立体几何中直线、平面平行与垂直学生版
- 格式:docx
- 大小:135.06 KB
- 文档页数:8
易错点08 立体几何易错点1:平行和垂直的判定在立体几何中,点、线、面之间的位置关系,特别是线面、面面的平行和垂直关系,是高中立体几何的理论基础,是高考命题的热点与重点之一,一般考查形式为小题(位置关系基本定理判定)或解答题(平行、垂直位置关系的证明),难度不大。
立体几何中平行与垂直的易错点易错点1:线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大。
易错点2:有关线面平行的证明问题中,对定理的理解不够准确,往往忽视",//,"a a b b αα⊄⊂三个条件中的某一个。
易错点3:线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大;易错点2:异面直线所成的角1.求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解,整个求解过程可概括为:一找二证三求。
2.求异面直线所成角的步骤: ①选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊位置斩点。
②求相交直线所成的角,通常是在相应的三角形中进行计算。
③因为异面直线所成的角的范围是0°<θ≤90°,所以在三角形中求的角为钝角时,应取它的补角作为异面直线所成的角。
3.“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。
4.利用向量,设而不找,对于规则几何体中求异面直线所成的角也是常用的方法之一。
易错点3:直线与平面所成的角 1.传统几何方法:①转化为求斜线与它在平面内的射影所成的角,通过直角三角形求解。
完整版)立体几何中平行与垂直证明方法归纳本文系统总结了立体几何中平行与垂直证明方法,适合高三总复时学生构建知识网络、探求解题思路、归纳梳理解题方法。
以下是常见证明方法:一、“平行关系”常见证明方法一)直线与直线平行的证明1.利用平行四边形的对边互相平行的特性;2.利用三角形中位线性质;3.利用空间平行线的传递性(即公理4);4.利用直线与平面平行的性质定理;5.利用平面与平面平行的性质定理;6.利用直线与平面垂直的性质定理;7.利用平面内直线与直线垂直的性质;8.利用定义:在同一个平面内且两条直线没有公共点。
二)直线与平面平行的证明1.利用直线与平面平行的判定定理;2.利用平面与平面平行的性质推论;3.利用定义:直线在平面外,且直线与平面没有公共点。
三)平面与平面平行的证明1.利用平面与平面平行的判定定理;2.利用某些空间几何体的特性;3.利用定义:两个平面没有公共点。
二、“垂直关系”常见证明方法一)直线与直线垂直的证明1.利用直角三角形的两条直角边互相垂直的特性;2.看夹角:两条共(异)面直线的夹角为90°,则两直线互相垂直;3.利用直线与平面垂直的性质:如果一条直线与一个平面垂直,则这条直线垂直于此平面内的所有直线。
1.利用空间几何体的特性:例如长方体侧棱垂直于底面。
2.观察直线与平面所成角度:若直线与平面所成角为90度,则该直线垂直于平面。
3.利用直线与平面垂直的判定定理:若一条直线与一个平面内的两条相交直线垂直,则该直线垂直于此平面。
4.利用平面与平面垂直的性质定理:若两个平面互相垂直,则在这两个平面内分别作垂直于交线的直线,则这两条直线互相垂直。
5.利用常用结论:例如若一条直线平行于一个平面的垂线,则该直线也垂直于此平面。
立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE⊥平面PCF;(Ⅱ)证明:平面PBC⊥平面PCF;(Ⅲ)在线段PD,BC上是否分别存在点M,N,使得平面CFM∥平面PEN?若存在,请指出点M,N的位置,并证明;若不存在,请说明理由.练习3 .如图,直角三角形ABC中,A=60°,沿斜边AC上的高BD,将△ABD折起到△PBD的位置,点E在线段CD上.(1)求证:PE⊥BD;(2)过点D作DM⊥BC交BC于点M,点N为PB中点,若PE∥平面DMN,的值.求DEDC立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E解析 A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E 不正确;故选:C.练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行答案 C解析画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确.C,因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确.D,∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确.故选:C.【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.证明:(Ⅰ)取FC中点N.在图1中,由D,N分别为AC,FC中点,所以DN∥EF.在图2中,由M,N分别为A1C,FC中点,所以MN∥A1F,所以平面DMN∥平面A1EF,(5分)所以DM∥平面A1EF.解:(Ⅱ)直线A1B与直线CD不可能垂直.因为平面A1BD⊥平面BCD,EF⊂平面BCD,EF⊥BD,所以EF⊥平面A1BD,(8分)所以A1B⊥EF.假设有A1B⊥CD,注意到CD与EF是平面BCD内的两条相交直线,则有A1B⊥平面BCD.(1)(10分)又因为平面A1BD⊥平面BCD,A1E⊂平面A1BD,A1E⊥BD,所以A1E⊥平面BCD.(2)而(1),(2)同时成立,这显然与“过一点和已知平面垂直的直线只有一条”相矛盾,所以直线A1B与直线CD不可能垂直.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.证明:(Ⅰ)∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,∵AE⊂平面ABE,∴AE⊥BC,又∵BF⊥平面ACE,AE⊂平面ACE,∴AE⊥BF,∵BC∩BF=B,∴AE⊥平面BCE,又BE⊂平面BCE,∴AE⊥BE.(6分)解:(Ⅱ)在三角形ABE中过M点作MG∥AE交BE于G点,CE,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,则由比例关系得CN=13∵MG∥AE MG⊄平面ADE,AE⊂平面ADE,∴MG∥平面ADE,同理,GN∥平面ADE,∴平面MGN∥平面ADE,又MN⊂平面MGN,∴MN∥平面ADE,∴N点为线段CE上靠近C点的一个三等分点.(12分)【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE ⊥平面PCF ;(Ⅱ)证明:平面PBC ⊥平面PCF ;(Ⅲ)在线段PD ,BC 上是否分别存在点M ,N ,使得平面CFM ∥平面PEN ?若存在,请指出点M ,N 的位置,并证明;若不存在,请说明理由.【解答】证明:(Ⅰ)折叠前,因为四边形AECD 为菱形,所以AC ⊥DE ;所以折叠后,DE ⊥PF ,DE ⊥CF ,又PF∩CF=F,PF ,CF ⊂平面PCF ,所以DE ⊥平面PCF(Ⅱ)因为四边形AECD 为菱形,所以DC ∥AE ,DC=AE .又点E 为AB 的中点,所以DC ∥EB ,DC=EB .所以四边形DEBC 为平行四边形.所以CB ∥DE .又由(Ⅰ)得,DE ⊥平面PCF ,所以CB ⊥平面PCF .因为CB ⊂平面PBC ,所以平面PBC ⊥平面PCF .解:(Ⅲ)存在满足条件的点M ,N ,且M ,N 分别是PD 和BC 的中点.如图,分别取PD 和BC 的中点M ,N .连接EN ,PN ,MF ,CM .因为四边形DEBC 为平行四边形,所以EF ∥CN ,EF =12BC =CN .所以四边形ENCF 为平行四边形.所以FC ∥EN .在△PDE 中,M ,F 分别为PD ,DE 中点,所以MF ∥PE .又EN ,PE ⊂平面PEN ,PE∩EN=E,MF ,CF ⊂平面CFM ,所以平面CFM ∥平面PEN .练习3 .如图,直角三角形ABC 中,A=60°,沿斜边AC 上的高BD ,将△ABD 折起到△PBD 的位置,点E 在线段CD 上.(1)求证:PE ⊥BD ;(2)过点D 作DM ⊥BC 交BC 于点M ,点N 为PB 中点,若PE ∥平面DMN ,求DE DC 的值.解析 (1)∵BD 是AC 边上的高,∴BD ⊥CD ,BD ⊥PD ,又PD∩CD=D,∴BD ⊥平面PCD ,又PE ⊂平面PCD 中,∴BD ⊥PE ,即PE ⊥BD ;(2)如图所示,连接BE ,交DM 与点F ,∵PE ∥平面DMN ,∴PE ∥NF ,又点N 为PB 中点,∴点F 为BE 的中点;∴DF=12BE=EF ;又∠BCD=90°﹣60°=30°,∴△DEF 是等边三角形,设DE=a ,则BD=√3a ,DC=√3BD=3a ;∴DE DC =a 3a =13.。
第六节 直线、平面平行与垂直的综合问题考点一 立体几何中的探索性问题[典例] (2018·全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC .(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.[解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC .因为DM ⊂平面AMD ,所以平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD . 证明如下: 连接AC 交BD 于O . 因为四边形ABCD 为矩形, 所以O 为AC 的中点.连接OP ,因为P 为AM 的中点, 所以MC ∥OP .又MC ⊄平面PBD ,OP ⊂平面PBD , 所以MC ∥平面PBD . [题组训练]1.如图,三棱锥P ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P ABC 的体积;(2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在,请说明理由,并求PMMC 的值.解:(1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P ABC 的高,又P A =1,所以三棱锥P ABC 的体积V =13·S △ABC ·P A =36.(2)在线段PC 上存在点M ,使得AC ⊥BM ,证明如下:如图,在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM .由P A ⊥平面ABC ,知P A ⊥AC , 所以MN ⊥AC .因为BN ∩MN =N ,所以AC ⊥平面MBN , 又BM ⊂平面MBN , 所以AC ⊥BM .在Rt △BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32,由MN ∥P A ,得PM MC =AN NC =13.2.如图,在四棱锥P ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG .(1)求证:PC ⊥BC ;(2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由.解:(1)证明:因为PD ⊥平面ABCD ,BC ⊂平面ABCD , 所以PD ⊥BC .因为四边形ABCD 是正方形,所以BC ⊥CD . 又PD ∩CD =D ,PD ⊂平面PCD ,CD ⊂平面PCD , 所以BC ⊥平面PCD .因为PC ⊂平面PCD ,所以PC ⊥BC .(2)连接AC ,BD 交于点O ,连接EO ,GO ,延长GO 交AD 于点M ,连接EM ,则P A ∥平面MEG . 证明如下:因为E 为PC 的中点,O 是AC 的中点, 所以EO ∥P A .因为EO ⊂平面MEG ,P A ⊄平面MEG ,所以P A ∥平面MEG . 因为△OCG ≌△OAM ,所以AM =CG =23,所以AM 的长为23.考点二 平面图形的翻折问题[典例] (2018·全国卷Ⅲ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =D Q =23DA ,求三棱锥QABP 的体积.解:(1)证明:由已知可得,∠BAC =90°,即BA ⊥AC . 又因为BA ⊥AD ,AC ∩AD =A , 所以AB ⊥平面ACD . 因为AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =3 2. 又BP =D Q =23DA ,所以BP =2 2.如图,过点Q 作Q E ⊥AC ,垂足为E ,则Q E 平行且等于13DC .由已知及(1)可得,DC ⊥平面ABC , 所以Q E ⊥平面ABC ,Q E =1.因此,三棱锥QABP 的体积为V QABP =13×S △ABP ×Q E =13×12×3×22sin 45°×1=1.[题组训练]1.(2019·湖北五校联考)如图1所示,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,得到如图2所示的几何体D ABC .(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F BCE 的体积. 解:(1)证明:∵AC =AD 2+CD 2=22, ∠BAC =∠ACD =45°,AB =4,∴在△ABC 中,BC 2=AC 2+AB 2-2AC ×AB ×cos 45°=8, ∴AB 2=AC 2+BC 2=16,∴AC ⊥BC .∵平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC , ∴BC ⊥平面ACD .(2)∵AD ∥平面BEF ,AD ⊂平面ACD ,平面ACD ∩平面BEF =EF ,∴AD ∥EF , ∵E 为AC 的中点,∴EF 为△ACD 的中位线,由(1)知,几何体F BCE 的体积V F BCE =V B CEF =13×S △CEF ×BC ,S △CEF =14S △ACD =14×12×2×2=12,∴V F BCE =13×12×22=23.2.(2018·合肥二检)如图1,在平面五边形ABCDE 中,AB ∥CE ,且AE =2,∠AEC =60°,CD =ED =7,cos ∠EDC =57.将△CDE 沿CE 折起,使点D 到P 的位置,且AP =3,得到如图2所示的四棱锥P ABCE .(1)求证:AP ⊥平面ABCE ;(2)记平面P AB 与平面PCE 相交于直线l ,求证:AB ∥l . 证明:(1)在△CDE 中,∵CD =ED =7,cos ∠EDC =57,由余弦定理得CE = 72+72-2×7×7×57=2.连接AC ,∵AE =2,∠AEC =60°, ∴AC =2. 又AP =3,∴在△P AE 中,AP 2+AE 2=PE 2, 即AP ⊥AE . 同理,AP ⊥AC .∵AC ∩AE =A ,AC ⊂平面ABCE ,AE ⊂平面ABCE , ∴AP ⊥平面ABCE .(2)∵AB ∥CE ,且CE ⊂平面PCE ,AB ⊄平面PCE , ∴AB ∥平面PCE .又平面P AB ∩平面PCE =l ,∴AB ∥l .[课时跟踪检测]1.如图,四棱锥P ABCD 的底面ABCD 是圆内接四边形(记此圆为W ),且P A ⊥平面ABCD .(1)当BD 是圆W 的直径时,P A =BD =2,AD =CD =3,求四棱锥P ABCD 的体积.(2)在(1)的条件下,判断在棱P A 上是否存在一点Q ,使得B Q ∥平面PCD ?若存在,求出A Q 的长;若不存在,请说明理由.解:(1)因为BD 是圆W 的直径,所以BA ⊥AD , 因为BD =2,AD =3,所以AB =1. 同理BC =1,所以S 四边形ABCD =AB ·AD = 3. 因为P A ⊥平面ABCD ,P A =2,所以四棱锥P ABCD 的体积V =13S 四边形ABCD ·P A =233.(2)存在,A Q =23.理由如下.延长AB ,DC 交于点E ,连接PE ,则平面P AB 与平面PCD 的交线是PE . 假设在棱P A 上存在一点Q ,使得B Q ∥平面PCD , 则B Q ∥PE ,所以A Q P A =ABAE.经计算可得BE =2,所以AE =AB +BE =3,所以A Q =23.故存在这样的点Q ,使B Q ∥平面PCD ,且A Q =23.2.如图,侧棱与底面垂直的四棱柱ABCD A 1B 1C 1D 1的底面是梯形,AB ∥CD ,AB ⊥AD ,AA 1=4,DC =2AB ,AB =AD =3,点M 在棱A 1B 1上,且A 1M =13A 1B 1.已知点E 是直线CD 上的一点,AM ∥平面BC 1E .(1)试确定点E 的位置,并说明理由; (2)求三棱锥M BC 1E 的体积.解:(1)点E 在线段CD 上且EC =1,理由如下:在棱C 1D 1上取点N ,使得D 1N =A 1M =1,连接MN ,DN , 因为D 1N ∥A 1M ,所以四边形D 1NMA 1为平行四边形, 所以MN 平行且等于A 1D 1平行且等于AD .所以四边形AMND 为平行四边形,所以AM ∥DN . 因为CE =1,所以易知DN ∥EC 1,所以AM ∥EC 1, 又AM ⊄平面BC 1E ,EC 1⊂平面BC 1E ,所以AM ∥平面BC 1E . 故点E 在线段CD 上且EC =1. (2)由(1)知,AM ∥平面BC 1E ,所以V M BC 1E =V A BC 1E =V C 1ABE =13×⎝⎛⎭⎫12×3×3×4=6. 3.(2019·湖北武汉部分学校调研)如图1,在矩形ABCD 中,AB =4,AD =2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1ABCE ,其中平面D 1AE ⊥平面ABCE .(1)证明:BE ⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AMAB的值;若不存在,请说明理由.解:(1)证明:∵四边形ABCD 为矩形且AD =DE =EC =BC =2, ∴∠AEB =90°,即BE ⊥AE ,又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE , ∴BE ⊥平面D 1AE . (2)当AM AB =14时,MF ∥平面D 1AE ,理由如下: 取D 1E 的中点L ,连接FL ,AL , ∴FL ∥EC ,又EC ∥AB , ∴FL ∥AB ,且FL =14AB ,∴M ,F ,L ,A 四点共面, 又MF ∥平面AD 1E ,∴MF ∥AL . ∴四边形AMFL 为平行四边形, ∴AM =FL =14AB ,AM AB =14.4.如图1所示,在Rt △ABC 中,∠ABC =90°,D 为AC 的中点,AE ⊥BD 于点E (不同于点D ),延长AE 交BC 于点F ,将△ABD 沿BD 折起,得到三棱锥A 1BCD ,如图2所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?请说明理由.解:(1)证明:∵D,M分别为AC,FC的中点,∴DM∥EF,又∵EF⊂平面A1EF,DM⊄平面A1EF,∴DM∥平面A1EF.(2)证明:∵EF⊥BD,A1E⊥BD,A1E∩EF=E,A1E⊂平面A1EF,EF⊂平面A1EF,∴BD⊥平面A1EF,又A1F⊂平面A1EF,∴BD⊥A1F.(3)直线A1B与直线CD不能垂直.理由如下:∵平面BCD⊥平面A1BD,平面BCD∩平面A1BD=BD,EF⊥BD,EF⊂平面BCD,∴EF⊥平面A1BD,又∵A1B⊂平面A1BD,∴A1B⊥EF,又∵DM∥EF,∴A1B⊥DM.假设A1B⊥CD,∵DM∩CD=D,∴A1B⊥平面BCD,∴A1B⊥BD,与∠A1BD为锐角矛盾,∴直线A1B与直线CD不能垂直.5.(2019·河南名校联考)如图,在多面体ABCDEF中,四边形ABCD是梯形,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上.(1)求证:BC⊥平面ACFE;(2)当EM为何值时,AM∥平面BDF?证明你的结论.解:(1)证明:在梯形ABCD中,因为AB∥CD,AD=DC=CB=a,∠ABC=60°,所以四边形ABCD是等腰梯形,且∠DCA=∠DAC=30°,∠DCB=120°,所以∠ACB=∠DCB-∠DCA=90°,所以AC⊥BC.又平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,BC⊂平面ABCD,所以BC⊥平面ACFE.(2)当EM =33a 时,AM ∥平面BDF ,理由如下: 如图,在梯形ABCD 中,设AC ∩BD =N ,连接FN .由(1)知四边形ABCD 为等腰梯形,且∠ABC =60°,所以AB =2DC ,则CN ∶NA =1∶2.易知EF =AC =3a ,所以AN =233a .因为EM =33a , 所以MF =23EF =233a ,所以MF 平行且等于AN , 所以四边形ANFM 是平行四边形, 所以AM ∥NF ,又NF ⊂平面BDF ,AM ⊄平面BDF , 所以AM ∥平面BDF .6.如图所示的五面体ABEDFC 中,四边形ACFD 是等腰梯形,AD ∥FC ,∠DAC =60°,BC ⊥平面ACFD ,CA =CB =CF =1,AD =2CF ,点G 为AC 的中点.(1)在AD 上是否存在一点H ,使GH ∥平面BCD ?若存在,指出点H 的位置并给出证明;若不存在,说明理由;(2)求三棱锥G ECD 的体积.解:(1)存在点H 使GH ∥平面BCD ,此时H 为AD 的中点.证明如下. 取点H 为AD 的中点,连接GH , 因为点G 为AC 的中点,所以在△ACD 中,由三角形中位线定理可知GH ∥CD , 又GH ⊄平面BCD ,CD ⊂平面BCD , 所以GH ∥平面BCD .(2)因为AD ∥CF ,AD ⊂平面ADEB ,CF ⊄平面ADEB , 所以CF ∥平面ADEB ,因为CF ⊂平面CFEB ,平面CFEB ∩平面ADEB =BE , 所以CF ∥BE ,又CF ⊂平面ACFD ,BE ⊄平面ACFD , 所以BE ∥平面ACFD , 所以V G ECD =V E GCD =V B GCD .因为四边形ACFD 是等腰梯形,∠DAC =60°,AD =2CF =2AC ,所以∠ACD =90°,又CA =CB =CF =1,所以CD =3,CG =12,又BC ⊥平面ACFD ,所以V B GCD =13×12CG ×CD ×BC =13×12×12×3×1=312.所以三棱锥G ECD 的体积为312.。
初二立体几何的平行与垂直关系立体几何是数学中的一个重要分支,它研究的是三维空间中的几何形状和其性质。
在立体几何中,平行与垂直关系是一个基础概念,对于我们理解立体图形的性质和应用具有重要意义。
本文将详细介绍初二阶段立体几何中的平行与垂直关系,帮助读者更好地理解和掌握相关知识。
一、平行关系1. 平行的定义在平面几何中,我们知道两条直线如果永不相交,那么它们是平行的。
类似地,在立体几何中,两个平面如果永不相交,那么它们也是平行的。
两个平行的平面可以近似地理解为平行于地面的两个水平板,它们之间的距离始终保持不变。
2. 平行关系的表示方法在数学中,平行关系可以用符号“||”表示。
例如,平面ABCD || 平面EFGH表示平面ABCD与平面EFGH是平行的。
3. 平行关系的性质平行关系具有以下性质:(1)平行关系具有传递性。
即如果平面A || 平面B,平面B || 平面C,则可得出平面A || 平面C。
(2)两个平行面之间的任意两条相交直线都是平行的。
这个性质在立体几何的证明中常常被使用。
二、垂直关系1. 垂直的定义在平面几何中,如果两条直线相交且交角为90度,那么我们称这两条直线为垂直线。
类似地,在立体几何中,两个平面如果相交且交线与两平面的交角都为90度,那么我们称这两个平面为垂直平面。
2. 垂直关系的表示方法在数学中,垂直关系可以用符号“⊥”表示。
例如,线段AB ⊥线段CD表示线段AB与线段CD是垂直的。
3. 垂直关系的性质垂直关系具有以下性质:(1)垂直关系具有对称性。
即如果线段AB ⊥线段CD,则可得到线段CD ⊥线段AB。
(2)在平行平面中,与同一条直线垂直的两条直线是平行的。
三、平行和垂直关系的应用平行和垂直关系在生活中和其他学科中有广泛的应用。
1. 建筑设计中,平行和垂直关系是设计师在设计房间平面图时必须要考虑的因素。
合理利用平行和垂直线,可以使房间具备更好的功能性和美观性。
2. 制图学中,平行和垂直线的运用对于绘制准确的图形至关重要。
专题16 空间向量与立体几何考点1 利用空间向量证明平行与垂直调研1 如图,在正方体1111ABCD A B C D-中,O是AC的中点,E是线段1D O上一点,且1D E EOλ=⋅u u u u r u u u r.(1)求证:11DB CD O⊥平面;(2)若平面CDE ⊥平面1CD O ,求λ的值. 【答案】(1)证明见解析;(2)2λ=.【解析】(1)不妨设正方体的棱长为1,如图建立空间直角坐标系,则1111(0,0,0),(1,1,1),(,,0),(0,1,0),(0,0,1)22D B O C D ,于是1111(1,1,1),(,,0),(0,1,1)22DB OC CD ==-=-u u u u r u u u u r u u u r ,因为1110,0DB CD DB OC ⋅=⋅=u u u r u u u r u u u u u u ru r ,所以111,DB CD DB OC ⊥⊥, 故11DB CD O ⊥平面.(2)由(1)可知1CD O 平面的一个法向量为1(1,1,1)DB ==u u u u rm , 由1D E EO λ=⋅u u u u r u u u r,则1(,,)2(1)2(1)(1)E λλλλλ+++,设平面CDE 的法向量为(,,)x y z =n ,由·0,0CD DE =⋅=u u u r u u u r n n ,得0,02(1)2(1)(1)y x y zλλλλλ=⎧⎪⎨++=⎪+++⎩∴可取(2,0,)λ=-n ,因为1CD O CED ⊥平面平面,所以·0,2λ=∴=m n .☆技巧点拨☆直线与平面、平面与平面的平行与垂直的向量判定方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行:l ∥α⇔a ⊥μ⇔a·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0; (2)线面垂直:l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2; (3)面面平行:α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3; (4)面面垂直:α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.注意:用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.考点2 求空间角题组一 求异面直线所成的角调研1 如图所示,在三棱锥P –ABC 中,P A ⊥平面ABC ,D 是棱PB 的中点,已知P A =BC =2,AB =4,CB ⊥AB ,则异面直线PC ,AD 所成角的余弦值为A .−3010 B .−305 C .305D .3010【答案】D【解析】因为P A ⊥平面ABC ,所以P A ⊥AB ,P A ⊥BC .过点A 作AE ∥CB ,又CB ⊥AB ,则AP ,AB ,AE 两两垂直.如图,以A 为坐标原点,分别以AB ,AE ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),P (0,0,2),B (4,0,0),C (4,−2,0).因为D 为PB 的中点,所以D (2,0,1).故CP uu r =(−4,2,2),AD uuu r =(2,0,1).所以cos 〈AD uuu r ,CP uu r 〉=||||AD CPAD CP ⋅⋅uuu r uu ruuur uu r =-65×26=−3010. 设异面直线PC ,AD 所成的角为θ,则cos θ=|cos 〈AD uuu r ,CP uu r〉|=3010.调研 2 在正方体1111ABCD A B C D -中,点P 在1A C 上运动(包括端点),则BP 与1AD 所成角的取值范围是ABCD 【答案】D【解析】以点D 为原点,DA 、DC 、1DD 所在直线分别为x y z 、、轴建立空间直角坐标系,设正方体棱长为1,点P 坐标为(),1,x x x -,则()()11,,,1,0,1BP x x x BC =--=-u u u r u u u u r ,设1BP BC u u u ru u u u r、的夹角为α,则所以当13x =时,cos α取最大值当1x =时,cos α因为11BC AD ∥,所以BP 与1AD 所成角的取值范围是故选D. 【名师点睛】空间向量的引入为求空间角带来了方便,解题时只需通过代数运算便可达到解题的目的,由于两向量夹角的范围为[0,π],因此向量的夹角不一定等于所求的空间角,因此在解题时求得两向量的夹角(或其余弦值)后还要分析向量的夹角和空间角大小间的关系.解题时要根据所求的角的类型得到空间角的范围,并在此范围下确定出所求角(或其三角函数值).☆技巧点拨☆利用向量求异面直线所成的角一是几何法:作—证—算;二是向量法:把角的求解转化为向量运算,应注意体会两种方法的特点,“转化”是求异面直线所成角的关键,一般地,异面直线AC ,BD 的夹角β的余弦值为cos β=||||AC BD AC BD ⋅⋅uuu r uu u ruuur uu u r . 注意:两条异面直线所成的角α不一定是两直线的方向向量的夹角β,即cos α=|cos β|.题组二 求线面角调研3 如图,四棱锥P –ABCD 中,底面ABCD 是直角梯形,∠DAB =90°,AD ∥BC ,AD ⊥侧面P AB ,△P AB 是等边三角形,DA =AB =2,BC =12AD ,E 是线段AB 的中点.(1)求证:PE ⊥CD ;(2)求PC 与平面PDE 所成角的正弦值. 【答案】(1)见解析;(2) 35.【解析】(1)因为AD ⊥侧面P AB ,PE ⊂平面P AB ,所以AD ⊥PE . 又△P AB 是等边三角形,E 是线段AB 的中点,所以PE ⊥AB . 因为AD ∩AB =A ,所以PE ⊥平面ABCD , 而CD ⊂平面ABCD ,所以PE ⊥CD .(2)以E 为坐标原点,建立如图所示的空间直角坐标系E −xyz . 则E (0,0,0),C (1,−1,0),D (2,1,0),P (0,0,3). 所以ED →=(2,1,0),EP →=(0,0,3),PC →=(1,−1,−3). 设n =(x ,y ,z )为平面PDE 的法向量.由,得⎩⎨⎧2x +y =0,3z =0.令x =1,可得n =(1,−2,0).设PC 与平面PDE 所成的角为θ,则sin θ=|cos 〈PC →,n 〉|=|||||PC PC ⋅⋅uu u ruu ur n n |=35. 所以PC 与平面PDE 所成角的正弦值为35.调研4 如图,四棱锥P ABCD -中,PD ABCD ⊥平面,底面ABCD 是梯形,AB ∥CD ,BC CD ⊥,AB=PD=4,CD=2,AD =M 为CD 的中点,N 为PB 上一点,且(01)PN PB λλ=<<u u u r u u u r.(1)若14λ=时,求证:MN ∥平面P AD ; (2)若直线AN 与平面PBCAD 与直线CN 所成角的余弦值. 【答案】(1)见解析;(2. 【解析】(114PN PB =u u u r u u u r .在P A 上取点EEN ,DE ,Q 1444PN PB PE PA AB ===u u u r u u u r u u r ,,,∴EN ∥AB ,且14EN AB ==,Q M 为CD 的中点,CD=2,∴112DM CD ==,又AB ∥CD ,∴EN ∥DM ,EN =DM ,∴四边形DMNE 是平行四边形,∴MN ∥DE ,又DE ⊂平面P AD ,MN ⊄平面P AD ,∴MN ∥平面P AD .(2)如图所示,过点D 作DH ⊥AB 于H ,则DH ⊥CD .以D 为坐标原点建立空间直角坐标系D −xyz . 则D (0,0,0),M (0,1,0),C (0,2,0),B (2,2,0),A (2,−2,0),P (0,0,4),∴()()2,0,0,0,2,4CB CP ==-u u u r u u u r ,()()2,2,42,2,4AN AP PN AP PB λλ=+=+=-+-u u u r u u u r u u u r u u u r u u u r()22,22,44λλλ=-+-.该平面PBC 的法向量为(),,x y z =n ,则由20240CB x CP y z ⎧⋅==⎪⎨⋅=-+=⎪⎩u u u r u u u r n n ,得02x y z =⎧⎨=⎩,令z =1,得()0,2,1=n .该直线AN 与平面PBC 所成的角为θ,则 ,解得1,3λ=∴()228248,,,,2,2,0333333N CN AD ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭u u ur u u u r ,,, 设直线AD 与直线CN 所成的角为α所以直线AD 与直线CN.☆技巧点拨☆利用向量求直线与平面所成的角①分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); ②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.注意:直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.直线与平面的夹角计算设直线l 的方向向量为a =(a 1,b 1,c 1),平面α的法向量为μ=(a 3,b 3,c 3),直线l 与平面α的夹角为θ⎝⎛⎭⎫0≤θ≤π2,则sin θ=|a·μ||a ||μ|=|cos 〈a ,μ〉|.题组三 求二面角调研5 二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB ,已知2AB =,3AC =,4BD =,CD = A .45︒ B .60︒ C .120︒D .150︒【答案】B【解析】由已知可得:0,0AB AC AB BD ⋅=⋅=u u u r u u u r u u u r u u u r ,CD CA AB BD =++u u u r u u u u r u u r u u u r,,∴cos CA 12,即CA ,∴二面角的大小为60°,故选B.【名师点睛】这个题目考查的是立体几何中空间角的求法;解决立体几何的小题,通常有以下几种方法:一是建系法,二是用传统的方法,利用定义直接在图中找到要求的角;还有就是利用空间向量法来解决问题.注意向量夹角必须是共起点的,还有就是异面直线夹角必须是锐角或直角.调研6 如图,在四棱锥P ABCD -中,AP ,AB ,AD 两两垂直,BC AD ∥,且4AP AB AD ===,2BC =.(1)求二面角P CD A --的余弦值;(2)已知点H 为线段PC 上异于C 的点,且DC DH =,求PHPC的值. 【答案】(1)23;(2【思路分析】(1)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得各平面法向量,利用向量数量积求向量夹角,最后根据二面角与向量夹角关系求结果;(2)设PH PC λ=u u u v u u u v,根据向量坐标表示距离,再根据距离相等解得λ,即为PHPC的值. 【解析】以{},,A AB AP D u u u r u u u r u u u r为正交基底,建立如图所示的空间直角坐标系A xyz -.则()0,0,0A ,()4,0,0B ,()4,2,0C ,()0,4,0D ,()0,0,4P .(1)易知()0,4,4DP =-u u u r ,()4,2,0DC =-u u u r.设平面PCD 的法向量为()1,,x y z =n ,则1100DP DC ⎧⋅=⎪⎨⋅=⎪⎩u u u v u u u v n n ,即440420y z x y -+=⎧⎨-=⎩,令1x =,则2y =,2z =.所以()11,2,2=n .易知平面ACD 的法向量为()20,0,1=n ,P CD A --的余弦值为23. (2)由题意可知,()4,2,4PC =-u u u r ,()4,2,0DC =-u u u r ,设()4,2,4PH PC λλλλ==-u u u r u u u r,则DH DP PH =+=u u u u r u u u r u u u r()4,24,44λλλ--, 因为DC DH ==,化简得23410λλ-+=,所以1λ=或13λ=.点H 异于点C ,所以13λ=调研7 如图,在三棱柱111ABC A B C -中,侧棱1CC ⊥底面ABC ,且122,CC AC BC AC BC ==⊥,D 是棱AB 的中点,点M 在侧棱1CC 上运动.(1)当M 是棱1CC 的中点时,求证:CD ∥平面1MAB ; (2)当直线AM 与平面ABC 所成的角的正切值为32时,求二面角11A MB C --的余弦值.【答案】(1)见解析;(2)14-. 【思路分析】(1)取线段1AB 的中点E ,连接,DE EM ,可得四边形CDEM 是平行四边形,CD EM ∥,即可证明CD ∥平面1MAB ;(2)以C 为原点,CA ,CB ,1CC 所在直线分别为x ,y ,z 轴建立空间直角坐标系,利用向量法求二面角11A MB C --的余弦值. 【解析】(1)取线段1AB 的中点E ,连接,DE EM . ∵1,AD DB AE EB ==,∴1DE BB ∥,且112DE BB =. 又M 为1CC 的中点,∴1CM BB ∥,且112CM BB =, ∴CM DE ∥,且CM DE =,∴四边形CDEM 是平行四边形,∴CD EM ∥. 又EM ⊂平面1,AB M CD ⊄平面1AB M ,∴CD ∥平面1MAB .(2)∵1,,CA CB CC 两两垂直,∴以C 为原点,1,,CA CB CC 所在直线分别为x ,y ,z 轴,建立空间直角坐标系C xyz -,如图,∵三棱柱111ABC A B C -中,1CC ⊥平面ABC ,∴MAC ∠即为直线AM 与平面ABC 所成的角. 设1AC =,则由3tanMAC ∠=,得3CM =.设平面1AMB 的一个法向量为(),,x y z =n ,2z =,得3,1x y ==-,即()3,1,2=-n .又平面11BCC B 的一个法向量为()1,0,0CA =u u ur,∴,又二面角11A MB C --的平面角为钝角,∴二面角11A MB C --的余弦值为14-.☆技巧点拨☆利用向量求二面角求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.注意:两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.运用空间向量坐标运算求空间角的一般步骤(1)建立恰当的空间直角坐标系; (2)求出相关点的坐标; (3)写出向量坐标;(4)结合公式进行论证、计算;(5)转化为几何结论.平面与平面的夹角计算公式设平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4),平面α,β的夹角为θ(0≤θ≤π),则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|.题组四 解决探索性问题调研8 如图,在五面体ABCDPE 中,PD ⊥平面ABCD ,∠ADC =∠BAD =90°,F 为棱P A 的中点,PD =BC =2,AB =AD =1,且四边形CDPE 为平行四边形.(1)判断AC 与平面DEF 的位置关系,并给予证明;(2)在线段EF 上是否存在一点Q ,使得BQ 与平面PBC 所成角的正弦值为36?若存在,请求出QE 的长;若不存在,请说明理由.【答案】(1) AC ∥平面DEF ,证明见解析;(2) 在线段EF 上存在一点Q ⎝⎛⎭⎫14,1,324,使得BQ 与平面PBC 所成角的正弦值为36,此时QE =194. 【解析】(1)AC ∥平面DEF .理由如下: 设线段PC 交DE 于点N ,连接FN ,如图所示,因为四边形PDCE 为平行四边形,所以点N 为PC 的中点, 又点F 为P A 的中点,所以FN ∥AC , 因为FN ⊂平面DEF ,AC ⊄平面DEF , 所以AC ∥平面DEF .(2)假设在线段EF 上存在一点Q ,使得BQ 与平面PBC 所成角的正弦值为36,设FQ →=λFE →(0≤λ≤1),如图,以D 为坐标原点,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系. 因为PD =BC =2,AB =AD =1,所以CD =2,所以P (0,0,2),B (1,1,0),C (0,2,0),A (1,0,0),所以PB →=(1,1,−2),BC →=(−1,1,0). 设平面PBC 的法向量为m =(x ,y ,z ),则,即⎩⎨⎧ x +y -2z =0,-x +y =0,解得⎩⎨⎧x =y ,z =2x ,令x =1,得平面PBC 的一个法向量为m =(1,1,2). 假设存在点Q 满足条件.由F ⎝⎛⎭⎫12,0,22,E (0,2,2),可得FE →=⎝⎛⎭⎫-12,2,22.由FQ→=λFE →(0≤λ≤1),整理得1)(,2,)22Q λλλ-+,则BQ →=1)(,21,)22λλλ-+--, 因为直线BQ 与平面PBC 所成角的正弦值为36,所以|cos 〈BQ →,m 〉|=|||||BQ BQ ⋅⋅uu u ruu ur m m |=|5λ-1|219λ2-10λ+7=36, 化简可得14λ2-5λ-1=0, 又0≤λ≤1,所以λ=12,故在线段EF 上存在一点Q ⎝⎛⎭⎫14,1,324,使得BQ 与平面PBC 所成角的正弦值为36, 且QE=194.调研9 棱台1111ABCD A B C D -的三视图与直观图如图所示. (1)求证:平面11ACC A ⊥平面11BDD B ;(2)在线段1DD 上是否存在一点Q ,使CQ 与平面11BDDB ?若存在,指出点Q 的位置;若不存在,说明理由.【答案】(1)见解析;(2)存在,点Q 在1DD 的中点位置,理由见解析.【思路分析】(1)首先根据三视图特征可得1AA ⊥平面ABCD ,四边形ABCD 为正方形,所以AC BD ⊥.再由1AA BD ⊥即可得线面垂直,从而得出面面垂直;(2)直接建立空间直角坐标系写出各点坐标求出法向量,再根据向量的夹角公式列等式求出12λ=. 【解析】(1)根据三视图可知1AA ⊥平面ABCD ,四边形ABCD 为正方形,所以AC BD ⊥. 因为BD ⊂平面ABCD ,所以1AA BD ⊥, 又1AA AC A =I ,所以BD ⊥平面11ACC A .因为BD ⊂平面11BDD B ,所以平面11ACC A ⊥平面11BDD B .(2)以A 为坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴建立空间直角坐标系,如图所示,根据三视图可知四边形ABCD 为边长为2的正方形,四边形1111A B C D 为边长为1的正方形,1AA ⊥平面ABCD ,且11AA =.所以()11,0,1B ,()10,1,1D ,()2,0,0B ,()0,2,0D ,()2,2,0C . 因为Q 在1DD 上,所以可设()101DQ DD λλ=≤≤u u u r u u u u r.因为()10,1,1DD =-u u u u r ,所以1AQ AD DQ AD DD λ=+=+u u u r u u u u u r u u r u u u r u u u r()()()0,2,00,1,10,2,λλλ=+-=-. 所以()0,2,Q λλ-,()2,,CQ λλ=--u u u r.设平面11BDD B 的法向量为(),,x y z =n ,根据()()()()1,,2,2,00,0,,0,1,10,0x y z BD x y z DD ⎧⎧⋅-=⋅=⎪⎪⇒⎨⎨⋅-=⋅=⎪⎪⎩⎩u u u r u u u ur n n令1x =,可得1y z ==,所以()1,1,1=n .设CQ 与平面11BDD B 所成的角为θ,9==. 所以12λ=,即点Q 在1DD 的中点位置. 调研10 如图(1),在边长为4的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥DC ,如图(2).(1)求证:A 1E ⊥平面BCDE . (2)求二面角E −A 1B −C 的余弦值.(3)判断在线段EB 上是否存在一点P ,使平面A 1DP ⊥平面A 1BC ?若存在,求出EPPB 的值;若不存在,说明理由.【答案】(1)见解析;(2) −77;(3)在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC . 【解析】(1)∵DE ⊥BE ,BE ∥DC ,∴DE ⊥DC .又∵A 1D ⊥DC ,A 1D ∩DE =D ,∴DC ⊥平面A 1DE ,∴DC ⊥A 1E . 又∵A 1E ⊥DE ,DC ∩DE =D ,∴A 1E ⊥平面BCDE . (2)∵A 1E ⊥平面BCDE ,DE ⊥BE ,∴以EB ,ED ,EA 1所在直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系(如图).易知DE =23,则A 1(0,0,2),B (2,0,0),C (4,23,0),D (0,23,0),∴1BA uuu r =(−2,0,2),BC uu u r=(2,23,0),易知平面A 1BE 的一个法向量为n =(0,1,0).设平面A1BC的法向量为m =(x ,y ,z ),由1BA uuu r ·m =0,BC uu u r·m =0,得⎩⎨⎧-2x +2z =0,2x +23y =0.令y =1,得m =(−3,1,−3),∴cos 〈m ,n 〉=m·n|m |·|n |=17×1=77.由图得二面角E −A 1B −C 为钝二面角, ∴二面角E −A 1B −C 的余弦值为−77.(3)假设在线段EB 上存在一点P ,使得平面A 1DP ⊥平面A 1BC .设P (t ,0,0)(0≤t ≤2),则1A P uuu r =(t ,0,−2),1A D uuu r=(0,23,−2),设平面A 1DP 的法向量为p =(x 1,y 1,z 1),由得⎩⎨⎧23y 1-2z 1=0,tx 1-2z 1=0.令x 1=2,得p =⎝⎛⎭⎫2,t 3,t .∵平面A 1DP ⊥平面A 1BC ,∴m·p =0,即23−t3+3t =0,解得t =−3. ∵0≤t ≤2,∴在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC .☆技巧点拨☆用向量解决探索性问题的方法1.确定点在线段上的位置时,通常利用向量共线来求.2.确定点在平面内的位置时,充分利用平面向量基本定理表示出有关向量的坐标而不是直接设出点的坐标. 3.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.1.(山东省泰安第二中学2019-2020学年高三上学期9月月考数学试题)已知(2,1,3)=-a ,(1,4,2)=--b ,(7,5,)x =c ,若a ,b ,c 三向量共面,则实数x =A .627 B .637C .607D .6572.(四川省成都市树德中学2019-2020学年高三11月阶段性检测数学试题)如图三棱锥S ABC -中,SA ⊥底面ABC ,AB BC ⊥,2AB BC ==,SA =SC 与AB 所成角的大小为A .90︒B .60︒C .45︒D .30°3.(甘肃省天水市第一中学2020年高三上学期12月月考数学试题)如图1四边形ABCD 与四边形ADEF分别为正方形和等腰梯形,,AD EF AF =∥4,2AD EF ==,沿AD 边将四边形ADEF 折起,使得平面ADEF ⊥平面ABCD ,如图2,动点M 在线段EF 上,,N G 分别是,AB BC 的中点,设异面直线MN 与AG 所成的角为α,则cos α的最大值为A BC D 4.(山东省泰安第二中学2019-2020学年高三上学期9月月考数学试题)在正方体1111ABCD A B C D -中,点M 是1AA 的中点,已知AB =u u u r a ,AD =u u u rb ,1AA =u u u r c ,用a ,b ,c 表示CM u u u u r ,则CM =u u u u r ______. 5.(河南省天一大联考2019-2020学年高三阶段性测试(三)数学试题)在直四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,60BAD ∠=o ,1122AB AA ==,E 、F 分别是线段1AA 、11C D 的中点.(1)求证:BD CE ⊥;(2)求平面ABCD 与平面CEF 所成锐二面角的余弦值.6.(四川省南充市高中2019-2020学年高三第一次高考适应性考试数学试题)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,2AB =,BC a =,PA ABCD 底面⊥.(1)当a 为何值时,BD PAC ⊥平面?证明你的结论; (2)当122PA a ==时,求面PDC 与面PAB 所成二面角的正弦值.7.(河北省承德市第一中学2019-2020学年高三上学期12月月考数学试题)如图,已知点H 在正方体1111ABCD A B C D -的对角线11B D 上,∠HDA =60︒.(1)求DH 与1CC 所成角的大小;(2)求DH 与平面1A BD 所成角的正弦值.8.(湖北省“荆、荆、襄、宜四地七校考试联盟2019-2020学年高三上学期10月联考数学试题)已知在多面体ABCDE 中,DE AB ∥,AC BC ⊥,24BC AC ==,2AB DE =,DA DC =且平面DAC ⊥平面ABC .(1)设点F 为线段BC 的中点,试证明EF ⊥平面ABC ;(2)若直线BE 与平面ABC 所成的角为60o ,求二面角B AD C --的余弦值.9.(广东省广州市番禺区广东仲元中学2019-2020年高三上学期11月月考数学试题)如图1,PAD △是以AD 为斜边的直角三角形,1PA =,BC AD ∥,CD AD ⊥,22AD DC ==,12BC =,将PAD △沿着AD 折起,如图2,使得2PC =.(1)证明:平面PAD ⊥平面ABCD ; (2)求二面角A PB C --大小的余弦值.10.(天津市部分区2019-2020学年高三上学期期末数学试题)如图,在三棱柱111ABC A B C -中,P 、O 分别为AC 、11A C 的中点,11PA PC ==1111A B B C =1PB ==114A C =.(1)求证:PO ⊥平面111A B C ; (2)求二面角111B PA C --的正弦值;(3)已知H 为棱11B C 上的点,若11113B H BC =u u u u r u u u u r,求线段PH 的长度.1.(2018新课标全国Ⅱ理科)在长方体1111ABCD A B C D -中,1AB BC ==,1AA =则异面直线1AD 与1DB 所成角的余弦值为A .15 BC .5D .22.(2017新课标全国Ⅲ理科)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________________.(填写所有正确结论的编号)3.(2018新课标全国Ⅰ理科)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.4.(2018新课标全国Ⅱ理科)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.5.(2018新课标全国Ⅲ理科)如图,边长为2的正方形ABCD 所在的平面与半圆弧»CD 所在平面垂直,M 是»CD上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.6.(2017新课标全国Ⅰ理科)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o . (1)证明:平面P AB ⊥平面P AD ;C(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值.7.(2017新课标全国Ⅱ理科)如图,四棱锥P −ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.8.(2017新课标全国Ⅲ理科)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.9.(2019年高考全国Ⅰ卷理数)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.10.(2019年高考全国Ⅱ卷理数)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.11.(2019年高考全国Ⅲ卷理数)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.。
微专题3 立体几何中的平行与垂直问题(解析版)题型一、线面平行与垂直证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。
直线与平面垂直关键是找两条相交直线。
例1、如图,在四棱锥P ABCD中,M,N分别为棱P A,PD的中点.已知侧面P AD⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;MD⊥平面P AB.【证明】(1)在四棱锥P-ABCD中,M,N分别为棱P A,PD的中点,所以MN∥AD又底面ABCD是矩形,所以BC∥AD.所以MN∥BC.又BC⊂平面PBC,MN⊄平面PBC,所以MN∥平面PBC.(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面P AD⊥底面ABCD,侧面P AD∩底面ABCD=AD,AB⊂底面ABCD,所以AB⊥侧面P AD.又MD⊂侧面P AD,所以AB⊥MD.因为DA=DP,又M为AP的中点,从而MD⊥P A.又P A,AB在平面P AB内,P A∩AB=A,所以MD⊥平面P AB【类比训练】如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B⊥平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1) 求证:EF∥平面ABC;(2) 求证:BB1⊥AC.解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E,F分别是侧面AA1B1B,BB1C1C对角线的交点,所以E,F分别是AB1,CB1的中点,所以EF∥AC.(4分)因为EF⊄平面ABC,AC⊂平面ABC,所以EF∥平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1⊥AB.因为平面AA1B1B⊥平面ABC,且平面AA1B1B∩平面ABC=AB,BB1⊂平面AA1B1B,所以BB1⊥平面ABC.(12分)因为AC⊂平面ABC,所以BB1⊥AC.(14分)例2、如图,在三棱柱ABCA1B1C1中,AB=AC,A1C⊥BC1,AB1⊥BC1,D,E分别是AB1和BC的中点.求证:(1)DE∥平面ACC1A1;(2)AE⊥平面BCC1B1.解答(1)连结A1B,在三棱柱ABCA1B1C1中,AA1∥BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在△BA1C中,D和E分别是BA1和BC的中点,所以DE∥A1C.又因为DE⊄平面ACC1A1,A1C⊂平面ACC1A1,所以DE∥平面ACC1A1.(6分)(2)由(1)知DE∥A1C,因为A1C⊥BC1,所以BC1⊥DE.(8分)又因为BC1⊥AB1,AB1∩DE=D,AB1,DE⊂平面ADE,所以BC1⊥平面ADE.又因为AE⊂平在ADE,所以AE⊥BC1.(10分)在△ABC中,AB=AC,E是BC的中点,所以AE⊥BC.(12分)因为AE⊥BC1,AE⊥BC,BC1∩BC=B,BC1,BC⊂平面BCC1B1,所以AE⊥平面BCC1B1. (14分)【类比训练】三棱锥DABC中,已知AC⊥BC,AC⊥DC,BC=DC,E,F分别为BD,CD的中点.求证:(1) EF∥平面ABC;(2) BD⊥平面ACE.解答(1)三棱锥DABC中,因为E为DB的中点,F为DC的中点,所以EF∥BC,(3分)因为BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.(6分)(2)因为AC⊥BC,AC⊥DC,BC∩DC=C,BC,DC⊂平面BCD所以AC⊥平面BCD,(8分)因为BD⊂平面BCD,所以AC⊥BD,(10分)因为DC=BC,E为BD的中点,所以CE⊥BD,(12分)因为AC∩CE=C,AC,CE⊂平面ACE,所以BD⊥平面ACE.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
方法技巧专题16 立体几何中平行与垂直证明解析版一、立体几何中平行与垂直知识框架cc∥∥b a ba ∥⇒ 二、立体几何中的向量方法【一】“平行关系”常见证明方法 1.1 直线与直线平行的证明1.1.1 利用某些平面图形的特性:如平行四边形的对边互相平行等 1.1.2 利用三角形中位线性质1.1.3 利用空间平行线的传递性(即公理4):平行于同一条直线的两条直线互相平行。
1.1.4 利用直线与平面平行的性质定理:如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
1.1.5 利用平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.1.1.6 利用直线与平面垂直的性质定理:垂直于同一个平面的两条直线互相平行。
1.1.7 利用平面内直线与直线垂直的性质:在同一个平面内,垂直于同一条直线的两条直线互相平行。
1.1.8 利用定义:在同一个平面内且两条直线没有公共点 1.2 直线与平面平行的证明1.2.1 利用直线与平面平行的判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
αbaabαβ ba a =⋂⊂βαβα∥ba ∥⇒b a b a ////⇒⎪⎭⎪⎬⎫==γβγαβα βα⊥⊥b a ba ∥⇒b∥a b a αα⊂⊄α∥a ⇒αab1.2.2 利用平面与平面平行的性质推论:两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。
1.2.3 利用定义:直线在平面外,且直线与平面没有公共点 1.3 平面与平面平行的证明1.3.1 利用平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
1.3.2 利用某些空间几何体的特性:如正方体的上下底面互相平行等1.3.3 利用定义:两个平面没有公共点 1.例题【例1】 如图,已知菱形ABCD ,其边长为2,60BAD ∠=,ABD ∆绕着BD 顺时针旋转120得到PBD ∆,M 是PC 的中点.(1)求证://PA 平面MBD ;(2)求直线AD 与平面PBD 所成角的正弦值.βαaβαα∥⊂a β∥a ⇒ααββ////∩⊂⊂b a P b a b a =αβ//⇒αβbaP【例2】 已知四棱锥P-ABCD ,底面ABCD 是 60=∠A 、边长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点.【例3】如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC .2.巩固提升综合练习【练习1】如图,在六面体ABCDEFG 中,平面ABC ∥平面DEFG ,AD ⊥平面DEFG ,AC AB ⊥,DG ED ⊥,EF ∥DG ,且2====DG DE AD AB ,1==EF AC .求证: BF ∥平面ACGD ;A BCDE G F【练习2】如图,E ,F ,G ,H 分别是正方体1111ABCD A B C D -的棱BC ,1CC ,11C D ,1AA 的中点.求证:(1)EG ∥平面11BB D D ; (2)平面BDF ∥平面11B D H .【练习3】在如图所示的五面体ABCDEF 中,四边形ABCD 为菱形,且60DAB ∠=, //EF 平面ABCD , 22EA ED AB EF ====, M 为BC 中点.求证: //FM 平面BDE .【二】“垂直关系”常见证明方法 2.1直线与直线垂直的证明2.1.1 利用某些平面图形的特性:如直角三角形的两条直角边互相垂直,等边、等腰三角形(中线即高线),正方形、矩形邻边垂直,正方形菱形对角线垂直等。
二、直线、平面平行的判定及其性质
判定定理:
◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
注意还有定义可以直接证明。
性质定理:
◆一条直线与一个平面平行,则过该直线的任一个平面且与此平面相交的交线与该直线平行。
◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。
直线与平面的判定及其性质注意事项:
线面平行的判定定理中,包含要素:两线一面. 两线一面的关系是:一线在面外一线在面内. 结论是:线面平行.
线面平行的性质定理中,包含要素:两线两面. 两线两面的关系是:一线在一面内平行于另一面,一线是两面的交线. 结论是:两线平行.
典型例题:
【例1】已知空间四边形ABCD 中,,E F 分别是,AB AD 的中点,求证://EF BCD 平面.
点评:要证明线面平行,就要运用已有知识先证明线线平行.
【例2】已知直线a ∥直线b ,直线a ∥平面α,b α, 求证:b ∥平面α.
点评:在平面几何中作辅助线是解决问题的重要途径之一,在空间几何中作辅助线、辅助面
是观察和解决问题的重要手段.
【例3】已知直线a ∥平面α,直线a ∥平面β,平面α
平面β=b ,求证//a b .
点评:作辅助线、辅助面是构造法证明问题的主要体现.
【例4】如下图,两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB 且AM =FN ,求证:MN ∥平面BCE .
点评:证明直线和平面的平行通常采用“线线”平行,利用直线和平面平行的判定定理,证
得“线面”平行.
【例5】如下图,设a 、b 是异面直线,AB 是a 、b 的公垂线,过AB 的中点O 作平面α与a 、b 分别平行,M 、N 分别是a 、b 上的任意两点,MN 与α交于点P ,求证:P 是MN 的中点.
点评:本题重点考查直线与平面平行的性质.
应用直线与平面平行的判定及性质证明问题,不但需要平面几何的知识作基础,更需要解决问
E
C
题和处理问题的方法,这需要在学习中善于思考、善于总结和积累,由量变到质变,当积累达到一定的程度,就会升华。
【例6】求证:如果过平面内一点的直线平行于与此平面平行的一条直线,那么这条直线在此平面内.(一句话证明题)
a b.
【例7】已知直线a∥平面α,直线a∥平面β,平面α平面β=b,求证//
分析:利用公理4,寻求一条直线分别与a,b均平行,从而达到a∥b的目的.可借用已知条件中的a∥α及a∥β来实现.
证明:经过a作两个平面γ和δ,与平面α和β分别相交于直线c和d,
∵a∥平面α,a∥平面β,Array∴a∥c,a∥d,∴c∥d,
又∵d⊂平面β,c∉平面β,
∴c∥平面β,
又c⊂平面α,平面α∩平面β=b,
∴c∥b,又∵a∥c,
所以,a∥b.
【例8】如图:E、H分别是空间四边形ABCD的边AB、AD的中点,平面α过EH分别交BC、CD于F、
G。
三、直线、平面垂直的判定及其性质
判定定理:
◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。
◆一个平面过另一个平面的垂线,则两个平面垂直。
性质定理:
◆垂直于同一个平面的两条直线平行。
◆垂线垂直与平面内任意一条直线。
◆两个平面垂直,则一个平面内垂直于相交线的直线与另一个平面垂直。
空间中的平行关系和垂直关系在一定条件下互相转化,如垂直于同一个平面的两条直线平行等等。
1、两个平面的位置关系,与平面内两条直线的位置关系相类似,可以从有无公共点来区分。
因此,空间不重合的两个平面的位置关系有:
(1)平行---没有公共点;
(2)相交---有无数个公共点,且这些公共点的集合是一条直线。
注意:在作图中,要表示两个平面平行时,应把表示这两个平面的平行四边形画成对应边平行。
2、两个平面平行的判定定理表述为:
4. 两个平面平行具有如下性质:
(1)两个平行平面中,一个平面内的直线必平行于另一个平面。
简述为:“若面面平行,则线面平行”。
(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
简述为:“若面面平行,则线线平行”。
(3)如果两个平行平面中一个垂直于一条直线,那么另一个也与这条直线垂直。
(4) 夹在两个平行平面间的平行线段相等。
5. 证明两个平面平行的方法有:
(1)根据定义。
证明两个平面没有公共点。
由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明。
(2)根据判定定理。
证明一个平面内有两条相交直线都与另一个平面平行。
(3)根据“垂直于同一条直线的两个平面平行”,证明两个平面都与同一条直线垂直。
6. 两个平行平面的判定定理与性质定理不仅都与直线和平面的平行有逻辑关系,而且也和直线与直线的平行有密切联系。
就是说,一方面,平面与平面的平行要用线面、线线的平行来判定;另一方面,平面与平面平行的性质定理又可看作平行线的判定定理。
这样,在一定条件下,线线平行、线面平行、面面平行就可以互相转化。
7. 两个平行平面有无数条公垂线,它们都是互相平行的直线。
夹在两个平行平面之间的公垂线段相等。
因此公垂线段的长度是唯一的,把这公垂线段的长度叫作两个平行平面间的距离。
显然这个距离也等于其中一个平面上任意一点到另一个平面的垂线段的长度。
两条异面直线的距离、平行于平面的直线和平面的距离、两个平行平面间的距离,都归结为两点之间的距离。
典型例题:
【例1】如图2-23:已知正方体ABCD -A 1B 1C 1D 1,求证:平面AB 1D 1//平面BDC 1。
点评:证面面平行,通常转化为证线面平行,而证线面平行又转化为证线线平行,所以关键是证线线平行。
【例2】如图2-24:B 为∆ACD 所在平面外一点,M 、N 、G 分别为∆ABC 、∆ABD 、∆BCD 的重心, (1)求证:平面MNG//平面ACD ; (2)求AD C MNG S S ∆∆:
A
B
D P
H F M G
N A 1
A
B
C D B 1
C 1
D 1
图2-23
点评:立体几何问题,一般都是化成平面几何问题,所以要重视平面几何。
比如重心定理,三角形的三边中线交点叫做三角形有重心,到顶点的距离等于它到对边中点距离的2倍。
【例3】如图:在正方体ABCD -EFGH 中,求证:平面AFH//平面BDG 。
【例4】如图:在正方体ABCD -EFGH 中,M 、N 、P 、Q 、R 、S 分别是AE 、EH 、EF 、CG 、BC 、CD 的中点,求证:平面MNP//平面QRS 。
【例5】如图,正四棱锥S —ABCD 的底面边长为a ,侧棱长为2a ,点P 、Q 分别在BD 和SC 上,并且BP ∶PD =1∶2,PQ ∥平面SAD ,求线段PQ 的长.
评析:本题的关键是运用面面平行的判定和性质,结合平行线截比例线段定理,最后由余弦定理求
B
C
D
E
F
G
H
A B
C
D
E F G H
图2-26
R
Q S M
N
P
得结果,综合性较强.
【例6】已知:如图,α∥β,异面直线AB 、CD 和平面α、β分别交于A 、B 、C 、D 四点,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,求证:(1)E 、F 、G 、H 共面;(2)面EFGH ∥平面α.
【例7】如图,已知正方体ABCD —A 1B 1C 1D 1,求证:(1)平面AB 1D 1∥平面C 1BD ;(2)对角线A 1C 被平面AB 1D 1和平面C 1BD 三等分.
评析:论证A 1C 被两平行平面三等分,关键是求A 1到平面AB 1D 1的距离,C 到平面C 1BD 的距离,这里用三棱锥体积的代换,若不用体积代换,则可以在平面A 1ACC 1中去考虑:
连A 1C 1,设A 1C 1∩B 1D 1=O 1,AC ∩BD =0,如图连AO 1,C 1O ,AC 1,设AC 1∩A 1C =K.A 1C ∩AO 1=M ,C 1O ∩A 1C =N.可证M 为ΔA 1AC 1的重心,N 为ΔACC 1的重心,则可推知MN =NC =A 1M. 另外值得说明的是:A 1C 是面AB 1D 1和面BC 1D 的公垂线. 异面直线AD 1和C 1D 的距离也等于MN.
【例8】如图,已知直线a ∥平面α;求证:过a 有且只有一个平面平行于α.
【例9】经过平面外一点只有一个平面和已知平面平行.
已知:Aα,A∈β,β∥α
求证:β是唯一的.
【例10】一条直线和两个平行平面相交,求证:它和两个平面所成的角相等.
已知:α∥β,直线a分别与α和β相交于点A和A′.
求证:a与α所成的角与a与β所成的角相等.
【例11】a和b是两条异面直线,求证:过a且平行b的平面必平行于过b且平行于a的平面. 已知:a,b是异面直线,a⊂α,b⊂β,a∥β,b∥α.
求证:α∥β.。