。
镀前一般进行机械处理,有机溶剂除油,化学除油、碱浸蚀、出光等处理。
铝及其合金的镀前处理及电镀工艺有下列几种:(1)化学浸锌呻电镀铜+电镀其他镀层;(2)电镀薄锌层一电镀铜一电镀其他镀层;(3)化学镀镍一电镀厚镍;(4)电镀镍一电镀其他镀层;(5)阳极氧化呻电镀其他镀层;(6)铝合金一步法镀铜—)电镀其他镀层1,铝及其合金的抛光多年来普遍采用三酸抛光工艺,该工艺温度高、时间短,亮度好,但一般只能单根抛光,无法批量生产,而且产生的黄烟对人体有害。
电解抛光的含磷和铬酸的废水处理一般厂家难以解决,且生产中耗电量很大。
为此,目前市场已推出无黄烟两酸抛光新工艺,只需在磷酸、硫酸中加入少量添加剂(其成本接近硝酸)即可在80~100°C下操作0.5-3.0min,其光亮度略次于三酸处理[2],但解决了环境污染问题+ 砂面处理和亚光处理是目前国外铝建材表面处理的流行工艺。
铝合金微弧氧化硬度
铝合金微弧氧化(MAO)是一种常用的表面处理方法,它能够提高材料的硬度、耐腐蚀性和抗磨损性。
微弧氧化的原理是在表面形成一层氧化膜,这层薄膜不仅可以保护金属表面免受氧化,而且可以提高表面硬度。
铝合金微弧氧化(MAO)硬度是指铝合金表面微弧氧化处理后,该表面的质量等级,有很高的强度和耐磨性。
MAO硬度的特性是制造过程参数的控制,影响产品
表面性能的重要因素之一,非常重要。
要评价铝合金MAO硬度,一般采用特定的实验方法。
首先,控制MAO参数,如供应压力、电流密度等;其次,测试诸如厚度和疏松度等表面性能。
最后,采用全尺寸实验,应用抗拉强度及抗压强度等物理测试,以衡量硬度值。
在此篇文章中,介绍了铝合金微弧氧化(MAO)硬度的概念和它的重要性。
MAO加工技术是有效表面的处理方法,能够提高铝合金的硬度,抗腐蚀和抗磨损性,以确保表面性能的质量和高效使用。
解析铝合金表面微弧氧化与阳极氧化工艺摘要:随着国防工业的需要,对铝合金材料的抗腐蚀、高强度和高硬度等性能提出了更高的要求。
铝合金材料表面氧化处理逐渐发展起来,其中以铝基材料阳极氧化与微弧氧化为主要的处理工艺,两种氧化工艺处理后的基体材料表面原位生成一层致密均匀的氧化层,该陶瓷层具有与基体结合牢固、结构致密、具有良好的耐磨、耐腐蚀、耐高温冲击和电绝缘特性等,因而具有更加广阔的应有前景。
本文就从铝合金表面微弧氧化与阳极氧化工艺展开分析。
关键词:铝合金表面;微弧氧化;阳极氧化;工艺1、工艺机理及特点1.1阳极氧化工艺机理及其特点阳极氧化工艺是在电解槽中,通过电化学反应,以Al基材料为阳极,酸性(H2SO4)为主要电解液,通电反应,在电化学与化学溶解两个过程同时作用下直接在基体材料表面生成致密的Al2O3,其工艺过程是膜层生成与溶解的一个动态平衡过程。
通过调整工艺参数,可制备出厚度5-80um的陶瓷层,其陶瓷层不同于自然氧化而成的非晶态氧化膜,其陶瓷层孔隙率低,致密均匀,因此表现出更优的膜层性能。
阳极氧化工艺按其电流型式可分有:直流电阳极氧化;交流电阳极氧化;以及脉冲电流阳极氧化。
按电解液分有:硫酸、草酸、铬酸、为主溶液的自然着色阳极氧化。
按膜层性质分有:普通膜(5~15)、硬质膜(40~80)、半导体作用的阻挡层等阳极氧化法。
其中直流电(H2SO4)阳极化在生产中应用最多,实践证明(H2SO4)阳极氧化适用于铝基材料表面处理;可改变时间及温度制备出不同厚度膜层,膜层物理吸附能力强易着色;同时处理电压(15~25)V较低,不必调整电压周期温度也易控制;便于生产自动化及操作简便化。
1.2微弧氧化工艺机理及其特点微弧氧化工艺是在弱碱性溶液中,通过高压,化学及电化学和等离子体放电作用,在基体材料表面生成一层以其金属氧化物为主具有陶瓷性能的保护性氧化膜。
初始阶段与阳极氧化工艺类似,随着电压增大,其反应进入火花、微弧和弧光放电这三个阶段。
铝镁及其合金等离子体微弧阳极氧化 (II),Despite the many decades of experience and the expensive equipment employed by the traditional anodizing plants, the acid bath based DC anodizing process has severe limitations.By the very nature of the low voltage DC power employed, the anodic coating is quite porous. Often the volume percent of pores is as much as 50%. Because of the low current densities employed, it takes many hours to produce a coating of a few tens of micrometers thick. The electrolytic baths comprise extremely low pH acidic electrolytes and thus the process does not meet many of today's environmental regulations. The expensive equipment, such as the electric power supplies and heat exchanger, makes the process capital intensive. The traditional process, for reasons not quite apparent, cannot be used for anodizing aluminum alloys containing high concentrations of Cu and Si. Thus, many aerospace and automotive parts cannot be satisfactorily anodized, if at all. The present process, while appropriate for a limited铝合金微弧阳极氧化与硬质阳极氧化、工艺及所得膜层的性能对比,见表。
微弧氧化提高铝合金耐磨性能的研究摘要:铝合金因密度小、比强度高等特点而被广泛应用于航空、航天和其他民用工业中,但其硬度低、不耐磨损。
为了提高铝合金的硬度、耐磨性、耐蚀性以及涂装等性能,须对铝合金表面进行处理。
其中,阳极氧化处理或硬质阳极氧化处理是最常用的方法之一。
近年来,微弧氧化技术(Micro-arc oxidation,MAO)在国内外迅速发展,它是在普通阳极氧化的基础上,利用弧光放电增强并激活在阳极上发生的反应,从而在铝、钛、镁金属及其合金表面形成陶瓷氧化膜。
该技术工艺简单,生成的氧化膜均匀致密,与基体结合强度高,能够大幅度提高阀金属的力学性能,在航天、航空、汽车、电子和机械等行业中具有巨大的应用前景。
关键词:微弧氧化;铝合金;耐磨性;分析1导言微弧氧化技术是在传统的液相电化学氧化反应的基础上发展起来的。
它将工作区域引入到高压放电区域,使金属表面处在微弧形成的等离子体高温(约3000 K)、高压(20~50 MPa)作用下,在金属表面原位生成坚硬、致密的陶瓷氧化膜,如铝合金表面微弧氧化膜主要由α-Al2O3,γ-Al2O3相组成,所得的氧化膜硬度高、与基体结合牢固、结构致密,大大提高了有色金属的耐磨损、耐腐蚀、抗高温冲击及电特性等多种性能。
2微弧氧化技术的机理20世纪30年代初,研究人员等第一次报道了强电场下浸在液体里的金属表面会发生火花放电现象,而且火花对氧化膜具有破坏作用。
后来发现,利用该现象也可制成氧化膜涂层,最初应用于镁合金防腐。
从20世纪70年代开始,美国、德国和前苏联相继开展了这方面的研究。
Vigh等阐述了产生火花放电的原因,提出了“电子雪崩”模型,并利用该模型对放电过程中的析氧反应进行了解释。
Van等随后进一步研究了火花放电的整个过程,指出“电子雪崩”总是在氧化膜最薄弱、最容易被击穿的区域首先进行,而放电时的巨大热应力则是产生“电子雪崩”的主要动力,与此同时,Nikoiaev等提出了微桥放电模型。
铝合金硬质阳极氧化和普通氧化层。
The hard anodizing and ordinary anodizing of aluminum alloy are two widely used methods for improving corrosion resistance, hardness and wear resistance of aluminum surface.1、硬阳极氧化:高级氧化层,获得比普通氧化层更高的硬度和耐磨性。
硬阳极氧化是在电解液中低温(低于38℃)、低电压(低于50V)和高电流密度(大于800A/dm2)的条件下实现的。
经过硬阳极氧化后,表面涂层已近附着力和硬度已达到理论值,其硬度可达50-70HR。
1. Hard anodizing: High level oxidation layer, obtain higher hardness and wear resistance than ordinary oxidation layer. Hard anodizing is achieved under the conditions of low temperature (below 38 ℃), low voltage (below 50 V) and high current density (greater than 800 A/dm2) in electrolyte. After hard anodizing, the surface coating has been close to the theoretical value of adhesion and hardness, and its hardness can reach 50-70 HR.2、普通阳极氧化:低级氧化层。
普通阳极氧化和多普勒普通阳极氧化是在电解液中高温(高于38℃)、低电压(低于50V)和低电流密度(≤ 80A/dm2)的条件下实现的。
硬质xx氧化与普通xx氧化的区别一、铝合金硬质氧化的优势:1、铝合金硬质氧化后表面硬度最高可达HV500左右。
2、氧化膜厚度25-250um。
3、附着力强,根据硬质氧化所生成的氧化特点:所生成的氧化膜有50%渗透在铝合金内部,50%附着在铝合金表面(双向生长)。
4、绝缘性好:击穿电压可达2000V(完善的封孔)。
5、耐磨性能好:对于含铜量未超过2%的铝合金其最大的磨耗指数为3."5mg/1000转。
其他所有的合金磨耗指数不应超过1."5mg/1000转。
6、无毒:氧化膜和用来生产阳极氧化膜的电化学工艺应对人体无害。
因此很多行业为了减轻产品的重量、机械加工的方便、环保低毒等要求,目前有的部分产品中的部份零部件由铝合金硬质氧化来代替不锈钢、电镀硬铬等工艺。
二、硬质xx氧化和普通xx氧化的区别:硬质氧化的氧化膜有50%渗透在铝合金内部,50%附着在铝合金表面,因此硬质氧化后产品外部尺寸变大,内孔变小。
(一)操作条件方面的差异:1、温度不同:普通氧化18-22℃左右,有添加剂的可以到30℃,温度过高易出现粉末或裂纹;硬质氧化一般在5℃以下,相对来说温度越低硬质越高。
2、浓度差异:普通氧化一般20%左右;硬质氧化一般在15%或更低。
3、电流/电压差异:普通氧化电流密度一般:1-1."5A/dm2;而硬质氧化:1."5-5A/dm2;普通氧化电压≤18V,硬质氧化有时高达120V。
(二)膜层性能方面的差异:1、膜层厚度:普通氧化膜层厚度相对较薄;硬质氧化一般膜层厚度>15μm,过低达不到硬度≥300HV的要求。
2、表面状态:普通氧化表面较光滑,而硬质氧化表面较粗糙(微观,和基体表面粗糙度有关)。
3、孔隙率不同:普通氧化孔隙率高;而硬质氧化孔隙率低。
4、普通氧化基本是透明膜;硬质氧化由于膜厚,为不透明膜。
5、适用场合不同:普通氧化适用于装饰为主;而硬质氧化以功能为主,一般用于耐磨、耐电的场合。