超声诊断技术学共34页文档
- 格式:ppt
- 大小:2.17 MB
- 文档页数:34
超声诊断学第一章绪论超声诊断学(Ultrasonic Diagnosis):包括超声显像、普通X线诊断学、X线电子计算机体层成像(CT)、核素成像、磁共振成像(MRI)等,是以电子学与医学工程学的最新成就和解剖学、病理学等形态学为基础,并与临床医学密切结合的一门比较成熟的医学影像学科,(既可非侵入性地获得活性器官和组织的精细大体断层解剖图像和观察大体病理形态学改变,亦可使用介入性超声或腔内超声探头深入体内获得超声图像,从而使一些疾病得到早期诊断。
超声诊断学的主要内容:1、脏器病变的形态学诊断和器官的超声大体解剖学研究;2、功能性检测;3、介入性超声(Interventional ultrasound)的研究;4、器官声学造影检查;超声诊断学的特点:1、超声波对人体软组织有良好的分辩能力,有利于识别生物组织的微小病变。
2、超声图像显示活体组织可不用染色处理,即可获得所需图像,有利于检测活体组织。
3、超声信息的显示有许多方法,根据不同需要选择使用,可获得多方面的信息,达到广泛应用。
超声诊断学的优点:1、无放射性损伤,为无创性检查技术;2、取得的信息量丰富,具有灰阶的切面图像,层次清楚,接近解剖真实结构;3、对活动界面能作动态的实时显示,便于观察;4、能发挥管腔造影功能,无需任何造影剂即可显示管腔结构;5、对小病灶有良好的显示能力;6、能取得各种方位的切面图像,并能根据图像显示结构和特点,准确定位病灶和测量其大小;7、能准确判定各种先天性心血管畸形的病变性质和部位;8、可检测心脏收缩与舒张功能、血流量、胆囊收缩和胃排空功能;9、能及时取得结果,并可反复多次进行动态随访观察,对危重病人可床边检查;10、检查费用低廉,容易普及。
(优势:无创,精确,方便)超声诊断发展简史:探索试验阶段:1942年(连续穿透式)临床实用阶段:50年代(脉冲反射式)A型、B型、M型、D型开拓性前进阶段:60年代飞跃发展阶段:70年代产生两个飞跃,灰阶成像和实时成像现代超声的里程碑—软组织灰阶成像(第一次革命)80年代数字扫描变换(DSC)、数字图像处理(DSP)等;彩色多普勒血流显像(CDFI)研究成功。
•超声诊断学概述•超声诊断学基础知识•超声诊断仪器简介•人体各部位超声诊断技术•超声诊断学在临床上的应用•超声诊断学的未来发展趋势和挑战•参考文献目录超声诊断学概述超声波具有良好的穿透性、反射性、折射性等物理特性,可以用来探测人体内部结构,并生成图像。
通过显示人体内部器官、组织的形态、大小、相对位置等信息,为临床诊断提供重要依据。
超声诊断学是利用超声波的物理特性,对人体进行检查、诊断的一门学科。
超声诊断学定义等系统。
等)、心脏、血管、肌肉骨骼等部位的检查与诊断具有重要作用。
诊断和治疗方案。
超声诊断学的发展经历了从模拟超声到数字超声、从单探头超声到多探头超声、从传统超声到彩超等多个阶段。
多探头超声和彩超进一步提高了超声诊断的准确性和分辨率,为临床提供了更加精细的诊断信息。
早期的超声诊断使用模拟信号技术,图像质量不稳定,而数字超声实现了信号的数字化处理,提高了图像质量和稳定性。
随着计算机技术的不断发展,超声诊断技术也在不断进步和完善,为医学诊断和治疗提供了更加有力的支持。
超声诊断学基础知识超声波的产生超声波主要通过压电效应产生,即当某些材料(如晶体)受到机械压力时,会产生高频振动,形成超声波。
超声波的定义超声波是指频率高于20000赫兹的机械振动波,由于其频率高,因此具有良好的穿透性和反射性,在医学诊断中具有重要应用价值。
超声波的传播超声波在介质中传播时,会因介质的特性、密度、温度等因素影响其传播速度和方向。
超声波的基本概念超声波的强度取决于声压和声强,声压是指振动表面的压力变化,声强则是指单位时间内穿过某一面积的声能流。
声压与声强声阻抗是描述超声波在介质中传播时遇到的阻力大小的物理量,主要由介质的密度和声速共同决定。
声阻抗超声波在传播过程中会因介质的吸收和散射而逐渐减弱,这种减弱现象称为衰减。
衰减与吸收直线传播01超声波在均匀介质中传播时,会沿直线传播,遇到界面时会发生反射和折射。
反射与折射02超声波在传播过程中遇到不同密度的界面时,会发生反射和折射现象,反射是指声波返回原介质,折射是指声波进入另一种介质后方向发生改变。