第八章 北航 材料力学 全部课件 习题答案
- 格式:pdf
- 大小:579.79 KB
- 文档页数:12
第八章 组合变形及连接部分的计算 习题解[习题8-1] 14号工字钢悬臂梁受力情况如图所示。
已知m l 8.0=,kN F 5.21=,kN F 0.12=,试求危险截面上的最大正应力。
解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压性能相同,故只计算最大拉应力:式中,z W ,y W 由14号工字钢,查型钢表得到3102cm W z =,31.16cm W y =。
故MPa Pa mm N m m N 1.79101.79101.168.0100.11010228.0105.236363363max=⨯=⨯⨯⨯+⨯⨯⨯⨯⨯=--σ [习题8-2] 受集度为 q 的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为 030=α,如图所示。
已知该梁材料的弹性模量 GPa E 10=;梁的尺寸为m l 4=,mm h 160=,mm b 120=;许用应力MPa 12][=σ;许用挠度150/][l w =。
试校核梁的强度和刚度。
解:(1)强度校核)/(732.1866.0230cos 0m kN q q y =⨯== (正y 方向↓))/(15.0230sin 0m kN q q z =⨯== (负z 方向←))(464.34732.1818122m kN l q M y zmaz ⋅=⨯⨯== 出现在跨中截面)(241818122m kN l q M z ymaz ⋅=⨯⨯== 出现在跨中截面)(5120001601206161322mm bh W z =⨯⨯==)(3840001201606161322mm hb W y =⨯⨯==最大拉应力出现在左下角点上:yy z z W M W M maxmax max +=σ MPa mmmm N mm mm N 974.1138400010251200010464.33636max=⋅⨯+⋅⨯=σ因为 MPa 974.11max =σ,MPa 12][=σ,即:][max σσ<所以 满足正应力强度条件,即不会拉断或压断,亦即强度上是安全的。
8-1 试求图示各杆的轴力,并指出轴力的最大值。
(2) 取1-1(3) 取2-2(4) 轴力最大值: (b)(1) 求固定端的约束反力; (2) 取1-1(3) 取2-2(4) (c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1(3) 取2-2 (4) 取3-3截面的右段;(5) 轴力最大值: (d)(1) 用截面法求内力,取1-1、(2) 取1-1(2) 取2-2(5) 轴力最大值: 8-2 试画出8-1解:(a) (b) (c) (d) 8-5与BC 段的直径分别为(c) (d)F RN 2F N 3 F N 1F F Fd 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。
解:(1) 用截面法求出(2) 求1-1、2-28-6 题8-5段的直径d 1=40 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。
解:(1)用截面法求出1-1、2-2截面的轴力;(2) 求1-1、2-2截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷F =10 kN 作用,杆的横截面面积A =1000 mm 2,粘接面的方位角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。
解:(1) (2) 8-14 2=20 mm ,两杆F =80 kN 作用,试校核桁架的强度。
解:(1) 对节点A(2) 列平衡方程 解得: (2) 8-15 图示桁架,杆1A 处承受铅直方向的载荷F 作用,F =50 kN ,钢的许用应力[σS ] =160 MPa ,木的许用应力[σW ] =10 MPa 。
解:(1) 对节点A (2) 84 mm 。
8-16 题8-14解:(1) 由8-14得到的关系;(2) 取[F ]=97.1 kN 。
8-18 图示阶梯形杆A 2=100 mm 2,E =200GPa ,试计算杆AC 的轴向变形 解:(1) (2) AC 8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A 处承受载荷F 作用。
xx8-1 试求图示各杆的轴力,并指出轴力的最大值。
取 1-1 截面的左段;(2) (3) F N1取 2-2 截面的右段;F R用截面法求内力,取1-1、2-2、 3-3 截面;(1) (2) (3) (4)(5)(d)(1)取 1-1 截面的左段2;kN 取 2-2 截面的左段;取 3-3 截面的右段;轴力最大值: 用截面法求内力,取13kN 2 2kN33kN12 3F N11 31kN 21 32 F N33kN1-1、 2-2 截面;38-2 解:8-5 (2) (2) 取 1-1 截面的右段; 取 2-2 截面的右段F ;N112kN 22kN(5) 轴力最大值: 试画出 8-1所示各杆的轴力图。
(a) (b) (c) (d)F NF FN N(+)F图示阶梯形圆截面杆,承受F 轴N 向载荷(+) F 1=50 kN 与3kNF 2作用, 1kN (+) 1kN(-)(+) Fx AB 与 BC 段的直径分别为 x (-)1kN2kNd 1=20 mm 和 d 2=30 mm ,如欲使 AB 与 BC 段横截面上的正应力相同,试求载荷 F 2 之值。
(2) 求 1-1、 2-2 截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷 F=10 kN 作用,杆的横截面面积 A=1000 mm 2,粘接面的方位 角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。
l 1l 2解: (1) 用截面法求 AB 、 BC 段的轴力;(2) 分段计F 算个杆向变形;FAC 杆缩短。
2F8-22 图示桁架,杆 1与A 杆 2的横截面面积与材料均相B 同,在节点 A 处承受C 载荷 F 作用。
从解: 8-6 解: (1) 用截面法求出 F 11-1、2-2 截面的轴力;(2) 求 1-1、 2-2 截面的正应A 力 ,利用正应力相B 同 ;题 8-5 图所示圆截面杆,已知载荷 1F 1=200 kN ,F 2=1020 kN ,CAB 段的直径 d 1=40 mm ,如 欲使 AB 与 BC 段横截面上的正应力相同,试求 BC 段的直径。
- 1 -第8章 杆件的拉伸与压缩8-1 填空题:8-1(1) 如图拉杆的左半段是边长为b 的正方形,右半段是直径为b 的圆杆。
两段许用应力均为 ][σ,则杆的许用荷载 =][F ][4π2σb 。
8-1(2) 图示拉杆由同种材料制成,左部分是内径为D 、外径为D 2的空心圆杆,右部分为实心圆杆,要使两部分具有相同的强度,右部分的直径应取 D3 。
8-1(3) 杆件轴向拉伸或压缩时,其斜截面上切应力随截面方位的不同而不同,而切应力的最大值发生在与轴线间的夹角为 45° 的斜截面上。
8-1(4) 图中两斜杆的抗拉刚度为EA ,A 点的竖向位移为EAFa 2 。
8-1(5) 图中结构中两个构件的厚度b 相同,则它们的挤压面积 =A αcos ab。
8-1(6) 图中结构中,若 h d D 32==,则螺栓中挤压应力、拉伸应力和剪切应力三者的比例关系是 9:24:8 。
题 8-1(5) 图题 8-1(1) 图题 8-1(2) 图题 8-1(6)图F题 8-1(4) 图- 2 -分析:222bs 3π4)(π4d F d D F =−=σ, 2tπ4d F =σ, 22π3πd F hd F ==τ,故有 9:24:883:1:31::tbs ==τσσ。
8-2 单选题:8-2(1) 图示的等截面杆左端承受集中力,右端承受均布力,杆件处于平衡状态。
1、3两个截面分别靠近两端,2截面则离端部较远。
关于1、2、3这三个截面上的正应力的下列描述中,正确的是 C 。
A .三个截面上的正应力都是均布的 B .1、2两个截面上的正应力才是均布的 C .2、3两个截面上的正应力才是均布的 D .1、3两个截面上的正应力才是均布的8-2(2) 若图示两杆的材料可以在铸铁和钢中选择,那么,综合强度和经济性两方面的因素, C 更为合理。
A .两杆均选钢 B .两杆均选铸铁C .① 号杆选钢,② 号杆选铸铁D .① 号杆选铸铁,② 号杆选钢8-2(3) 图示承受轴向荷载的悬臂梁中,在加载前的一条斜直线KK 在加载过程中所发生的变化是 D 。
材料力学_北京航空航天大学中国大学mooc课后章节答案期末考试题库2023年
1.一直杆轴向受拉压,横截面上只有轴力没有剪力,故横截面上只有正应力没
有切应力。
答案:
错误
2.一空心圆截面直杆,轴向受拉,其横截面内径变小。
答案:
正确
3.静不定结构中的压杆失稳之后,若外载荷继续增加,该压杆的轴向压力保持
不变(按照小挠度理论),但是压杆两端相对位移增加,可能导致其压弯组合破坏。
答案:
正确
4.利用对称性简化结构受力与变形分析,本质是直接确定结构对称面上的某些
内力与位移。
答案:
正确
5.如图所示两端固定阶梯型钢杆AC,左右两段长度相等,横截面面积
,当环境温度升高时,判断中间截面B的移动方向。
答案:
向右移动
6.组合梁的两种受载情况(1)和(2)如图所示。
下列结论中正确的是。
答案:
两者的Q图、M图均不同。
7.如图所示两端铰支等截面梁受均布荷载q作用,中央截面C处有弹簧支座,
其弹性系数为K。
以下4项判断中,正确的是。
(1) 该梁为一度静不定梁。
(2) 若解除中央截面C处的弹簧支座,则相应的变形协调条件是C截面向下
的挠度等于弹簧的压缩量。
(3) 若弹性系数,则中央支座相当于可动铰支座。
(4) 若,则梁AB相当于简支梁。
答案:
全部正确。
8.如图所示为T字形截面梁AD的横截面与弯矩图,z轴为形心轴,B截面和
C截面的弯矩大小相等、符号相反,则有。
答案:
最大拉应力位于截面C,最大压应力位于截面B。
第八章习题8-1斜杆AB的截面为100×100mm2的正方形,若P=3kN,试求其最大拉应力和最大压应力。
8-2水塔受水平风力的作用,风压的合力P=60kN.作用在离地面高H=15m 的位置,基础入土深h=3m 设土的许用压应力[б]=0.3MPa,基础的直径d=5m 为使基础不受拉应力最大压应力又不超过[б],求水塔连同基础的总重G允许的范围。
8-3悬臂吊车如图所示起重量(包括电葫芦)G=30kN衡量BC 为工字钢,许用应力[]=140MPa,试选择工字钢的型号(可近似按G行至梁中点位置计算)8-4如图所示,已知,偏心距,竖杆的矩形截面尺寸材料是3号钢,,规定安全系数=1.5。
试校核竖杆的强度。
8-5 若在正方形截面短柱的中间处开一个槽,使截面面积减小为原截面面积的一半,问最大压应力将比不开槽时增大几倍?8-6 图示一矩形截面杆,用应变片测得杆件上、下表面的轴向应变分别为材料的弹性模量。
(1)试绘制横截面的正应力分布图。
(2)求拉力P及其偏心距e的数值。
8-7 一矩形截面短柱,受图示偏心压力P作用,已知许用拉应力许用压应力求许用压力。
8-8 加热炉炉门的升降装置如图所示。
轴AB的直径d=4cm,CD为的矩形截面杆,材料都是Q235钢,已知力P=200N。
(1)试求杆CD的最大正应力;(2)求轴AB的工作安全系数。
提示:CD杆是压缩与弯曲的组合变形问题。
AB轴是弯曲与扭转的组合变形构件,E处是危险截面,M=154.5N*m,T=173.2N*m。
8-9 一轴上装有两个圆轮如图所示,P、Q两力分别作用于两轮上并处于平衡状态。
圆轴直径d=110mm,=60Mpa,试按照第四强度理论确定许用载荷。
8-10 铁道路标的圆信号板,装在外径D=60mm的空心圆柱上。
若信号板上作用的最大风载的强度p=2kPa,已知,试按第三强度理论选定空心柱的壁厚。
8-11 一传动轴其尺寸如图所示,传递的功率P=7kW,转速,齿轮I上的啮合力与齿轮结圆切线成的夹角,皮带轮Ⅱ上的两胶带平行,拉力为和,且。
《材料力学》课后习题答案详细在学习《材料力学》这门课程时,课后习题是巩固知识、加深理解的重要环节。
一份详细准确的课后习题答案,不仅能够帮助我们检验自己的学习成果,还能在遇到困惑时提供清晰的思路和正确的解法。
首先,让我们来谈谈材料力学中一些常见的概念和原理。
材料力学主要研究物体在受力作用下的变形、内力以及应力等情况。
例如,拉伸和压缩是常见的受力形式。
当一根杆件受到轴向拉力时,它会沿轴向伸长,同时横截面积会减小;而受到轴向压力时,则会沿轴向缩短,横截面积可能增大。
在这个过程中,我们需要计算内力、应力和应变,以评估杆件的强度和稳定性。
以一道典型的拉伸习题为例。
假设有一根圆截面的直杆,直径为d,长度为 L,受到轴向拉力 F 的作用。
我们首先需要计算横截面上的正应力。
根据公式,正应力等于内力除以横截面积。
内力就是所受的拉力 F,横截面积为πd²/4。
所以,正应力σ = 4F /(πd²) 。
接下来,计算杆的伸长量。
根据胡克定律,伸长量ΔL = FL /(EA) ,其中 E是材料的弹性模量,A 是横截面积。
再来看一道关于弯曲的习题。
有一矩形截面的梁,宽度为 b,高度为 h,承受一个集中力 P 作用在梁的中点。
这时候,我们需要计算梁横截面上的最大正应力。
通过分析可以知道,最大正应力出现在梁的上边缘或下边缘。
根据弯曲正应力公式,最大正应力σmax = Mymax /I ,其中 M 是弯矩,ymax 是离中性轴最远的距离,I 是惯性矩。
对于矩形截面,惯性矩 I = bh³/12 。
在解答扭转习题时,也有相应的方法和公式。
例如,对于一个圆轴扭转的问题,我们要计算切应力和扭转角。
切应力的分布规律是沿半径线性分布,最大切应力在圆轴的外表面。
扭转角则可以通过公式计算得出。
在处理组合变形的习题时,情况会稍微复杂一些。
可能同时存在拉伸(压缩)、弯曲和扭转等多种变形。
这时候,需要分别计算每种变形引起的应力和应变,然后根据叠加原理进行综合分析。