广东省揭阳市普宁市2015-2016学年八年级(下)期末数学试卷(解析版)
- 格式:doc
- 大小:267.00 KB
- 文档页数:16
2015-2016学年第二学期期末八年级数学答案 第1页(共2页)2015—2016学年第二学期期末考试八年级数学试题参考答案及评分标准二、填空题(每小题2分,共10分)16.> 17.100 18.x >1 19.15° 或105° (只填一个答案不能得分) 20.241cm n (无单位不能得分) 三、解答题(本大题共6个小题;共60分) 21.(本题满分12分,每小题3分)(1)12 (2)2 (3)0 (4)ab 2-(以上四个小题,如果结果不正确便不能得分) 22.(本题满分8分)(1)证明:∵四边形ABCD是正方形 ∴AD ∥BC∴∠E=∠DAE---------------------------------------------------2分 ∵AC=EC∴∠E=∠CAE -------------------------------------------------4分 ∴∠DAE =∠CAE即AE 平分∠CAD --------------------------------------------5分 (2)解: ∵正方形ABCD 是正方形且边长为1 ∴∠B=90° AB=BC=1 ∴ EC =AC==--------------------------------7分∴BE=1+∴△ABE 的面积是(1+) ---------------------------8分(其他做法参照此评分标准酌情给分) 23. (本题满分10分) 解:(1)10 ----------------------------------------------------------2分 (2)∵A (1,0),B (9,0),AD=6.∴D (1,6). 将B ,D 两点坐标代入y=kx+b 中, 得, ----------------------------------------4分解得 ,---------------------------------------------6分∴. ----------------------------------8分(3)或.----------------------10分(只答对一个给1分)(第22题图)(第23题图)2015-2016学年第二学期期末八年级数学答案 第2页(共2页)24、(本小题满分10分) 解:(1)甲厂的平均数=(7+8+9+9+9+11+13+14+16+17+19)÷11=12,∴甲厂的广告利用了统计中的平均数;---------------------------------------------------------2分 由于乙厂数据中12出现3次,是众数,故乙厂的广告利用了统计中的众数;------4分 丙厂数据中的中位数是12,故丙厂的广告利用了统计中的中位数;-------------------6分(2)选用甲厂的产品.因为它的平均数较真实地反映灯管的使用寿命.----------10分(如果考生回答选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月,可得满分;如果只回答选用乙厂的产品,有适当理由也不扣分,如果没有适当理由则扣1--2分。
心;於•';£•• •・・■ A ■* | f ■住嘯阳区2015~2016学年度第二学期八年级期末质量监测数学试题■• •说明:'■■;;.1、金卷分为第一卷和第二卷,满分120分。
考试时间为10()分钟。
2、蓉第一卷前,考生必须将■蛀名、学校、座号、考试科目用铅笔涂写在鉴题卡上;答第二卷■前, 考生须将自己的学校、班级、姓名、座号填写在密封线内指定位置上。
3、第一卷使用签题卡答題,考生必须用规定的铅笔将签题卡上对庄小題所选的选项涂黑,4、第二卷答趣可用黑色或蓝色钢笔、间珠笔、第字笔,按各题要求答在试卷上,但不能用铅笔或红笔°^ ^第一卷(选择题,30分)一、:选择题(本大题10小题,每小题3分,共30分)1;下列图形具有稳定性的是()A.菱形B.矩形C.三角形D.正方形2•点PC2, 1)关于y轴对称的点的坐标是()•• •• A. (2 -1) B. (2, 1) C. (2, -1) D. C-2f 1)苑二为了考察甲、乙两种小麦的长势,分别从中抽出20株小麦测其高度,计算得到它们高度的平均数是相等的,方差分别是黔产3.6、先习5.8,则小麦的长势比较整齐的是(::;.!.厂...i . ・.菩£':;]•• •[辰甲]•- C.甲、乙一样-D无法比较:、'C. (-3/) =27/ D ©)"之叫I、5. 如图所沆£7ABCD的对角线AC、BD相交于点6点E是CD的中点,若BC=6,则OE的长为()A. 2B. .2,5 C, 3 D. 4宀个尊腰工角形的两边长分别为2和5,则它的卿长为()"I A>7 B.9 C< 12 D.9 或12 〔鏘5题)tifci Q<聂+1,几才»则a、昭次小关系是(IL a-b C a<b2 a>bM ♦)KM約“腳買)尢法确矩.・ y,■八年做学试鞠第2頁(決*頁)8・卜列*图象小,能反映y 是兀的函数的图象是()9.对于一•次函数y = -2x4-4 ,下列结论箱哮的是()A. 函数值随自变肚的增大而减少B. 函数的图象不经过第三象限’■C. 函数的图象向下平移4个单位长度得y = -2x 的图象D. 函数的图象与x 轴的交点坐标是(0,4)10.如图所示,在正方形ABCD 的外侧,作等边ZSADE, AC 、BE A. 75° B. 60° C. 55° D. 45°相交于点F,则(第10题)潮阳区2015〜2016学年度第二学期八年级期末质量监测数学试题题号• ■二三------------ ------ —*----------- 1 四- -- - --—SL 〜屯、兮i 17181920210 32425得分-■ 【第二卷(非选择题,共90分)二、填空题(本大题6小题,毎小题4分,共24分)11. 使式子有意义的x取值范围是_______________ '__12. —组数据10、. 8、9、x、5的众数是8,则这组数据的平均数是一13. 如图所示,已知一次函数y = 2x + b的图象与x轴的交点坐标为(-2, 0).则不等式2x+b>0的解集为________________________14. 如图所示,以RtAABC的直角边BC为直径向外作半圆,则该半瓯的面积为 ______________(第16JK)15、如图所示,用灰、白两色的正方形瓷砖按一定的规律铺设地面,则第6个图家中白色迓砖的块数为_________________a■1个16、如图所示,四边形ABCD是矩形,过点D作对角线BD的垂线,交BC.的延K线于点E・取BE的中点F,连接DF, DF=5。
2016--2017学年度学年教学质量检查八年级数学试卷一、选择题(每小题3分,共30分,请把正确选项填在相应题号下的空格里) 1. 不等式x-3>0的解集是( )A. x >-3B. x <-3C. x >3D. x <3 2. 使分式x-22有意义的条件是( ) A. x ≠2 B. x ≠-2 C. x >2 D. x <2 3. 下列各式中,能用平方差公式分解因式的是( ) A. x 2+y 2 B. x 2-y 2 C. -x 2-y 2 D. x-y 2 4. 下列变形中,正确的是( )A. a a 11-=-B. b a b a +=+111C.a b a b 2222=D. baab b ab a =++5. 计算yx xyy x y x -÷-2的结果是( ) A.x 1B.yx C.y D.x 6.下列图形是中心对称图形,但不是轴对称图形的是()7.如图,四边形ABCD 中,对角线AC 、BD 相交于点O , 下列条件不能判定这个四边形是平行四边形的是( )A. AB ∥DC, AD ∥BC.B. AB ∥DC, AD=BCC. AO=CO,BO=DOD.AB=DC,AD=BCBODCA8.正八边形的每一个内角的度数为:( )A.450B.600C.1200D. 13509.如图,Rt △ABC 中,∠C=900,AB 的垂直平分线DE 交AC 于点E , 连接BE ,若∠A=400,则∠CBE 的度数为( ) A. 100 B.150 C.200 D.25010.如图,平行四边形ABCD 中,E 是AB 上一点,DE 、CE 分别是∠ADC 、∠BCD 的平分线,若AD=5,DE=6,则平行四边形的面积为( )A.96B.48C. 60D. 30二、填空题(每小题3分,共18分) 11.分解因式x 2-8x+16= .12.如图,已知△ABC 中,AB=AC ,AD 平分∠BAC,E 是AB 的中点,若AC=6,则DE 的长为 .13.不等式组⎪⎩⎪⎨⎧〉-〉026121x x 的解集是 .14.化简=-∙+-212422a a a a .15.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,BD ⊥AD ,AD=6,AB=10,则△AOB 的面积为 .16.如图,在△ABC 中,AC=BC=2,∠C=900,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,AD 的垂直平分线交AB 于点F ,则DF 的长为 . 三、解答题(每小题5分,共15分)座位号E ADCBB CD EA FEBCGDA DABCEOBCD A17.分解因式: 4x 2-418.解不等式组:⎪⎩⎪⎨⎧+〈-+≤12122x x x x ,并把它的解集在数轴上表示出来。
2015~2016学年第二学期初二数学期末复习综合试卷(2)命题:汤志良;审核:杨志刚;试卷分值130;知识涵盖:八下全部内容;一、选择题(本题共10小题,每小题3分,共30分)1.(2015•通辽)下列调查适合抽样调查的是…………………………………………()A.审核书稿中的错别字; B.对某社区的卫生死角进行调查;C.对八名同学的身高情况进行调查; D.对中学生目前的睡眠情况进行调查;2. 已知一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别为2、8、15、20、5,则第四组的频率为…………………………………………………()A.0.1; B.0.2; C.0.3;D.0.4;3.下列根式中,最简二次根式是………………………………………………………()A.; B.; C.; D.;4.如图,函数与,在同一坐标系中的大致图象是………………()5.若把分式(x,y为正数)中的x,y分别扩大为原来的3倍,则分式的值是……()A.扩大为原来的3倍;B.缩小为原来的3倍;C.扩大为原来的9倍;D.不变;6. (2014•吉林)如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为………………………()A.1; B.2; C.3; D.;7.如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48°,则∠APD等于……………………………………………()A. B. C. D.第6题图第7题图第8题图8.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合)且PE ∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是……………………()A. B.2; C.3 D.;9.已知四边形ABCD,则下列说法中正确的是…………………………………()A.若AB∥CD,AB=CD,则四边形ABCD是平行四边形;B.若AC⊥BD,AC=BD,则四边形ABCD是矩形;C.若AC⊥BD,AB=AD,CB=CD则四边形ABCD是菱形;D.若AB=BC=CD=AD,则四边形ABCD是正方形;10.(2013•东营模拟)如图,已知点A在反比例函数的图象上,点B,C分别在反比例函数的图象上,且AB∥x轴,AC∥y轴,若AB=2AC,则点A的坐标为……()A.(1,2); B.(2,1);C.;D.;二、填空题:(本题共8小题,每小题3分,共24分)11.事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是 .12.如图,平行四边形ABCD的对角线相交于点O,两条对角线的和为18,AD的长为5,则△OBC的周长为.13.当= 时,关于的方程有增根.14.如图,在菱形ABCD中,对角线AC=6,BD=8,若过点A作AE⊥BC,垂足为E,则AE的长为.15.若,则的值等于 .16.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为.17.(2015•泰州)点(a-1,)、(a+1,)在反比例函数(k>0)的图象上,若<,则a的范围是.第12题图第14题图第18题图第16题图第10题图运动过程中,存在PE+PF的最小值,则这个最小值是.三、解答题:(本题共10大题,共76分)19.计算或化简:(本题满分15分)(1);(2);(3);20. (本题满分5分)化简求值:,其中,;21. (本题满分5分)解方程:;22. (本题满分6分)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= ;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?23. (本题满分8分)(1)已知,,求的值.(2)已知,求的值.24.(本题满分6分)(2015•扬州)扬州建城2500年之际,为了继续美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?25(本题满分6分)如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF(2)连接AC交EF于点D,延长OC至点M,使OM=OA,连结EM、FM,试证明四边形AEMF是菱形.26.(本题满分7分)(2013•十堰)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,-2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.27.(本题满分8分)如图,把一块等腰直角三角板ABC放在平面直角坐标系的第二象限内,若∠A=90°,AB=AC,且A、B两点的坐标分别为(-4,0)、(0,2).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移m个单位长度至第一象限内的△DEF位置,若B、C两点的对应点E、F 都在反比例函数的图象上,求m、k的值和直线EF的解析式;(3)在(2)的条件下,直线EF交y轴于点G,问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMF是平行四边形?若存在,求出点M和点P的坐标;若不存在,请说明理由.28.(本题满分10分)如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM= ,AP= .(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC= .参考答案一、选择题:1.D;2.D;3.B;4.D;5.A;6.C;7.B;8.A;9.A;10.B;二、填空题:11.5;12.14;13.-6;14.4.8;15.;16.;17.;18.5;三、解答题:19.(1);(2);(3)1;20. ;21. ;22.(1)20;(2)1150;(3);23.(1);(2);24.100;25.略;26.(1);(2)或;(3)四边形OABC是菱形.证明:∵A(-1,-2),∴OA=,∵由题意知:CB∥OA且CB=,∴CB=OA,∴四边形OABC是平行四边形.∵C(2,n)在上,∴n=1,∴C(2,1),OC=,∴OC=OA,∴四边形OABC是菱形.27.(1)(-6,4);(2)∵△ABC沿x轴的正方向平移m个单位长度至第一象限内的△DEF位置,∴D(-4+m),E(m,2),F(-6+m,4),∵点E、F都在反比例函数的图象上,∴2•m=4(-6+m),解得m=12,∴E点坐标为(12,2),F点的坐标为(6,4),∴k=12×2=24,∴反比例函数的解析式为,设直线EF的解析式为y=px+q,把E(12,2),F(6,4)代入得,解得,∴直线EF的解析式为;(3)∵当x=0时,=6,∴G点坐标为(0,6),∵四边形PGMF为平行四边形,∴N点为GF为中点,∴N点坐标为(3,5),设M点坐标为(x,0),∵N点为MP为中点,∴P点坐标为(6-x,10),∵P(6-x,10)在反比例函数图象上,∴10(6-x)=24,解得x=,∴M点坐标为(,0),P;28.(1);;(2)(2)∵四边形ANCP为平行四边形时,CN=AP,∴6-t=8-(6-t),解得t=2,(3)①存在时刻t=1,使四边形AQMK为菱形.理由如下:∵NP⊥AD,QP=PK,∴当PM=PA时有四边形AQMK为菱形,∴6-t-2t=8-(6-t),解得t=1,②要使四边形AQMK为正方形.∵∠ADC=90°,∴∠CAD=45°.∴四边形AQMK为正方形,则CD=AD,∵AD=8,∴CD=8,∴AC=.。
2015—2016学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.)1x 的取值范围是 A.3x 2≥ B. 3x 2> C. 2x 3≥ D. 2x 3> 2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是A.平行四边形B. 菱形C.正方形D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是A .1.65米是该班学生身高的平均水平B .班上比小华高的学生人数不会超过25人C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米 10.如图,已知ABCD 的面积为48,E 为AB连接DE ,则△ODE 的面积为 第4题图第10题图 B DA.8B.6C.4D.3二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。
2019-2020学年广东揭阳市普宁市八年级第二学期期末数学试卷一、选择题(共10小题).1.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.2.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)3.不等式﹣2x+6>0的解集在数轴上表示正确的是()A.B.C.D.4.如图,在△ABC中,AB=3,BC=6,AC=4,点D,E分别是边AB,CB的中点,那么DE的长为()A.1.5B.2C.3D.45.如图是“一带一路”示意图,若记北京为A地,莫斯科为B地,雅典为C地,分别连接AB、AC、BC,形成一个三角形.若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在()A.△ABC三条中线的交点处B.△ABC三条高所在直线的交点处C.△ABC三条角平分线的交点处D.△ABC三边的垂直平分线的交点处6.如图,▱ABCD中,点O为对角线AC、BD的交点,下列结论错误的是()A.AC=BD B.AB∥DC C.BO=DO D.∠ABC=∠CDA 7.对于实数a、b、c中,给出下列命题:①若a<b,则a﹣c<b﹣c;②若ab>c,则a>;③若﹣3a>2a,则a<0;④若a>b,则ac2>bc2.其中真命题有()A.①②B.①③C.②④D.③④8.下列各分式中,最简分式是()A.B.C.D.9.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.510.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.3B.+C.+2D.2+二、填空题(共7小题.)11.分解因式:2x3﹣18x=.12.分式方程+=1的解为.13.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于度.14.用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设.15.如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x ≤ax+3的解集是.17.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为.三、解答题(一)(本大题3小题,每小题6分,共18分.)18.解不等式组,并把解集在数轴上表示出来.19.先化简,再求值:•﹣(+1),其中x=﹣6.20.在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线交AB于D,交BC于E,求证:BE=CE.四、解答题(二)(本大题3小题,每小题8分,共24分.)21.已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.22.某学习平台为提高学生的积极性,推出学习积分,所得积分可兑换礼品.某品牌的圆珠笔每支需要40积分,笔芯每支需要10积分.现积分超市推出以下两种活动:活动一:按兑换物品所需的积分打八折扣积分;活动二:兑换一支圆珠笔送两支笔芯.王叔叔有1000积分,想兑换这种圆珠笔10支,笔芯x支(x≥20).(1)请你分别写出活动一、活动二兑换所需的积分y1,y2与笔芯x(支)之间的函数关系式;(2)若只能选择一种兑换活动,请你帮助王叔叔判断选择哪种活动更优惠.23.如图,等边△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求∠F的度数.五、解答题(三)(本大题2小题,每小题10分,共20分.)24.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩每个进货价格比第一批贵2元,购进的数量是第一批的3倍.(1)第一批口罩进货单价多少元?(2)若这两次购进防护口罩过程中所产生其他费用不少于600元,那么该超市这两批防护口罩的平均购进单价至少为多少元?25.将▱OABC放在平面直角坐标系中,O为原点,点C(﹣6,0),点A在第一象限,OA =2,∠A=60°,AB与y轴交于点N.(1)如图①,求点A的坐标;(2)如图②,将平行四边形OABC绕点O逆时针旋转得到平行四边形OA′B′C',当点A的对应点A′落在y轴正半轴上时,求旋转角及点B的对应点B′的坐标;(3)将平行四边形OABC绕点A旋转得到平行四边形DAEF,使点B的对应点E落在直线OA上,请在图③中画出旋转后的图形,并直接写出OE、AB、BC之间的关系.参考答案一、选择题(本大题共10小题,每小题3分,共30分.)1.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解:A、是中心对称图形,也是轴对称图形,不符合题意;B、不是中心对称图形,是轴对称图形,不符合题意;C、是中心对称图形,不是轴对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选:C.2.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)【分析】根据因式分解的意义:把一个多项式化成几个整式积的形式,左边是一个多项式,右边是整式的积的形式,进行判断即可.解:根据因式分解的意义:把一个多项式化成几个整式积的形式,A、右边不是积的形式,故本选项错误;B、右边最后不是积的形式,故本选项错误;C、右边是(a﹣2b)(a﹣2b),故本选项正确;D、结果是a(x+y+1),故本选项错误.故选:C.3.不等式﹣2x+6>0的解集在数轴上表示正确的是()A.B.C.D.【分析】不等式﹣2x+6>0的解集是x<3,小于应向左画,且不包括3时,应用空心圆表示,不能用实心的原点表示3这一点,据此可求得不等式的解以及解集再数轴上的表示.解:不等式移项,得﹣2x>﹣6,系数化1,得x<3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案;故选:B.4.如图,在△ABC中,AB=3,BC=6,AC=4,点D,E分别是边AB,CB的中点,那么DE的长为()A.1.5B.2C.3D.4【分析】根据三角形中位线定理解答即可.解:∵点D,E分别是边AB,CB的中点,∴DE=AC=2,故选:B.5.如图是“一带一路”示意图,若记北京为A地,莫斯科为B地,雅典为C地,分别连接AB、AC、BC,形成一个三角形.若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在()A.△ABC三条中线的交点处B.△ABC三条高所在直线的交点处C.△ABC三条角平分线的交点处D.△ABC三边的垂直平分线的交点处【分析】根据题意和线段垂直平分线的性质,可以解答本题.解:∵到A、B、C三地的距离相等,∴中转仓的位置应选在△ABC三边的垂直平分线的交点处,故选:D.6.如图,▱ABCD中,点O为对角线AC、BD的交点,下列结论错误的是()A.AC=BD B.AB∥DC C.BO=DO D.∠ABC=∠CDA 【分析】根据平行四边形的性质即可判断.解:∵四边形ABCD是平行四边形,∴AB∥CD,OB=OD,∠ABC=∠ADC,∴B、C、D正确,故选:A.7.对于实数a、b、c中,给出下列命题:①若a<b,则a﹣c<b﹣c;②若ab>c,则a>;③若﹣3a>2a,则a<0;④若a>b,则ac2>bc2.其中真命题有()A.①②B.①③C.②④D.③④【分析】根据不等式的性质对各命题的真假进行判断.解:若a<b,则a﹣c<b﹣c,所以①为真命题;若ab>c,当b>0时,则a>,所以②为假命题;若﹣3a>2a,则a<0,所以③为真命题;若a>b,当c≠0时,则ac2>bc2.所以④为假命题.故选:B.8.下列各分式中,最简分式是()A.B.C.D.【分析】最简分式是指分子和分母没有公因式.解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选:C.9.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.5【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选:A.10.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.3B.+C.+2D.2+【分析】如图.过点D作DF⊥AC于F.首先证明DE=DF=1,解直角三角形分别求出BD,DC即可解决问题.解:如图.过点D作DF⊥AC于F.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=1,在Rt△BED中,∵∠BED=90°,∠B=30°,∴BD=2DE=2,在Rt△DFC中,∵∠DFC=90°,∠C=45°,∴CD=DF=,∴BC=BD+CD=2+,故选:D.二、填空题(本大题共7小题,每小题4分,共28分.)11.分解因式:2x3﹣18x=2x(x+3)(x﹣3).【分析】先提取公因式2x,再对余下的多项式利用平方差公式继续分解.解:原式=2x(x2﹣9)=2x(x+3)(x﹣3),故答案为:2x(x+3)(x﹣3).12.分式方程+=1的解为x=1.【分析】根据解分式方程的步骤,即可解答.解:方程两边都乘以x﹣2,得:3﹣2x﹣2=x﹣2,解得:x=1,检验:当x=1时,x﹣2=1﹣2=﹣1≠0,所以分式方程的解为x=1,故答案为:x=1.13.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于1800度.【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.解:多边形的边数:360°÷30°=12,正多边形的内角和:(12﹣2)•180°=1800°.14.用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设三角形的三个内角都小于60°.【分析】熟记反证法的步骤,直接填空即可.解:用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设三角形的三个内角都小于60°.15.如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=.【分析】重叠部分为等腰直角三角形,设B1C=2x,则B1C边上的高为x,根据重叠部分的面积列方程求x,再求BB1.解:设B1C=2x,根据等腰三角形的性质可知,重叠部分为等腰直角三角形,则B1C边上的高为x,∴×x×2x=2,解得x=(舍去负值),∴B1C=2,∴BB1=BC﹣B1C=.故答案为.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x ≤ax+3的解集是x≥﹣1.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x≤ax+3的解集即可.解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x<ax+3的解集为x≥﹣1.故答案为:x≥﹣1.17.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为(8076,0).【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2020除以3,根据商为673余数为1,可知第20,20个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2020÷3=673…1,∴△2020的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).三、解答题(一)(本大题3小题,每小题6分,共18分.)18.解不等式组,并把解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并把解集在数轴上表示出来即可.解:,由①得x≤1,由②得x>﹣2,故不等式组的就为﹣2<x≤1.把解集在数轴上表示出来为:19.先化简,再求值:•﹣(+1),其中x=﹣6.【分析】根据分式的加减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.解:•﹣(+1)===,当x=﹣6时,原式==.20.在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线交AB于D,交BC于E,求证:BE=CE.【分析】先根据等腰三角形性质和三角形内角和定理求出∠B=∠C=30°,根据线段垂直平分线性质和等腰三角形性质求出∠BAD=30°,根据含30度角的直角三角形性质解答即可.【解答】证明:∵AB=AC,∠BAC=120°∴∠B=∠C=30°,又∵DE垂直平分AB∴EA=EB∴∠EAB=∠B=30°∴∠CAE=120°﹣30°=90°,∴在Rt△AEC中∵∠C=30°,∴AE=CE∴BE=CE.四、解答题(二)(本大题3小题,每小题8分,共24分.)21.已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.【分析】(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠4.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠4,据此可得出结论.解:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.22.某学习平台为提高学生的积极性,推出学习积分,所得积分可兑换礼品.某品牌的圆珠笔每支需要40积分,笔芯每支需要10积分.现积分超市推出以下两种活动:活动一:按兑换物品所需的积分打八折扣积分;活动二:兑换一支圆珠笔送两支笔芯.王叔叔有1000积分,想兑换这种圆珠笔10支,笔芯x支(x≥20).(1)请你分别写出活动一、活动二兑换所需的积分y1,y2与笔芯x(支)之间的函数关系式;(2)若只能选择一种兑换活动,请你帮助王叔叔判断选择哪种活动更优惠.【分析】(1)根据题意可以得到两种活动下兑换所需的积分y1,y2与笔芯x(支)之间的函数关系式;(2)再利用分类讨论的方法即可得到王叔叔选择哪种活动更优惠.解:由题意可得,y1=(40×10+10x)×0.8=8x+320,y2=40×10+10(x﹣10×2)=10x+200;(2)当y1=y2时,8x+320=10x+200,得x=60,当y1<y2时,8x+320<10x+200,得x>60,当y1>y2时,8x+320>10x+200,得x<60,当y1=1000时,8x+320=1000,得x=85,当y2=1000时,10x+200=1000,得x=80,∴当x=60时,选择活动一和活动二一样优惠,当60<x≤85时,选择活动一更优惠,当20≤x<60时,选择活动二更优惠.23.如图,等边△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求∠F的度数.【分析】(1)直接利用三角形中位线定理得出四边形DCFE是平行四边形即可;(2)由平行四边形的性质得出CD∥FE,则∠F=∠BCD,由等边三角形的性质得出∠BCD=30°,即可得出∠F=30°.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∵CF=BC,∴DE=CF,∵DE∥CF,∴四边形DCFE是平行四边形,(2)解:由(1)得:四边形DCFE是平行四边形,∴CD∥FE,∴∠F=∠BCD,∵△ABC是等边三角形,D是AB的中点,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=30°,∴∠F=30°.五、解答题(三)(本大题2小题,每小题10分,共20分.)24.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩每个进货价格比第一批贵2元,购进的数量是第一批的3倍.(1)第一批口罩进货单价多少元?(2)若这两次购进防护口罩过程中所产生其他费用不少于600元,那么该超市这两批防护口罩的平均购进单价至少为多少元?【分析】(1)设第一批口罩进货单价为x元,则第二批口罩进货单价为(x+2)元,根据数量=总价÷单价结合第二批购进的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可求出第一批购进的数量,结合第二批购进的数量是第一批的3倍可求出第二批购进的数量,设该超市这两批防护口罩的平均购进单价为y元,根据总价=单价×数量结合这两次购进防护口罩过程中所产生其他费用不少于600元,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.解:(1)设第一批口罩进货单价为x元,则第二批口罩进货单价为(x+2)元,依题意,得:=3×,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批口罩进货单价为8元.(2)第一批购进数量为1600÷8=200(个),第二批购进数量为200×3=600(个).设该超市这两批防护口罩的平均购进单价为y元,依题意,得:(200+600)y≥1600+6000+600,解得:y≥10.25.答:该超市这两批防护口罩的平均购进单价至少为10.25元.25.将▱OABC放在平面直角坐标系中,O为原点,点C(﹣6,0),点A在第一象限,OA =2,∠A=60°,AB与y轴交于点N.(1)如图①,求点A的坐标;(2)如图②,将平行四边形OABC绕点O逆时针旋转得到平行四边形OA′B′C',当点A的对应点A′落在y轴正半轴上时,求旋转角及点B的对应点B′的坐标;(3)将平行四边形OABC绕点A旋转得到平行四边形DAEF,使点B的对应点E落在直线OA上,请在图③中画出旋转后的图形,并直接写出OE、AB、BC之间的关系.【分析】(1)利用含30度角的直角三角形的性质求出AN,ON即可得出结论;(2)先求出A'B'=6,∠OA'B'=60°,进而利用含30度角的直角三角形的性质求出B'E,AE即可得出结论;(3)分顺时针旋转和逆时针旋转两种情况,由旋转的性质可求解.解:(1)如图①,在Rt△AON中,∠A=60°,∴∠AON=30°,∵OA=2,∴AN=1,ON=,∴A(1,);(2)如图②,过点B'作B'E⊥y轴于E,∵C(﹣6,0),∴OC=6,∵四边形ABCO是平行四边形,∴AB=OC=6,当点A的对应点A′落在y轴正半轴上时,旋转角为∠AOA'=30°,由旋转知,A'B'=AB=6,OA'=OA=2,∠OA'B=∠A=60°,∴∠A'B'E=30°,∴A'E=3,B'E=3,∴OE=A'E﹣OA'=3﹣2=1,∴B'(﹣3,﹣1);(3)如图3,①当顺时针旋转时,∠BAE=120°,∵将平行四边形OABC绕点A旋转得到平行四边形DAEF,∴AB=AE,∵四边形ABCO是平行四边形,∴BC=OA,∴OE=OA+AE=BC+AB;①当逆时针旋转时,∠BAE'=60°,∵将平行四边形OABC绕点A旋转得到平行四边形DAE'F',∴AB=AE',∵四边形ABCO是平行四边形,∴BC=OA,∴OE=AE'﹣AO=AB﹣BC;综上所述:OE=BC+AB或OE=AB﹣BC.。
八年级数学试题勘误:19题中“AE=CF,求证:BE=DF。
”改为“BE=DF,求证:AE=CF。
”22题“BC=4”改为“BC=6”2017-2018学年度学生素质监测八年级数学参考答案一、选择题。
(每题3分,共30分)1~5 CBBCD 6~10 BDCAC二、填空题(每题4分,共24分)11、 12、6 13、 14、15、52° 16、三、解答题(每题6分,共18分)17、解:解不等式①,得………………1分解不等式②,得………………3分上面两个不等式解集在数轴上可表示为:………………5分所以,该不等式组的解集为…………6分18、解:………………1分………………2分………………3分………………4分检验:将代入原方程,得左边=-3=右边………………5分所以,是原方程的根。
………………6分19、证明:在□ABCD中OA=OC,OB=OD ……………………1分∵AE=CF,∴OE=OF ……………………2分在△BOE和△DOF中,OB=OD,∠BOE=∠DOF(对顶角相等),OE=OF∴△BOE≌△DOF(SAS)………………5分∴BE=DF ………………6分四、解答题(每题7分,共21分)20、解:=………………2分=…………4分=…………5分因为所以所以………………6分所以,原式=…………7分21、解:(1)旋转中心为点A;…………1分在△ABC中,∠CAB=180°-∠B-∠ACB=180°-10°-20°=150°所以旋转的度数为150°。
………………3分(2)∵△ABC旋转后与△ADE重合,∴∠EAD=∠CAB=150°,AE=AC;AD=AB=4 ;……………………4分∴∠BAE=360°-∠EAD-∠CAB=360°-150°-150°=60°………………5分∵点C是AD的中点∴AC=AD=………………6分∴AE=AC=2因此,∠BAE=60°,AE=2 . ………………7分22、(1)如图所示,为所求作的三角形;…………2分(2)直角坐标系如图所示,……………………4分(2)如图所示,为所求作的三角形…………………………6分点的坐标为(1,1)……………7分五、解答题(每题9分,共27分)23、解:(1)=………………2分==……………………4分(2)=……………………6分=………………8分=………………9分24、解:(1)设今年A型车每辆售价为元,则去年A型车每辆售价为元,依题意得………………2分解得…………3分经检验,得是原方程的解。
2016年八年级下册期末考试试卷篇一:2016八年级下册期末试题含答案12015—2016学年第二学期期末八年级数学试卷一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项 1、下列各式中,属于最简二次根式的是()A、B、C、D、2、下列以线段a、b、c的长为边的三角形中,不能构成直角三角形的是 () A、a?9,b?41,c?40B、a?5,b?5,c?52 C、 a:b:c?3:4:5 D、a?11,b?12,c?133、将直线y?2x向下平移一个单位后所得的直线解析式为()A、y?2x?1B、y?2x?2C、y?2x?1D、y?2x?24、甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如右表:某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大。
上述结论正确的是()A、①②③B、①②C、①③D、②③(第5题图)5、如图,在矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( ) A、3B、4 C、5 D、66、如图,把一枚边长为1的正方形印章涂上红色印泥,在4×4的正方形网格纸上盖一下,被盖上印泥的正方形网格个数最多是() A、6B、5 C、4 D、3 二、填空题(本大题共8个小题,每小题3分,共24分)7、计算(2(第6题图)印章11)?(27)?; 338、写出一个图象经过点(-2,0)且函数y随x增大而增大的一次函数解析式;229、已知2<x<5,化简(x?2)?(x?5)?.10、如图,每个小正方形的边长为1.在?ABC中,点D为AB的中点,则线段CD 的长为; 11、如图,直线y?kx?b交坐标轴于A、B两点,则不等式kx?b?0的解集是 12、某商店出售一种瓜子,其售价y(元)与瓜子质量x(千克)之间的关系如下表15、计算:16、若a?17、如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题(1)当行驶8千米时,收费应为元(2)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式。
CBA2015—2016学年第二学期初二期末试卷数 学学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C .6D .74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CDAB CP第13题图第14题图第8题图第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S(单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米10.如右图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则下列图象能大致反映y与x的函数关系的是()二、填空题(本题共18分,每小题3分)11.如图,点D,E分别为△ABC的边AB,BC的中点,若DE=3cm,则AC=cm.12.已知一次函数2()y m x m=++,若y随x的增大而增大,则m的取值范围是.13.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ACD ∽△ABC(只填一个即可).14.如图,在□ABCD中,BC=5,AB=3,BE平分∠ABC交AD于点E,交对角线AC于点F,则AEFCBFSS△△= .DAB CFE DB CAEDAB CSt/平方米/小时16060421ODAFE CB第15题图15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在 BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEFCD A B20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F .(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?y x (元)(度)400120240216B AOEDAFB CEDBAC图1 图225.已知正方形ABCD 中,点M 是边CB (或CB 的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N .(1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————ADB C MADBCM y x1A BHO2015—2016学年第二学期期末试卷 初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分) 题号 123456 7 8 9 10 答案C A B AD BDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分OFE CADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---=Q △(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分 ∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分21FECADByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x =⋯⋯⋯5分即:3CD =∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AB∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2 ⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.640021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.EDBAC25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥ ∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形654321EN AD B CMNADB CMyy = -x+33)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分 260m m +-3=2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1∴232m m m =-+-260m m +-7= 1261m m ==, 经检验,1261m m ==,是方程232m m m=-+-的解 ∵点P (m ,-m +3)在第四象限∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分 综上所述,满足条件的点P 的坐标为P (6,-3).yx y = -x+3E D P (m ,-m +3)O。
2014-2015学年广东省揭阳市揭西县八年级(下)期末数学试卷一、选择题(每小题3分,共30分请把正确选项填在相应题号下的空格里.)1.(3分)因式分解x2﹣9y2的正确结果是()A.(x+9y)(x﹣9y)B.(x+3y)(x﹣3y)C.(x﹣3y)2D.(x﹣9y)2 2.(3分)下列变形不正确的是()A.B.C.D.3.(3分)不等式>1的解集是()A.x>﹣B.x>﹣2 C.x<﹣2 D.x<﹣4.(3分)如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(3分)化简(+)÷的结果是()A.1 B.ab C. D.a+b6.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.(3分)在平行四边形ABCD中,∠BAD=110°,∠ABD=30°,则∠CBD度数为()A.30°B.40°C.70°D.50°8.(3分)一个多边形的内角和与外角和相等,则这个多边形的边数为()A.6 B.5 C.4 D.89.(3分)如图,在三角形ABC中,∠C=90°,AD平分∠BAC交BC于点D,且BD=2CD,BC=7.8cm,则点D到AB的距离为()A.5.2cm B.3.9cm C.2.6cm D.4.8cm10.(3分)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()A.0个 B.1个 C.2个 D.3个二.填空题(每小题4分,共16分)11.(4分)分解因式:x3﹣x=.12.(4分)不等式组的解集是:.13.(4分)计算:=.14.(4分)如图,△ABC中,∠BAC=120°,AB=AC,AD⊥BC,垂足为D,则∠BAD 的度数是.15.(4分)如图,△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,DE⊥AB,垂足为E,则∠ADE的度数是.16.(4分)如图所示,已知点D为等腰直角三角形ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA,则∠DCE的度数是.三.解答题(每小题6分,共18分)17.(6分)分解因式:a3﹣4a2+4a.18.(6分)解不等式组,并把它的解集在数轴上表示出来.19.(6分)先化简,再求值:,其中x=﹣1.四.解答题(每小题7分,共28分)20.(7分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同,求甲、乙工程队每天各能铺设多少米?21.(7分)如图,平行四边形ABCD中,E是AD的中点,连结CE并延长,与BA的延长线交于点F,证明:E是CF的中点.22.(7分)如图,在△ABC中,AD平分∠BAC,BE⊥AD,BE交AD的延长线于点E,点F在AB上,且EF∥AC.求证:点F是AB的中点.23.(7分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB连接EF,证明:△AED≌△AEF.2014-2015学年广东省揭阳市揭西县八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分请把正确选项填在相应题号下的空格里.)1.(3分)因式分解x2﹣9y2的正确结果是()A.(x+9y)(x﹣9y)B.(x+3y)(x﹣3y)C.(x﹣3y)2D.(x﹣9y)2【解答】解:x2﹣9y2=(x+3y)(x﹣3y),故选:B.2.(3分)下列变形不正确的是()A.B.C.D.【解答】解:=(m≠0),A正确;=﹣,B正确;,C正确;=,D错误,故选:D.3.(3分)不等式>1的解集是()A.x>﹣B.x>﹣2 C.x<﹣2 D.x<﹣【解答】解:不等式3x+2≥5得,3x≥3,解得x≥1.故选:C.4.(3分)如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,由①得,x>﹣1,由②得,x≤1,故不等式组的解集为:﹣1<x≤1.在数轴上表示为:.故选:B.5.(3分)化简(+)÷的结果是()A.1 B.ab C. D.a+b【解答】解:(+)÷=•ab=a+b.故选:D.6.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故正确.故选:D.7.(3分)在平行四边形ABCD中,∠BAD=110°,∠ABD=30°,则∠CBD度数为A.30°B.40°C.70°D.50°【解答】解:∵∠BAD=110°,∠ABD=30°,∴∠ADB=180°﹣110°﹣30°=40°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CBD=∠ADB=40°,故选:B.8.(3分)一个多边形的内角和与外角和相等,则这个多边形的边数为()A.6 B.5 C.4 D.8【解答】解:设多边形的边数为n,根据题意(n﹣2)•180°=360°,解得n=4.故选:C.9.(3分)如图,在三角形ABC中,∠C=90°,AD平分∠BAC交BC于点D,且BD=2CD,BC=7.8cm,则点D到AB的距离为()A.5.2cm B.3.9cm C.2.6cm D.4.8cm【解答】解:如图,过点D作DE⊥AB于E,∵BD:DC=2:1,BC=7.8,∴DC=×7.8=2.6,∵AD平分∠BAC,∠C=90°,∴DE=DC=2.6.10.(3分)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()A.0个 B.1个 C.2个 D.3个【解答】解:(1)若P点是∠ABC和∠ACB的角平分线的交点,则∠PBC=∠ABC,∠PCB=∠ACB则∠PBC+∠PCB=(∠ABC+∠ACB)=(180°﹣∠A)在△BCP中利用内角和定理得到:∠P=180﹣(∠PBC+∠PCB)=180﹣(180°﹣∠A)=90°+∠A,故成立;(2)当△ABC是等腰直角三角形,∠A=90°时,结论不成立;(3)若P点是外角∠CBF和∠BCE的角平分线的交点,则∠PBC=∠FBC=(180°﹣∠ABC)=90°﹣∠ABC,∠BCP=∠BCE=90°﹣∠ACB∴∠PBC+∠BCP=180°﹣(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠A∴∠PBC+∠BCP=90°+∠A,在△BCP中利用内角和定理得到:∠P=180﹣(∠PBC+∠PCB)=180﹣(180°+∠A)=90°﹣∠A,故成立.∴说法正确的个数是2个.故选:C.二.填空题(每小题4分,共16分)11.(4分)分解因式:x3﹣x=x(x+1)(x﹣1).【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).12.(4分)不等式组的解集是:﹣2<x≤2.【解答】解:解不等式①得x>﹣2,解不等式②得x≤2,所以不等式组的解集是﹣2<x≤2.故答案为:﹣2<x≤2.13.(4分)计算:=.【解答】解:原式==.故答案是:.14.(4分)如图,△ABC中,∠BAC=120°,AB=AC,AD⊥BC,垂足为D,则∠BAD 的度数是60°.【解答】解:∵△ABC中,∠BAC=120°,AB=AC,AD⊥BC,∴AD是∠BAC的平分线,∴∠BAD=∠BAC=×120°=60°.故答案为:60°.15.(4分)如图,△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,DE⊥AB,垂足为E,则∠ADE的度数是60°.【解答】解:∵∠C=90°,∠B=30°,∴∠BAC=60°,AD是∠BAC的平分线,∴∠EAD=∠BAC=30°,∵DE⊥AB,∴∠ADE=90°﹣30°=60°,故答案为:60°.16.(4分)如图所示,已知点D为等腰直角三角形ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA,则∠DCE的度数是105°.【解答】解:∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°﹣15°=30°,∠ABD=∠ABC﹣15°=30°,∴BD=AD,∴D在AB的垂直平分线上,∵AC=BC,∴C也在AB的垂直平分线上,即直线CD是AB的垂直平分线,∴∠ACD=∠BCD=45°,∵∠CAD=15°,CE=CA,∴∠CED=∠CAD=15°,∴∠ECA=150°,∴∠DCE=∠ECA﹣∠ACD=150°﹣45°=105°.故答案为:105°.三.解答题(每小题6分,共18分)17.(6分)分解因式:a3﹣4a2+4a.【解答】解:原式=a(a2﹣4a+4)=a(a﹣2)2.18.(6分)解不等式组,并把它的解集在数轴上表示出来.【解答】解:解不等式①得:x<3解不等式②得:x≧﹣2因此原不等式组的解集为:﹣2≤x<3它的解集在数轴上表示为:19.(6分)先化简,再求值:,其中x=﹣1.【解答】解:原式=÷=•=﹣.当x=﹣1时,原式=﹣=﹣3.四.解答题(每小题7分,共28分)20.(7分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同,求甲、乙工程队每天各能铺设多少米?【解答】解:设乙工程队每天能铺设x米,则甲工程队每天能铺设(x+20)米,依题意,得:=,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:甲工程队每天能铺设70米,乙工程队每天能铺设50米.21.(7分)如图,平行四边形ABCD中,E是AD的中点,连结CE并延长,与BA的延长线交于点F,证明:E是CF的中点.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAF∠=EDC,又∠AEF=∠DEC,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,∴△AEF≌△DEC,∴EF=EC,即E是CF的中点.22.(7分)如图,在△ABC中,AD平分∠BAC,BE⊥AD,BE交AD的延长线于点E,点F在AB上,且EF∥AC.求证:点F是AB的中点.【解答】证明:∵AD平分∠BAC,∴∠BAE=∠CAE,∵EF∥AC,∴∠AEF=∠CAE,∴∠AEF=∠BAE,∴AF=EF,又∵BE⊥AD,∴∠BAE+∠ABE=90°,∠BEF+∠AEF=90°,又∠AEF=∠BAE,∴∠ABE=∠BEF,∴BF=EF,∴AF=BF,∴F为AB中点.23.(7分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB连接EF,证明:△AED≌△AEF.【解答】证明:∵△AFB是△ADC绕点A顺时针旋转90°得到的,∴AD=AF,∠FAD=90°,又∵∠DAE=45°,∴∠FAE=90°﹣∠DAE=90°﹣45°=45°=∠DAE,又AE=AE,在△ADE与△AFE中,,∴△ADE≌△AFE(SAS).。
2015-2016学年广东省揭阳市普宁市八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.下列商标是中心对称图形的是()A.B.C.D.2.已知a>b,则下列不等式中,错误的是()A.3a>3bB.﹣<﹣C.4a﹣3>4b﹣3D.(c﹣1)2a>(c﹣1)2b3.要使分式有意义,x的取值范围为()A.x≠﹣5B.x>0C.x≠﹣5且x>0D.x≥04.已知:在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法来证明这个结论,可以假设()A.∠A=∠BB.AB=BCC.∠B=∠CD.∠A=∠C5.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣4=(x+2)(x﹣2)C.x﹣2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4=(x+2)26.计算结果是()A.0B.1C.﹣1D.x7.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.115°B.120°C.125°D.145°C含量如下表:现配制这种饮料,要求至少含有单位的维生素.若所需甲种原料的质量为xkg,则x应满足的不等式为()A.500x+200(10﹣x)≥4100B.200x+500≤4100C.500x+200(10﹣x)≤4100D.200x+500≥41009.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是()A.24°B.30°C.32°D.36°10.如图,函数y=kx和y=﹣x+4的图象相交于点A(m,3),则不等式kx≥﹣x+4的解集为()A.x≥3B.x≤3C.x≤2D.x≥2二、填空题(每小题4分,共32分)11.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.12.分解因式:a3b﹣ab3=.13.如果一个正多边形的一个外角是36°,那么该正多边形的边数为.14.命题“当k=2时,二次三项式x2+kxy+y2是完全平方式”的逆命题是命题(填“真”或“假”).15.已知,则的值为.16.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.17.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于.18.如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC=∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是.(填写一组序号即可)三、解答题19.解不等式组,并将其解集在数轴上表示出来.20.化简:(﹣)÷,再任选一个恰当的数作为a的值代入求值.21.作图题:(要求保留作图痕迹,不写作法)(1)作△ABC中BC边上的垂直平分线EF(交AC于点E,交BC于点F);(2)连结BE,若AC=10,AB=6,求△ABE的周长.22.某商场购进甲、乙两种服装,每件甲种服装比每件乙种服装贵25元,该商场用2000元购进甲种服装,用750元购进乙种服装,所购进的甲种服装的件数是所购进的乙种服装的件数的2倍.(1)分别求每件甲种服装和每件乙种服装的进价;(2)若每件甲种服装售价130元,将购进的两种服装全部售出后,使得所获利润不少于750元,问每件乙种服装售价至少是多少元?23.如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.(1)求证:△ABC≌△DEF;(2)试判断:四边形AECD的形状,并证明你的结论.24.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题(1)分解因式:x2+7x﹣18=启发应用(2)利用因式分解法解方程:x2﹣6x+8=0;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是.25.如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.2015-2016学年广东省揭阳市普宁市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列商标是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念判断即可.【解答】解:A、不是中心对称图形,故不正确;B、是中心对称图形,故正确;C、不是中心对称图形,故不正确;D、不是中心对称图形,故不正确;故选:B.2.已知a>b,则下列不等式中,错误的是()A.3a>3bB.﹣<﹣C.4a﹣3>4b﹣3D.(c﹣1)2a>(c﹣1)2b【考点】不等式的性质.【分析】根据不等式的性质进行一一判断.【解答】解:A、在不等式a>b的两边同时乘以3,不等式仍成立,即3a>3b,故本选项正确;B、在不等式a>b的两边同时除以﹣3,不等号方向改变,即﹣<﹣,故本选项正确;C、在不等式a>b的两边同时先乘以4、再减去3,不等式仍成立,4a﹣3>4b﹣3,故本选项正确;D、当c﹣1=0,即c=1时,该不等式不成立,故本选项错误;故选:D.3.要使分式有意义,x的取值范围为()A.x≠﹣5B.x>0C.x≠﹣5且x>0D.x≥0【考点】分式有意义的条件;二次根式有意义的条件.【分析】根据分式有意义的条件可得x+5≠0,再根据二次根式有意义的条件可得x≥0,再解即可.【解答】解:由题意得:x+5≠0,且x≥0,解得:x≥0,故选:D.4.已知:在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法来证明这个结论,可以假设()A.∠A=∠BB.AB=BCC.∠B=∠CD.∠A=∠C【考点】反证法.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【解答】解:∠B≠∠C的反面是∠B=∠C.故可以假设∠B=∠C.故选C.5.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣4=(x+2)(x﹣2)C.x﹣2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4=(x+2)2【考点】因式分解的意义.【分析】依据因式分解的定义:将一个多项式分解成几个整式乘积的形式称为分解因式.对A、B、C、D四个选项进行求解.【解答】解:A、(x+2)(x﹣2)=x2﹣4,从左到右是整式相乘,故A错误;B、x2﹣4=(x+2)(x﹣2),利用平方差公式进行分解,故B正确;C、x﹣2﹣4+3x=(x+2)(x﹣2)+3x,右边式子有加号,故C错误;D、x2+4=(x+2)2,两边不相等,故D错误;故选B.6.计算结果是()A.0B.1C.﹣1D.x【考点】分式的加减法.【分析】由于是同分母的分式的加减,直接把分子相减即可求解.【解答】解:==﹣1.故选C.7.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.115°B.120°C.125°D.145°【考点】旋转的性质.【分析】先利用互余计算出∠BAC=60°,再根据旋转的性质得到∠BAB′等于旋转角,然后利用邻补角计算∠BAB′的度数即可.【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=60°,∵Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,∴∠BAB1等于旋转角,且∠BAB1=180°﹣∠BAC=120°,∴旋转角等于120°.故选B.C含量如下表:xkg,则x应满足的不等式为()A.500x+200(10﹣x)≥4100B.200x+500≤4100C.500x+200(10﹣x)≤4100D.200x+500≥4100【考点】由实际问题抽象出一元一次不等式.【分析】设所需甲种原料的质量为xkg,则需要乙种原料的质量为(10﹣x)kg,根据题意可得,两种原料至少含有4100单位的维生素C,据此列不等式.【解答】解:设所需甲种原料的质量为xkg,则需要乙种原料的质量为(10﹣x)kg,由题意得,500x+200(10﹣x)≥4100.故选A.9.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是()A.24°B.30°C.32°D.36°【考点】线段垂直平分线的性质.【分析】由EF是BC的垂直平分线,得到BE=CE,根据等腰三角形的性质得到∠EBC=∠ECB,由BD是∠ABC的平分线,得到∠ABD=∠CBD,根据三角形的内角和即可得到结论.【解答】解:∵EF是BC的垂直平分线,∴BE=CE,∴∠EBC=∠ECB,∵BD是∠ABC的平分线,∴∠ABD=∠CBD,∴∠ABD=∠DBC=∠ECB,∵∠BAC=60°,∠ACE=24°,∴∠ABD=∠DBC=∠ECB==32°.故选C.10.如图,函数y=kx和y=﹣x+4的图象相交于点A(m,3),则不等式kx≥﹣x+4的解集为()A.x≥3B.x≤3C.x≤2D.x≥2【考点】一次函数与一元一次不等式.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式kx≥﹣x+4的解集即可.【解答】解:将点A(m,3)代入y=﹣x+4得,﹣m+4=3,解得,m=2,所以点A的坐标为(2,3),由图可知,不等式kx≥﹣x+4的解集为x≥2.故选D二、填空题(每小题4分,共32分)11.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是AC=DE.【考点】直角三角形全等的判定.【分析】先求出∠ABC=∠DBE=90°,再根据直角三角形全等的判定定理推出即可.【解答】解:AC=DE,理由是:∵AB⊥DC,∴∠ABC=∠DBE=90°,在Rt△ABC和Rt△DBE中,,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.12.分解因式:a3b﹣ab3=ab(a+b)(a﹣b).【考点】提公因式法与公式法的综合运用.【分析】先观察原式,找到公因式ab后,提出公因式后发现a2﹣b2符合平方差公式,利用平方差公式继续分解即可.【解答】解:a3b﹣ab3,=ab(a2﹣b2),=ab(a+b)(a﹣b).13.如果一个正多边形的一个外角是36°,那么该正多边形的边数为10.【考点】多边形内角与外角.【分析】利用外角和360°除以外角的度数36°可得正多边形的边数.【解答】解:360÷36=10,故答案为:10.14.命题“当k=2时,二次三项式x2+kxy+y2是完全平方式”的逆命题是假命题(填“真”或“假”).【考点】命题与定理.【分析】利用完全平方公式得出k的值,进而得出命题正确性.【解答】解:当k=2时,二次三项式x2+kxy+y2是完全平方式的逆命题是:如果二次三项式x2+kxy+y2是完全平方式,那么k=2,错误,k=±2.故答案为:假.15.已知,则的值为1.【考点】分式的化简求值.【分析】先根据﹣=3得出x﹣y与xy的关系,再根据分式混合运算的法则把原式进行化简,把x﹣y=﹣3xy代入进行计算即可.【解答】解:∵﹣=3,∴=3,即x﹣y=﹣3xy,∴原式====1.故答案为:1.16.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=3厘米.【考点】三角形中位线定理;平行四边形的性质.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF是△OAB 的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3.17.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于8.【考点】平移的性质;平行四边形的判定与性质.【分析】根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED 是平行四边形,再根据平行四边形的面积公式即可求解.【解答】解:∵将△ABC沿CB向右平移得到△DEF,平移距离为2,∴AD∥BE,AD=BE=2,∴四边形ABED是平行四边形,∴四边形ABED的面积=BE×AC=2×4=8.故答案为:8.18.如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC=∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是①③.(填写一组序号即可)【考点】平行四边形的判定.【分析】根据AD∥BC可得∠DAO=∠OCB,∠ADO=∠CBO,再证明△AOD≌△COB可得BO=DO,然后再根据对角线互相平分的四边形是平行四边形可得答案.【解答】解:可选条件①③,∵AD∥BC,∴∠DAO=∠OCB,∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB(AAS),∴DO=BO,∴四边形ABCD是平行四边形.故答案为:①③.三、解答题19.解不等式组,并将其解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:“大小小大中间找”确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:解不等式2x+5≤3(x+2),得:x≥﹣1,解不等式2x﹣<1,得:x<3,∴不等式组的解集为:﹣1≤x<3,其解集在数轴上表示为:20.化简:(﹣)÷,再任选一个恰当的数作为a的值代入求值.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后选取合适的a的值代入进行计算即可.【解答】解:原式=•=•=,当a=2时,原式=1.21.作图题:(要求保留作图痕迹,不写作法)(1)作△ABC中BC边上的垂直平分线EF(交AC于点E,交BC于点F);(2)连结BE,若AC=10,AB=6,求△ABE的周长.【考点】作图—基本作图;线段垂直平分线的性质.【分析】(1)直接利用线段垂直平分线的作法画出即可;(2)利用线段垂直平分线的性质得出BE=EC,进而得出答案.【解答】解:(1)如图所示:EF即为所求;(2)∵EF垂直平分线BC,∴BE=CE,∴△ABE的周长=AE+BE+AB=AB+AC=16.22.某商场购进甲、乙两种服装,每件甲种服装比每件乙种服装贵25元,该商场用2000元购进甲种服装,用750元购进乙种服装,所购进的甲种服装的件数是所购进的乙种服装的件数的2倍.(1)分别求每件甲种服装和每件乙种服装的进价;(2)若每件甲种服装售价130元,将购进的两种服装全部售出后,使得所获利润不少于750元,问每件乙种服装售价至少是多少元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设甲品牌服装每套进价为x元,则乙品牌服装每套进价为(x﹣25)元,根据购进的甲种服装的件数是所购进的乙种服装的件数的2倍,列出方程,求出x的值,即可得出答案;(2)设每件乙种服装售价至少是m元,根据甲一件的利润×总的件数+乙一件的利润×总的件数≥总利润,列出不等式,求出m的取值范围,即可得出答案.【解答】解:(1)设甲品牌服装每套进价为x元,则乙品牌服装每套进价为(x﹣25)元,由题意得:=×2,解得:x=100,经检验:x=100是原分式方程的解,x﹣25=100﹣25=75.答:甲、乙两种品牌服装每套进价分别为100元、75元;(2)设每件乙种服装售价至少是m元,根据题意得:×+(m﹣75)×≥750,解得:m≥90.答:每件乙种服装售价至少是90元.23.如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.(1)求证:△ABC≌△DEF;(2)试判断:四边形AECD的形状,并证明你的结论.【考点】平行四边形的判定;全等三角形的判定与性质;三角形中位线定理.【分析】(1)根据平行线得出∠B=∠DEF,求出BC=EF,根据ASA推出两三角形全等即可;(2)根据全等得出AC=DF,推出AC∥DF,得出平行四边形ACFD,推出AD∥CF,MAD=CF,推出AD=CE,AD∥CE,根据平行四边形的判定推出即可.【解答】证明:(1)∵AB∥DE,∴∠B=∠DEF,∵BE=EC=CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF.(2)四边形AECD的形状是平行四边形,证明:∵△ABC≌△DEF,∴AC=DF,∵∠ACB=∠F,∴AC∥DF,∴四边形ACFD是平行四边形,∴AD∥CF,AD=CF,∵EC=CF,∴AD∥EC,AD=CE,∴四边形AECD是平行四边形.24.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题(1)分解因式:x2+7x﹣18=(x﹣2)(x+9)启发应用(2)利用因式分解法解方程:x2﹣6x+8=0;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是7或﹣7或2或﹣2.【考点】因式分解-十字相乘法等.【分析】(1)原式利用题中的方法分解即可;(2)方程利用因式分解法求出解即可;(3)找出所求满足题意p的值即可.【解答】解:(1)原式=(x﹣2)(x+9);(2)方程分解得:(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x=2或x=4;(3)﹣8=﹣1×8;﹣8=﹣8×1;﹣8=﹣2×4;﹣8=﹣4×2,则p的可能值为﹣1+8=7;﹣8+1=﹣7;﹣2+4=2;﹣4+2=﹣2.故答案为:(1)(x﹣2)(x+9);(3)7或﹣7或2或﹣2.25.如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.【考点】平行四边形的判定;坐标与图形性质;等腰三角形的判定;勾股定理.【分析】(1)根据二次根式的性质得出a,b的值进而得出答案;(2)由题意得:QP=2t,QO=t,PB=21﹣2t,QC=16﹣t,根据平行四边形的判定可得21﹣2t=16﹣t,再解方程即可;(3)①当PQ=CQ时,122+t2=(16﹣t)2,解方程得到t的值,再求P点坐标;②当PQ=PC 时,由题意得:QM=t,CM=16﹣2t,进而得到方程t=16﹣2t,再解方程即可.【解答】解:(1)∵b=++16,∴a=21,b=16,故B(21,12)C(16,0);(2)由题意得:AP=2t,QO=t,则:PB=21﹣2t,QC=16﹣t,∵当PB=QC时,四边形PQCB是平行四边形,∴21﹣2t=16﹣t,解得:t=5,∴P(10,12)Q(5,0);(3)当PQ=CQ时,过Q作QN⊥AB,由题意得:122+t2=(16﹣t)2,解得:t=,故P(7,12),Q(,0),当PQ=PC时,过P作PM⊥x轴,由题意得:QM=t,CM=16﹣2t,则t=16﹣2t,解得:t=,2t=,故P(,12),Q(,0).2016年7月17日。