IC资料-FP7102中文资料,pdf (电压控制模式的降压转换IC)
- 格式:pdf
- 大小:738.38 KB
- 文档页数:7
Preliminary 868/915MHz FSK TransceiverDocument Title868/915MHz FSK TransceiverRevision HistoryRev. No.History Issue Date Remark0.0 Preliminary June 25 , 2007Important Notice:AMIC-COM reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice. AMIC-COM integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of AMIC-COM products in such applications is understood to be fully at the risk of the customer.Preliminary 868/915MHz FSK TransceiverTable of contents1. 一般描述 (General Description) (4)2. 基本應用 (Typical Applications) (4)3. 特性 (Features) (4)4. 接腳配置(Pin Configurations) (4)5. RF Chip方塊圖 (Block Diagram) (5)6. 絕對最大範圍 (6)7. 接腳說明 (8)8. 控制暫存器 (Control Register) (9)8.1 Control Register Summary (9)8.2 控制暫存器說明 (Control Register Description): (10)8.2.1 System clock (Address: 00h) (10)9. SPI串列介面控制9.1 SPI格式9.2 SPI時序圖9.39.4 SPI時序特性10 振盪電路連接10.1使用石英晶體10.2使用外部時脈11. 系統時脈11.1 clock chain 機制11.1.1不使用clock chain (26)11.1.2 使用基頻參考信號(GRCK)800KHz設置 (26)11.1.3使用基頻參考信號(GRCK)1.2MHz設置 (26)12. 工作頻率設定 (27)12.1 PLL I及PLL II的設定 (27)13. 系統狀態機制 (State machine) (28)14. CAL state的校準 (30)14.1 校準程序 (Calibration Process) (30)15. VCO band校準 (30)15.1 校準程序 (Calibration Process) (30)16. FIFO (First In First Out)功能 (31)16.1傳送封包格式 (31)16.2 封包處理 (Packet Handling) (31)16.3資料傳送時間計算 (32)16.4 TX/RX FIFO (32)16.5 FIFO pointer margin threshold (32)17. 工作模式 (Mode of operation) (34)17.1 Direct mode (34)17.1.1 TX傳送時序 (34)Preliminary 868/915MHz FSK Transceiver17.1.2 RX傳送時序 (35)17.2 FIFO mode (36)17.2.1 TX傳送時序 (36)17.2.2 RX接收時序 (37)18. ADC (Analog Digital Converter) (38)18.1 溫度量測 (38)18.2 RSSI量測 (38)18.3載波(Carrier)偵測 (38)18.4外部信號源量測 (38)19. 應用電路(Application Circuit) (39)20. 包裝資訊(Package Information) (40)21. 產品資訊(Ordering Information) (41)Preliminary 868/915MHz FSK Transceiver1. 一般描述(General Description) A7102B 是一單晶片CMOS 製程,用於868/915MHz ISM 頻段的無線應用IC 。
Agilent HPMX-7102 Dual-Band, Tri-Mode Downconverter Data SheetGeneral DescriptionThe HPMX-7102 downconverter offers a highly integrated solution for the CDMA Dual-Band, Tri-Mode (DBTM) handsets. This integrated solution leads to improvement in cost and reliability. The HPMX-7102 is part of the Agilent Technologies complete CDMAdvantage RF chipset.The downconverter has a high input IP3 which is highly desirable for CDMA receiver dynamic range, noise, and spurious suppression.The chip is comprised of three amplifier and mixer combinations. Individual mixers can be selected through band and mode control input.The mixer outputs are differential providing common mode rejection. The outputs are high impedance open collectors. The HPMX-7102 features a current control of all three mixers through a DC voltage input Vcs. By setting the current varying linearity requirements can be accommodated. If used, dynamic current control reduces overall current consumption maximizing battery life.Features•Wide band operationRF inputs:Cellular AMPS/CDMA:869 - 894MHzPCS CDMA: 1930 - 1990 MHzIF outputs:Cellular AMPS: 85.38 MHzCellular CDMA: 85.38 MHzPCS CDMA: 210.38 MHz•2.7 - 3.6 V operation•Differential IF outputs•High input IP3 and conversion gain•Adjustable currentCellular AMPS: 4 - 11 mACellular CDMA: 7 - 18 mAPCS CDMA: 6 - 17 mA•JEDEC standard BCC-24 surfacemount packageApplications•Cellular handsets•Wireless data terminalsPlastic BCC-24The IC is housed in miniatureBCC-24 package and manufac-tured on a high frequency, lownoise Si-Bipolar process (25 GHzF t). The entire IC can be put into astandby mode reducing currentconsumption to under 150 µA.H P M X-7102Functional Block DiagramMode BandHPMX-7102 Absolute Maximum Ratings[1]Parameter Units Min.Max. Vcc Supply Voltage V5Vcs Control Voltage V Vcc + 0.5 V mode, V band V Vcc Mixer Input, RF Power dBm5Mixer Input, LO Power dBm7Case Temperature°C125 Storage Temperature°C-55125Note:1.Operation of this device in excess of any ofthese limits may cause permanent damage.HPMX-7102 Standard Test ConditionsUnless otherwise stated, all test data was taken on packaged parts under the following conditions: Vcc = +3.0VDC, T ambient = 25°C, Icc at Vcs = 3V for CDMA 1900 and AMPS and Vcs = 2.5V for CDMA 800 Z RF & LO source = 50Ω, Z IF load = 500Ω. See Figure 46 for reference.PCS CDMA:LO input: 1749.62 MHz, -3 dBm, single-endedRF input: 1960 MHz, -33dBm, single-endedIF output: 210.38 MHzCellular CDMA:LO input: 966.88 MHz, -6 dBm, single-endedRF input: 881 MHz, -33dBm, single-endedIF output: 85.38 MHzCellular AMPS:LO input: 966.88 MHz, -6 dBm, single-endedRF input: 881 MHz, -33dBm, single-endedIF output: 85.38 MHzRecommended operating range of Vcc = 2.7 to 3.6V, T a = -40 to +85°C.HPMX-7102 Summary Characterization InformationStandard test conditions apply unless otherwise noted.Symbol Parameters and Test Conditions Min.Typ.Max.Units PCS CDMAGc Conversion Gain Vcs = 3 V1112dBVcs = 1.5 V11NF Noise Figure Vcs = 3 V1011.5dBVcs = 1.5 V8IIP3Input Third Order Intercept Vcs = 3 V25dBmVcs = 1.5 V0OIP3Output Third Order Intercept Vcs = 3 V17dBmVcs = 1.5 V11RL RF port Return Loss*-13dB RL IF port Return Loss*-15dB RL LO port Return Loss*-11dB Icc Current Vcs = 3V1822mAVcs = 1.5V9mA Cellular CDMAGc Conversion Gain Vcs = 2.5 V1617dBVcs = 1.5 V16dB NF Noise Figure Vcs = 2.5 V910dBVcs = 1.5 V6dB IIP3Input Third Order Intercept Vcs = 2.5 V26dBmVcs = 1.5 V1dBm OIP3Output Third Order Intercept Vcs = 2.5 V23dBmVcs = 1.5 V18dBm RL RF port Return Loss*-14dB RL IF port Return Loss*-10dB RL LO port Return Loss*-11dB Icc Current Vcs = 3V1620mAVcs = 1.5V10mA Cellular AMPSGc Conversion Gain Vcs = 3 V1516dBVcs = 1.5 V15dB NF Noise Figure Vcs = 3 V78.5dBVcs = 1.5 V6dB IIP3Input Third Order Intercept Vcs = 3 V02dBmVcs = 1.5 V-4dBm OIP3Output Third Order Intercept Vcs = 3 V18dBmVcs = 1.5 V11dBm RL RF port Return Loss*-11dB RL IF port Return Loss*-11dB RL LO port Return Loss*-11dB Icc Current Vcs = 3V1013mAVcs = 1.5V6mA*Externally matched*For both LO and RF port return loss measurements, calibration removes all filters and attenuator pads shown in Figure 46.*For IF port return loss measurements, the transformer is included in reported performance.HPMX-7102 Pin Description TableNo.Mnemonic Description Typical Signal Notes 1PCSIFoutP PCS differential IF output IF2PCSIFoutM PCS differential IF output IF3CellIFoutP CDMA differential IF output IF4CellIFoutM CDMA differential IF output IF5FMIFoutP AMPS differential IF output IF6FMIFoutM AMPS differential IF output IF7Gnd Ground8Band Band selection signal (PCS or cellular band)DC9Mode Mode selection signal (CDMA or AMPS mode)DC10Gnd Ground11Gnd Ground12Gnd Ground13Vcs Current bias control signal DC14FMRFIn RF AMPS input RF15CellRFIn RF CDMA input RF16LGnd_Cel Inductive Degeneration/Ground for Cellular Mixers17LGnd_PCS Inductive Degeneration/Ground for PCS Mixer18LGnd_PCS Inductive Degeneration/Ground for PCS Mixer19PCSRFIn RF PCS input RF20Vcc Device Vcc input DC21PCSLOM PCS LO differential input RF22PCSLOP PCS LO differential input RF23CellLOP Cellular LO differential input RF24CellLOM Cellular LO differential input RFHPMX-7102 Mode ControlMode Mode Band Power Down00* Cellular AMPS01* PCS CDMA10 Cellular CDMA11* 1 = high, 0 = low HPMX-7102 DC LogicParameter Min Max Units Input Logic, Low Voltage0.5V Input Logic, High Voltage 2.5VHPMX-7102 Characterization Graphs for PCS CDMALO POWER (dBm)Figure 1. Gain vs. LO Power.G A I N (d B )15141312111098-96-3-630LO POWER (dBm)Figure 2. IIP3 vs. LO Power.I I P 3 (d B m )86420-2-96-3-630LO POWER (dBm)Figure 3. NF vs. LO Power.-96-3-630LO FREQUENCY (MHz)Figure 4. Gain vs. LO Frequency.G A I N (d B )18161412108LO FREQUENCY (MHz)Figure 5. IIP3 vs. LO Frequency.LO FREQUENCY (MHz)Figure 6. NF vs. LO Frequency.Table 1. PCS CDMA, Gain vs. LO Power and Vcs.Vcs (V)LO Power (dBm) 1.4 1.8 2.2 2.6 3.0-910.911.411.711.711.6-611.011.511.912.212.4-310.911.411.912.112.4010.711.311.712.012.3310.711.711.712.012.2610.711.311.712.012.2Table 2. PCS CDMA, IIP3 vs. LO Power and Vcs.Vcs (V)LO Power (dBm) 1.4 1.8 2.2 2.6 3.0-9-1.9-0.800.4 1.0-6-1.40.3 1.5 2.4 3.1-3-1.50.7 2.3 3.6 4.70-2.50.3 2.7 4.1 5.43-3.00.3 2.6 4.3 5.76-2.90.22.64.45.7Table 3. PCS CDMA, NF vs. LO Power and Vcs.Vcs (V)LO Power (dBm) 1.4 1.8 2.2 2.6 3.0-98.89.410.110.711.4-68.48.99.49.910.4-38.18.59.19.49.807.98.38.79.19.537.98.38.69.09.467.98.38.69.09.42.73.33 Vcc (V)Figure 9. Gain vs. Vcc.3.6151311975G A I N (d B )2.73.33Figure 10. NF vs. Vcc.Vcc (V)3.6209175019602830349937095250FREQUENCY (MHz)Figure 11. Differential Spur Level at IF pins.[1]I c c (m A )181614121086Note:1.Measurement performed at IF pins (matching circuit and balun removed).RF FREQUENCY (MHz)Figure 15A. PCS-CDMA RF Impedance (Real).[1]O h m s5055403530RF FREQUENCY (MHz)Figure 15B. PCS-CDMA RF Impedance (Reactive).[1]O h m s-20-22-24-26-28-30FREQUENCY (MHz)Figure 12. RF Input Impedance vs. Frequency.[1]R E A L I M P E D A N C E (O h m s )I M A G I N A R Y I M P E D A N C E (O h m s )1920200019401960504846444240-20-22-24-26-28-30FREQUENCY (MHz)Figure 13. IF Input Impedance (differential) vs. Frequency.[1]R E A L I M P E D A N C E (O h m s )I M A G I N A R Y I M P E D A N C E (O h m s )201816141210-170-172-174-176-178-180204216208206212214210FREQUENCY (MHz)Figure 14. LO Input Impedance (differential) vs. Frequency.[1]R E A L I M P E D A N C E (O h m s )I M A G I N A R Y I M P E D A N C E (O h m s)8075706560Note:1.Impedance data measured with all other ports matched as shown in Figure 46.HPMX-7102 Characterization Graphs for 800 MHz CDMATable 4. Cell CDMA, Gain vs. LO Power and Vcs.Vcs (V)LO Power (dBm) 1.4 1.8 2.2 2.5 2.6 3.0-1214.914.914.714.514.413.9-915.515.715.815.815.815.8-615.816.016.216.316.316.3-315.816.116.316.416.416.5015.916.116.316.416.516.6315.916.116.316.416.516.5Table 5. Cell CDMA, IIP3 vs. LO Power and Vcs.Vcs (V)LO Power (dBm) 1.4 1.8 2.2 2.5 2.6 3.0-12-0.6 1.5 2.5 2.9 3.0 3.2-90 2.8 4.6 5.6 6.17.5-60.1 3.5 5.97.68.59.6-30.1 3.8 6.78.79.69.200.1 3.97.19.19.99.230.13.97.19.210.18.8LO POWER (dBm)Figure 16. Gain vs. LO Power.G A I N (d B )201816141210-123-6-90-3LO POWER (dBm)Figure 17. IIP3 vs. LO Power.I I P 3 (d B m )1086420-123-6-90-3LO POWER (dBm)Figure 18. NF vs. LO Power.N F (d B )151311975-123-6-90-3LO FREQUENCY (MHz)Figure 19. Gain vs. LO Frequency.G A I N (d B )201816141210954978966LO FREQUENCY (MHz)Figure 20. IIP3 vs. LO Frequency.I I P 3 (d B m )12108642954978966LO FREQUENCY (MHz)Figure 21. NF vs. LO Frequency.N F (d B )1513119759549789662.73.33 Vcc (V)Figure 24. Gain vs. Vcc.3.6201816141210G A I N (d B )2.73.33 Vcc (V)Figure 25. Noise Figure vs. Vcc.3.684.5880.5965.51050.51847.51932.52897.52017.5FREQUENCY (MHz)Figure 26. Differential Spur Level at IF pins.[1]I c c (m A )2018161412108Table 6. Cell CDMA, NF vs. LO Power and Vcs.Vcs (V)LO Power (dBm) 1.4 1.8 2.2 2.5 2.6 3.0-129.210.411.712.713.014.3-97.98.99.710.310.611.4-67.17.88.59.09.39.8-3 6.67.27.88.28.38.80 6.2 6.87.27.67.78.236.26.87.37.67.78.2Note:1. Measurement performed at IF pins (matching circuit and balun removed).Note:1. Impedance data measured with all other ports matched as shown in Figure 46.FREQUENCY (MHz)Figure 27. RF Input Impedance vs. Frequency.[1]R E A L I M P E D A N C E (O h m s )I M A G I N A R Y I M P E D A N C E (O h m s )1451431411391371350-2-4-6-8-107892828086889084FREQUENCY (MHz)Figure 28. IF Input Impedance (differential) vs. Frequency.[1]R E A L I M P E D A N C E (O h m s )I M A G I N A R Y I M P E DA N C E (O h m s )151050-5-400-420-440-460-480996936966FREQUENCY (MHz)Figure 29. LO Input Impedance (differential) vs. Frequency.[1]R E A L I M P E D A N C E (O h m s )I M A G I N A R Y I M P ED A N CE (O h m s )350300250200150-190-210-230-250RF FREQUENCY (MHz)Figure 30A. Cellular CDMA RF Impedance(Real).[1]O H M S150140130120110100RF FREQUENCY (MHz)Figure 30B. Cellular CDMA RF Impedance (Reactive).[1]O H M S100-10-20-30-40-50HPMX-7102 Characterization Graphs for AMPSTable 7. Cell AMPS, Gain vs. LO Power and Vcs.Vcs (V)LO Power (dBm) 1.4 1.8 2.2 2.5 2.6 3.0-1214.114.514.814.814.914.9-914.515.015.315.415.415.5-614.715.215.515.615.615.8-314.815.215.515.715.715.9014.815.315.615.715.815.9314.815.315.615.715.816.0Table 8. Cell AMPS, IIP3 vs. LO Power and Vcs.Vcs (V)LO Power (dBm) 1.4 1.8 2.2 2.5 2.6 3.0-12-6.7-4.4-2.6-1.4-1.00-9-6.4-4.0-2.0-0.6-0.1 1.3-6-6.1-3.7-1.7-0.30.2 1.7-3-6.1-3.6-1.400.5 2.10-6.6-3.6-1.30.20.7 2.23-6.6-3.6-1.40.20.62.3LO FREQUENCY (MHz)Figure 35. IIP3 vs. LO Frequency.I I P 3 (d B m )86420-2LO FREQUENCY (MHz)Figure 36. NF vs. LO Frequency.N F (d B m )12108642LO POWER (dBm)Figure 31. Gain vs. LO Power.G A I N (d B )201816141210-123-6-90-3LO POWER (dBm)Figure 32. IIP3 vs. LO Power.-123-6-90-3LO POWER (dBm)Figure 33. NF vs. LO Power.N F (d B m )12108642-123-6-90-3LO FREQUENCY (MHz)Figure 34. Gain vs. LO Frequency.G A I N (d B )201816141210Table 9. Cell AMPS, NF vs. LO Power vs. Vcs.Vcs (V)LO Power (dBm) 1.4 1.8 2.2 2.5 2.6 3.0-127.17.78.38.89.09.6-9 6.4 6.97.37.77.98.3-6 6.0 6.3 6.77.07.17.5-3 5.8 6.1 6.3 6.6 6.77.00 5.6 5.9 6.1 6.3 6.3 6.635.55.76.06.36.36.62.73.333.6201816141210Vcc (V)Figure 39. Gain vs. Vcc.I I P 3 (d B m )2.73.333.6Figure 40. Noise Figure vs. Vcc.Vcc (V)84.5965.51932.52897.53863.5FREQUENCY (MHz)Figure 41. Differential Spur Level at IF pins [1].I c c (m A )12108642Note:1. Measurement performed at IF pins (matching circuit and balun removed).FREQUENCY (MHz)Figure 42. RF Input Impedance vs. Frequency.R E A L I M P E D A N C E (O h m s )I M A G I N A R Y I M P E D A N C E (O h m s )200195190185180865885875895FREQUENCY (MHz)Figure 43. IF Input Impedance vs. Frequency.R E A L I M P E D A N C E (O h m s )105-5-10809084828886981951966FREQUENCY (MHz)Figure 44. LO Input Impedance vs. Frequency.I M A G I N A R Y I M P E D A N C E (O h m s )RF FREQUENCY (MHz)Figure 45A. Cell-AMPS RF Impedance (Real).O H M S220200180160140RF FREQUENCY (MHz)Figure 45B. Cell-AMPS RF Impedance (Reactive).O H M S3010-10-30-50-70Figure 46. HPMX-7102 Test Diagram.Note: This test diagram represents the testing configuration used to measure the data in the datasheet, and is not the demoboard diagram.Ω LoadLoadΩ LoadPackage DimensionsJEDEC Standard BCC-24 PackagePart Number Ordering Information Part NumberNo. of DevicesContainerHPMX-7102-BLK 10BulkHPMX-7102-TR110007” Tape and Reel0.45Data subject to change.Copyright © 2000 Agilent Technologies, Inc.。
常用电源芯片第1 章DC-DC 电源转换器/基准电压源1.1 DC-DC 电源转换器1.低噪声电荷泵DC-DC 电源转换器AAT3113/AAT31142.低功耗开关型DC-DC 电源转换器ADP30003.高效3A 开关稳压器AP15014.高效率无电感DC-DC 电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC 电源转换掌握器IRU30377.高性能降压式DC-DC 电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A10.1.5A 降压式开关稳压器L497111.2A 高效率单片开关稳压器L497812.1A 高效率升压/降压式DC-DC 电源转换器L597013.1.5A 降压式DC-DC 电源转换器LM157214.高效率1A 降压单片开关稳压器LM1575/LM2575/LM2575HV15.3A 降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM257717.3A 降压开关稳压器LM2596 ,tob_id_492618.高效率5A 开关稳压器LM267819.升压式DC-DC 电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V 降压式稳压器LM500723.低功耗升/降压式DC-DC 电源转换器LT107324.升压式DC-DC 电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC 电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT195631.1.5A 升压式电源转换器LT196132.高压升/降压式电源转换器LT343333.单片3A 升压式DC-DC 电源转换器LT343634.通用升压式DC-DC 电源转换器LT346035.高效率低功耗升压式电源转换器LT346436.1.1A 升压式DC-DC 电源转换器LT346737.大电流高效率升压式DC-DC 电源转换器LT378238.微型低功耗电源转换器LTC175439.1.5A 单片同步降压式稳压器LTC187540.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC 电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC 电源转换器LTC340145.低功耗同步整流升压式DC-DC 电源转换器LTC340246.同步整流降压式DC-DC 电源转换器LTC340547.双路同步降压式DC-DC 电源转换器LTC340748.高效率同步降压式DC-DC 电源转换器LTC341649.微型2A 升压式DC-DC 电源转换器LTC342650.2A 两相电流升压式DC-DC 电源转换器LTC342851.单电感升/降压式DC-DC 电源转换器LTC344052.大电流升/降压式DC-DC 电源转换器LTC344253.1.4A 同步升压式DC-DC 电源转换器LTC345854.直流同步降压式DC-DC 电源转换器LTC370355.双输出降压式同步DC-DC 电源转换掌握器LTC373656.降压式同步DC-DC 电源转换掌握器LTC377057.双2 相DC-DC 电源同步掌握器LTC380258.高性能升压式DC-DC 电源转换器MAX1513/MAX151459.精简型升压式DC-DC 电源转换器MAX1522/MAX1523/MAX152460.高效率40V 升压式DC-DC 电源转换器MAX1553/MAX155461.高效率升压式LED 电压调整器MAX1561/MAX159962.高效率5 路输出DC-DC 电源转换器MAX156563.双输出升压式DC-DC 电源转换器MAX1582/MAX1582Y64.驱动白光LED 的升压式DC-DC 电源转换器MAX158365.高效率升压式DC-DC 电源转换器MAX1642/MAX1643 66.2A 降压式开关稳压器MAX164467.高效率升压式DC-DC 电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC 电源转换器MAX167769.低噪声1A 降压式DC-DC 电源转换器MAX1684/MAX168570.高效率升压式DC-DC 电源转换器MAX169871.高效率双输出降压式DC-DC 电源转换器MAX171572.小体积升压式DC-DC 电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA 的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC 电源转换器MAX180076.3A 同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD 电源掌握器MAX187878.电流模式升压式DC-DC 电源转换器MAX189679.具有复位功能的升压式DC-DC 电源转换器MAX194780.高效率PWM 降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC 电源转换器MAX61882.低功耗升压或降压式DC-DC 电源转换器MAX62983.PWM 升压式DC-DC 电源转换器MAX668/MAX66984.大电流PWM 降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC 电源转换器MAX756/MAX75786.高效率大电流DC-DC 电源转换器MAX761/MAX76287.隔离式DC-DC 电源转换器MAX8515/MAX8515A88.高性能24V 升压式DC-DC 电源转换器MAX872789.升/降压式DC-DC 电源转换器MC33063A/MC34063A90.5A 升压/降压/反向DC-DC 电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC2203 93.大功率DC-DC 升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC 电源转换器NCP1400A96.高压DC-DC 电源转换器NCP140397.单片微功率高频升压式DC-DC 电源转换器NCP141098.同步整流PFM 步进式DC-DC 电源转换器NCP142199.高效率大电流开关电压调器NCP1442/NCP1443/NCP1444/NCP1445100.型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC 电源转换器NCP1550102.同步降压式DC-DC 电源转换器NCP1570103.高效率升压式DC-DC 电源转换器NCP5008/NCP5009104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC 电源转换器RT9262/RT9262A106.升压式DC-DC 电源转换器SP6644/SP6645107.低功耗升压式DC-DC 电源转换器SP6691108.型高效率DC-DC 电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x111.28V 恒流白色LED 驱动器TPS61042112.具有LDO 输出的升压式DC-DC 电源转换器TPS6112x113.低噪声同步降压式DC-DC 电源转换器TPS6200x114.三路高效率大功率DC-DC 电源转换器TPS75003115.高效率DC-DC 电源转换器UCC39421/UCC39422116.PWM 掌握升压式DC-DC 电源转换器XC6371117.白光LED 驱动专用DC-DC 电源转换器XC9116118.500mA 同步整流降压式DC-DC 电源转换XC9215/XC9216/XC9217 119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB1600 1.2 线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA 线性稳压器LP38691/LP38693128.输入电压从12V 到450V 的可调线性稳压器LR8129.300mA 格外低压降稳压器〔VLDO〕LTC3025130.大电流低压差线性稳压器LX8610131.200mA 负输出低压差线性稳压器MAX1735132.150mA 低压差线性稳压器MAX8875133.带开关掌握的低压差稳压器MC33375134.带有线性调整器的稳压器MC33998135.1.0A 低压差固定及可调正稳压器NCP1117136.低静态电流低压差稳压器NCP562/NCP563137.具有使能掌握功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B139.400mA 低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A 144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA 低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC6401 1.3 基准电压源150.型XFET 基准电压源ADR290/ADR291/ADR292/ADR293151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗1.2V 基准电压源MAX6120 153.2.5V 周密基准电压源MC1403 154.2.5V/4.096V 基准电压源MCP1525/MCP1541155.低功耗周密低压降基准电压源REF30xx/REF31xx156.周密基准电压源TL431/KA431/TLV431A第2 章AC-DC 转换器及掌握器1.厚膜开关电源掌握器DP104C2.厚膜开关电源掌握器DP308P3.D PA-Switch 系列高电压功率转换掌握器DPA423/DPA424/DPA425/DPA4264.电流型开关电源掌握器FA13842/FA13843/FA13844/FA138455.开关电源掌握器FA5310/FA53116.PWM 开关电源掌握器FAN75567.绿色环保的PWM 开关电源掌握器FAN76018.F PS 型开关电源掌握器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC 转换器HV-2405E11.型反激准谐振变换掌握器ICE1QS0112.PWM 电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源掌握器KA38xx15.FPS 型开关电源功率转换器KA5H0165R16.FPS 型开关电源功率转换器KA5Qxx17.FPS 型开关电源功率转换器KA5Sxx18.电流型高速PWM 掌握器L499019.具有待机功能的PWM 初级掌握器L599120.低功耗离线式开关电源掌握器L659021.L INK SWITCH TN 系列电源功率转换器LNK304/LNK305/LNK30622.L INK SWITCH 系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源掌握器M51995A 24.PWM 电源掌握器M62281P/M62281FP25.高频率电流模式PWM 掌握器MAX5021/MAX502226.型PWM 开关电源掌握器MC4460427.电流模式开关电源掌握器MC4460528.低功耗开关电源掌握器MC4460829.具有PFC 功能的PWM 电源掌握器ML482430 液晶显示器背光灯电源掌握器ML487631.离线式电流模式掌握器NCP120032.电流模式脉宽调制掌握器NCP120533.准谐振式PWM 掌握器NCP120734.低本钱离线式开关电源掌握电路NCP121535.低待机能耗开关电源PWM 掌握器NCP123036.STR 系列自动电压切换掌握开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F42.开关电源功率转换器STR-S6513 43.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC 与PWM 组合掌握集成电路TDA16846/TDA1684745.型开关电源掌握器TDA1685046.“绿色”电源掌握器TEA1504 447.其次代“绿色”电源掌握器TEA150748.型低功耗“绿色”电源掌握器TEA153349.开关电源掌握器TL494/KA7500/MB375950.Tiny SwitchⅠ系列功率转换器TNY253、TNY254、TNY2551.Tiny SwitchⅡ系列功率转换器TNY264P~TNY268G52.TOP Switch〔Ⅱ〕系列离线式功率转换器TOP209~TOP22753.TOP Switch-FX 系列功率转换器TOP232/TOP233/TOP23454.TOP Switch-GX 系列功率转换器TOP242~TOP25055.开关电源掌握器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.一代高度集成离线式开关电源功率转换器VIPe53第3 章功率因数校正掌握/节能灯电源掌握器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数掌握器FAN48223.功率因数校正掌握器FAN75274.高电压型EL 背光驱动器HV8265.E L 场致发光背光驱动器IMP525/IMP5606.高电压型EL 背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能掌握电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器掌握器IR252014.电子镇流器专用掌握器KA754115.功率因数校正掌握器L656116.过渡模式功率因数校正掌握器L656217.集成背景光掌握器MAX8709/MAX8709A18.功率因数校正掌握器MC33262/MC3426219.固定频率电流模式功率因数校正掌握器NCP165320.EL 场致发光灯高压驱动器SP440321.功率因数校正掌握器TDA4862/TDA486322.有源功率因数校正掌握器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4 章充电掌握器1.多功能锂电池线性充电掌握器AAT36802.可编程快速电池充电掌握器BQ20223.可进展充电速率补偿的锂电池充电治理器BQ20574.锂电池充电治理电路BQ2400x5.单片锂电池线性充电掌握器BQ2401x6.U SB 接口单节锂电池充电掌握器BQ2402x7.2A 同步开关模式锂电池充电掌握器BQ241008.集成PWM 开关掌握器的快速充电治理器BQ29549.具有电池电量计量功能的充电掌握器DS277010.锂电池充电掌握器FAN7563/FAN756411.2A 线性锂/锂聚合物电池充电掌握器ISL629212.锂电池充电掌握器LA5621M/LA5621V13.1.5A 通用充电掌握器LT157114.2A 恒流/恒压电池充电掌握器LT176915.线性锂电池充电掌握器LTC173216.带热调整功能的1A 线性锂电池充电掌握器LTC173317.线性锂电池充电掌握器LTC173418.型开关电源充电掌握器LTC198019.开关模式锂电池充电掌握器LTC400220.4A 锂电池充电器LTC400621.多用途恒压/恒流充电掌握器LTC400822.4.2V 锂离子/锂聚合物电池充电掌握器LTC405223.可由USB 端口供电的锂电池充电掌握器LTC405324.小型150mA 锂电池充电掌握器LTC405425.线性锂电池充电掌握器LTC405826.单节锂电池线性充电掌握器LTC405927.独立线性锂电池充电掌握器LTC406128.镍镉/镍氢电池充电掌握器M62256FP29.大电流锂/镍镉/镍氢电池充电掌握器MAX150130.锂电池线性充电掌握器MAX150731.双输入单节锂电池充电掌握器MAX1551/MAX155532.单节锂电池充电掌握器MAX167933.小体积锂电池充电掌握器MAX1736B 接口单节锂电池充电掌握器MAX181135.多节锂电池充电掌握器MAX187336.双路输入锂电池充电掌握器MAX187437.单节锂电池线性充电掌握器MAX189838.低本钱/多种电池充电掌握器MAX190839.开关模式单节锂电池充电掌握器MAX1925/MAX192640.快速镍镉/镍氢充电掌握器MAX2022A/MAX202241.可编程快速充电掌握器MAX712/MAX71342.开关式锂电池充电掌握器MAX74543.多功能低本钱充电掌握器MAX846A44.具有温度调整功能的单节锂电池充电掌握器MAX8600/MAX860145.锂电池充电掌握器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器掌握器MCP73841/MCP73842/MCP73843/MCP7384447.锂电池充电掌握器MCP73861/MCP7386248.单节锂电池充电掌握器MIC7905049.单节锂电池充电掌握器NCP180050.高精度线性锂电池充电掌握器VM7205。
FP710228V, 2A Buck Constant Current Switching Regulatorfor White LEDThis datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.General DescriptionThe FP7102 is a PWM control buck converter designed to provide a simple, high efficiency solution for driving high power LEDs. With a 0.25V reference voltage feedback control to minimize power dissipation, an external resistor sets the current as needed for driving various types of LEDs. The FP7102 includes a high current P-MOSFET to realize high efficiency and excellent transient characteristics. The PWM control circuit is able to change the duty ratio linearly from 0 up to 100%. Other features include user accessible EN pin for enabling, thermal shutdown, cycle-by-cycle current limit and over current protection.FeaturesWide Supply Voltage Operating Range: 3.6 to 28V Built-in P-MOSFET for 2A Loading CapabilityPrecision Feedback Reference Voltage: 0.25V (2%) Low Current Consumption: 4mAInternal Fixed Oscillator Frequency: 320KHz (Typ.) Internal Soft-Start Function (SS) Over Current Protection Package: SOP-8L &SOP-8L(EP)Typical Application CircuitFP 7102V CCCOMPFBENLXLXGNDGNDFunction Block DiagramThis datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.Pin DescriptionsSOP-8LSOP- 8L (EP)3465FB COMP V CCGND LXTop ViewLXGND Bottom ViewNameNo.I / ODescriptionFB 1 I Error Amplifier Inverting Input EN 2 I Enable Control COMP 3 O Error Amplifier Compensation Output V CC 4 P IC Power Supply (PMOS Source) LX 5 P PMOS High Current Output LX6PPMOS High Current OutputGND 7 O IC Ground GND 8 O IC GroundName No.I / O DescriptionFB 1 I Error Amplifier Inverting Input EN 2 I Enable Control COMP 3 O Error Amplifier Compensation Output V CC 4 P IC Power Supply (PMOS Source) LX 5 P PMOS High Current Output LX6PPMOS High Current OutputGND 7 O IC Ground GND 8 O IC Ground EP9PExposed PAD. Must connect to LXThis datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.Marking InformationSOP- 8L & SOP-8L (EP)Halogen Free : Halogen free product indicatorLot Number : Wafer lot number’s last two digitsFor Example: 132386TB 86 Internal ID : Internal Identification CodePer-Half Month : Production period indicated in half month time unitFor Example: January → A (Front Half Month), B (Last Half Month)February → C (Front Half Month), D (Last Half Month) Year : Production year’s last digitThis datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.Ordering InformationAbsolute Maximum RatingsIR Re-flow Soldering CurvePart NumberOperating TemperaturePackageMOQDescriptionFP7102DR-LF -25°C ~ +85°C SOP-8L 2500EA Tape & Reel FP7102XR-LF -25°C ~ +85°CSOP-8L (EP)2500EATape & ReelParameterSymbol Conditions Min. Typ. Max. UnitPower Supply VoltageV IN 28 VOutput Source Current 2 A Error Amplifier Inverting Input-0.3 +1.2 V Allowable DissipationT A +25≦℃650 mWThermal Resistance Junction toAmbientθJA +175 ℃ / W Thermal Resistance Junction to CaseθJC +45 ℃ / W ESD SusceptibilityHBM (Human Body Mode) 2 KV MM (Machine Mode)200 V Storage Temperature-55+125℃Lead Temperature (soldering, 10 sec)+260 ℃This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.Recommended Operating ConditionsParameterSymbolConditionsMin. Typ. Max. UnitSupply VoltageV IN 3.6 28 VOperating Temperature-25 85 ℃DC Electrical Characteristics (V CC =6V, T A = 25℃, unless otherwise noted)ParameterSymbol Conditions Min. Typ. Max. UnitReferenceOutput Voltage V REFFB connected to COMP0.2450.250.255VInput Regulation△V REF V CC =3.6 V to 25 V 2 12.5 mV Output Voltage Change withTemperature△V REF / V REF T A =-25℃ to25℃ 1 2%T A = 25℃ to 85℃1 2 Oscillator SectionOscillation Frequencyf320 KHz Frequency Change with Voltage Δf / ΔV V CC =3.6V to 25V5%Frequency Change withTemperatureΔf / ΔT T A = -25℃ to +85℃5 %Error Amplifier SectionInput Bias Current I B -1.0 -0.2 1.0 μA Voltage Gain Av 100 V / V Frequency BandwidthBWAv=0 dB6 MHz Output Voltage Swing Positive V POS 1.7 2 V Output Voltage Swing Negative V NEG0.10.2VOutput Source Current I SOURCE V comp =200mV -15 -30 μA Output Sink Current I SINK V comp =200mV 15 30 μAIdle Period Adjustment SectionMaximum Duty CycleT DUTY V FB =0.2V100 %Output SectionPMOS D-S Voltage V DSS V COMP =0.1V -20 VPMOS Source Current I D -2 A PMOS On Resistance R DS (ON)V CC=5.0V, V FB =0V 70 150 m ΩV CC =10V, V FB =0V42 90 Output Leakage CurrentI L 5 μA Thermal Shutdown SectionThermal shutdown Temperature150℃Over Current Protection SectionPMOS OCP CurrentI OCP3 AThis datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.ParameterSymbol Conditions Min. Typ. Max. UnitTotal Device SectionEN Input CurrentI ENEN pin Open20μAUpper Threshold Voltage (EN) V UPPER 1.12 V Lower Threshold Voltage (EN) V LOW0.87 VHysteresisV HYS 210 250 mV Average Supply Current I AVE 4 6 mA V CC ShutdownI SHUTDOWN15 μAThis datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.Detailed DescriptionVoltage ReferenceA built-in 2.5V reference regulator supplies FP7102 internal circuits. Also, this 2.5V reference voltage is divided down by an internal resistive divider to provide a 0.25V precision reference voltage to the error amplifier non-inverting terminal.Setting the LED CurrentFP7102 is a constant current buck regulator. The LEDs are connected between V OUT and FB pin as shown in the Typical Application Circuit section. The FB pin is 0.25V in regulation. Therefore, the LEDs current I F is set by V FB and the resistor R 2 connected between FB and ground by the following equation:2FB F R V I =I F should not exceed the 2A current capability of FP7102 and therefore R 2 minimum value must be approximately 0.13Ω.Output VoltageThe output voltage is primarily determined by the number of LEDs(n) connected between V OUT and FB pin. Therefore, V OUT can be written as:)V )V n ((V FB F OUT +⨯=Where V F is the forward voltage of one LED at the set LED current level (see LED manufacturer datasheet for forward characteristics curve)OscillatorThe fixed PWM frequency is generated by an internal oscillator. Its typical values are 320KHz.Thermal ProtectionThe thermal protection is triggered when junction temperature is higher than 150℃ that may occurs by an abnormal heavy current loading. When this happens, the FP7102 turns output off. Once the junction temperature is cooled down to lower than 130℃, FP7102 starts again and turns the power switch on.Over Current ProtectionThe FP7102 uses cycle-by-cycle current limit to protect the internal power switch. During each switching cycle, a current limit comparator detects if the power switch current exceeds the internal setting current. If it does, over current protection function decrease the oscillator frequency to prevent thermal issue.This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.Typical ApplicationFP7102 1W / 3W LED for DC Input CircuitDimming Control CircuitChanging the duty cycle of PWM signal can get different LED current. The PWM signal is recommended above 10kHz. The application circuit is shown in the following.The LED current can be calculated by the following equation:2R 5R 3R )V Duty V (4R V I FB PWM FB LED +-⨯⨯-=This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.Package OutlineSOP-8LUNIT: mmNote:1. Package dimensions are in compliance with JEDEC outline: MS-012 AC.2. Dimension “D” does not include molding flash, protrusions or gate burrs.3. Dimension “E” does not include inter-lead flash or protrusions.SymbolsMin. (mm) Max. (mm)A 1.346 1.752A1 0.101 0.254 A2 1.498 D 4.800 4.978 E 3.810 3.987 H 5.791 6.197 L 0.406 1.270 θ° 0°8°This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.SOP-8L (EP)UNIT: mmExposed PAD Dimensions:Note:1. Package dimensions are in compliance with JEDEC outline: MO-178 AA.2. Dimension ”D” does not include molding flash, protrusions or gate burrs.3. Dimension “E” does not include inter-lead flash or protrusionsSymbols Min. (mm) Max. (mm)A 1.346 1.752 A1 0.050 0.152 A2 1.498 D 4.800 4.978 E 3.810 3.987 H 5.791 6.197 L 0.406 1.270 θ° 0° 8°SymbolsMin. (mm)Max. (mm)E1 2.184 REFD1 2.971 REF。
MA4P7102F-1072T Product DetailsHome | Customer Support | Suppliers | Site Map | Privacy Policy | Browser Support© 2007 Tyco Electronics Corporation All Rights ReservedCorporate Home | Electronic Components | Segments | Who We AreNo Image AvailableMA4P7102F-1072TActiveSwitch Attenuator DiodesAlways EU RoHS/ELV Compliant (Statement of Compliance )Product Highlights:z High Average Power SMQ PIN Diode z 1 - 1,000 MHz Operating Frequency z Dynamic Resistance = .50 Ω z Total Capacitance = 1.00 pFz Breakdown Voltage, Min. = 200 VDC View all FeaturesCheck Pricing & Availability Search for ToolingProduct Feature SelectorContact Us About This ProductQuick LinksDocumentation & Additional Information Product Drawings:z None AvailableCatalog Pages/Data Sheets:z None AvailableProduct Specifications:z None AvailableApplication Specifications:z None AvailableInstruction Sheets:z None AvailableCAD Files:z None Available Additional Information:z Product Informationz Product Line InformationRelated Products:z ToolingProduct Features (Please use the Product Drawing for all design activity)Product Type Features:z Product Type = High Average Power SMQ PIN Diodez Package = ODS-1072Electrical Characteristics:z Operating Frequency (MHz) = 1 – 1,000z Dynamic Resistance (Ω) = 0.50 z Total Capacitance (pF) = 1.00z Breakdown Voltage, Min. (VDC) = 200Industry Standards:z RoHS/ELV Compliance = RoHS compliant, ELV compliantz Lead Free Solder Processes = Not reviewed for lead free solderprocessz RoHS/ELV Compliance History = Always was RoHS compliantOther:z Brand = M/A-COMProvide Website Feedback | Contact Customer SupportWorldwPage 1of 1MA4P7102F-1072T Product Details - Tyco Electronics 25/09/2007/TE/bin/TE.Connect?C=1&M=BYPN&TCPN=MA...元器件交易网。
Lamp Application 版別
A
一般描述
FP7102是一顆採用電壓控制模式的降壓轉換IC,用於驅動高功率LED元件,內含2A P-Channel的Power MOS,低的R DS(ON)可提升系統整體效率,以及低的回授參考電壓0.25V,可降低功率損耗與提升效能,最大佔空比可達100%。
不同瓦數的LED,電流大小也有所不同,可經由外部電阻來設定電流值;在應用上還可以透過EN Pin來做調光控(Dimming),達到省電模式,IC本身有過電流與過溫保護功能。
特色
●最大輸出負載:2A
●高轉換效率:90%
●回授參考電壓:0.25V
●工作頻率:320kHZ
●最大佔空比:100%
●過溫保護&過電流保護
●輸入操作電壓範圍:3.6 to 25V
●提供ON/OFF功能
●標準SOP8封裝
PIN腳描述
Lamp Application 版別
A MR16 Lamp與應用電路板
MR16 Lamp與應用電路板
電路板正視圖電路板背視圖
Lamp Application
版別
A
應用應用電路圖電路圖
圖一、FP7102 LED Driver For MR16應用電路
※元件應用說明
● 蕭特基二極體D2~D5組成全波橋式整流電路,透過此電路將交流輸入AC 12V 轉換成直流電源;即使直流輸入時,也無正負極問題,皆可正常動作。
元件選用蕭特基二極體作為整流電路,因為蕭特基二極體具有低的順向導通電壓,我們這裡使MSCD104 1A 40V ,主要根據LED 瓦數與PCB 空間,來決定二極體的規格尺寸。
● C1為濾波電容,將經過整流後的脈動直流電源濾波為穩定的直流源。
輸入電源是交流 源時,電容值選用須特別注意,電容太小影響了濾波效果,若無法得到穩定的直流源, 可能會造成漣波最低點電壓低於LED 的導通電壓,使得LED 不亮或是平均亮度下降, 所以在選用電容值時必須考量到LED 瓦數與LED 串並聯數目,簡單的說LED 瓦數愈大,相對的電容值要愈大。
● 當NMOS 截止時,D1導通提供電感放電迴路。
D1使用1A 40V 的蕭特基二極體(MSCD104)。
● R2用來設定LED 電流值之回授電阻,R3是預留用來分散流經電阻的電流,增加電阻 瓦數;LED 瓦數不同電流值也會不一樣,設計時不可超過LED 最大電流值,會導致LED 壽命迅速降低甚至燒毀,電流設定公式I LED = 0.25V/(R2//R3)。
Lamp Application 版別
A
●R1、C2是整個系統的補償迴路,關係到系統的穩定度。
●C3、C4是用來降低漣波電流,會依據LED電流大小來調整電容值,但因成本與空間考
量,電容的選用也需注意。
另外輸入與輸出電容的選擇可依成本空間來決定,鉭電容體積小容值大但是價格較高,適合用於LED電路上,若無空間考量也可使用成本便宜的電解電容,相對的體積比鉭電容大很多,元件選用可依設計者自行評估與考量。
●電感L1有儲能與濾波的功用,感值愈大漣波愈小,相對的感值愈小漣波愈大,選用電
感需注意電感是否適合高頻操作,及電感額定飽和電流值。
零件表
表一、EVAL BOARD Bill of Materials
Quantity Part Reference Value Description
1 R1 3 kΩ電阻、1%、0603
1 R
2 0.71Ω電阻、1%、1206
1 R3 NC NC
2 C1 220uF LowESR電解容
1 C
2 0.1uF 電容、X5R、0603
1 C3 1uF 電容、X5R、0603
1 C4 10uF/16V SMD鉭電容
1 L1 10uH/0.93A 電感、SD5D12-100M
5 D1~D5 MSCD104 Schottky Diode
1 IC1 FP710
2 LED Driver IC
(零件值是以1W LED為設計)
Lamp Application
版別
A
電路板佈線圖
圖二、板子上層 圖三、板子底層
電路佈局建議與注意:
● 大電流路徑需鋪銅,由AC IN 到IC VCC Pin ,再從SW Pin 經由蕭特基二極體D1、電感L1、LED +到回授電阻R2與R3。
● 開關切換SW Pin 、D1與L1之間的距離盡量要短且以鋪銅方式連接,減少寄生電感產生的震盪,對於EMI 有所改善。
● 為了達到系統穩定性,補償電阻R1與電容C2盡量靠近IC COMP Pin ,且不要靠近電感L1。
● 輸入電容C1儘可能靠近IC VCC Pin 腳,IC GND Pin 能與輸入輸出電容靠近與共地。
● 回授電阻R1與R2,連接到FB Pin 距離愈短愈好。
● 板子面積很小,在Layout 時特別注意散熱問題。
Lamp Application 版別
A
電路效能
表二、輸入用直流電源,電壓範圍9~15V,電源是從橋式兩端點接近來,量測時考量到蕭特基二極體功率損耗,從表中可以看出Iout幾乎不受輸入電壓不同而變動,效率為79.75~86.65%,電流精確度0.00~0.28%。
(表二與表三的數值是用1W LED量測)
表二、DC Input V olatge
Vin(V) Iin(A) V out(V) Iout(A) Efficiency(%)
Current Accuracy
9 0.311 6.93 0.350 86.65 0.00%
10 0.284 6.91 0.350 85.16 0.00%
11 0.263 6.91 0.351 83.87 0.28%
12 0.244 6.90 0.351 82.71 0.28%
13 0.229 6.90 0.350 81.12 0.00%
14 0.213 6.89 0.350 80.86 0.00%
15 0.201 6.89 0.349 79.75 0.28%
下表三列出了在輸入使用AC 12V情況下,改變輸入電解電容值,所做的量測,可以發現電容大於220uF以上,其輸出電流接近設計值較為精準,但對於板子尺寸、成本、可靠度與平均電流必須做折中考量,電容值愈大耐壓愈高,相對的體積大,如果考量到電容體積,可以改用SMD的鉭電容。
表三、AC Input V oltage
C6(uF) Vin(V) Iin(A) V out(V) Iout(A) Efficiency(%)
Current Accuracy
100 11.94 0.417 6.83 0.335 45.95 4.28% 220 11.93 0.430 6.88 0.348 46.67 0.57% 330 11.92 0.443 6.88 0.348 45.34 0.57% 470 11.92 0.437 6.88 0.348 45.96 0.57%
Lamp Application
版別
A
圖四~圖七列出了在不同輸入電容值情況下,輸入漣波Vin:CH1與SW:CH2的變化情形,輸入電容值愈大輸入電壓漣波愈小,圖四中因為漣波太大,造成Vin 最小值剛好等於LED 導通電壓,這時候PWM 全開,如果電容更小時LED 導通電壓不足,造成LED 會無法發亮,圖七中電容用330uF 就能讓輸入電壓不會過低。
(量測串聯3顆1W LED)
圖四、Cin=100uF 圖五、Cin=220uF
圖六、Cin=330uF 圖七、Cin=470uF
結論
在使用FP7102 LED Driver For MR16 Lamp ,可達到應用板小型化、可靠度信賴、元件使用精簡與整體高效能運作,在應用上能夠有更大的彈性空間。
因為電路板小所以在佈局上要特別注意,高功率的LED 本體溫度也很高,在擺放上需注意避免熱源影響到其它元件;輸入輸出電容值,取決於LED 電流大小,選用上需特別注意,會影響LED 的運作效能,只要掌握以上幾點設計準則就沒什麼問題。