第九讲、三角函数2——同角三角函数的基本关系 [讲义]
- 格式:doc
- 大小:94.00 KB
- 文档页数:2
同角三角函数基本关系【学习目标】1.借助单位圆,理解同角三角函数的基本关系式: αααααtan cos sin ,1cos sin 22==+,掌握已知一个角的三角函数值求其他三角函数值的方法;2.会运用同角三角函数之间的关系求三角函数值、化简三角式或证明三角恒等式。
【要点梳理】要点一:同角三角函数的基本关系式(1)平方关系:22sin cos 1αα+= (2)商数关系:sin tan cos ααα= (3)倒数关系:tan cot 1⋅=αα,sin csc 1αα⋅=,cos sec 1αα⋅= 要点诠释:(1)这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(使得函数有意义的前提下)关系式都成立;(2)2sin α是2(sin )α的简写;(3)在应用平方关系时,常用到平方根,算术平方根和绝对值的概念,应注意“±”的选取。
要点二:同角三角函数基本关系式的变形1.平方关系式的变形: 2222sin 1cos cos 1sin αααα=-=-,,212sin cos (sin cos )αααα±⋅=±2.商数关系式的变形sin sin cos tan cos tan αααααα=⋅=,。
【典型例题】 类型一:已知某个三角函数值求其余的三角函数值例1.已知tan α=-2,求sin α,cos α的值。
【思路点拨】先利用sin "tan 2"cos ααα==-,求出sin α=-2cos α,然后结合sin 2α+cos 2α=1,求出sin α,cos α。
【解析】 解法一:∵tan α=-2,∴sin α=-2cos α。
①又sin 2α+cos 2α=1, ②由①②消去sin α得(-2cos α)2+cos 2α=1,即21cos 5α=。
当α为第二象限角时,cos α=,代入①得sin α=。
当α为第四象限角时,cos 5α=,代入①得sin 5α=-。