态密度g(E)=dzdE能量E附近单位能量间隔内电子的量子状态数
- 格式:ppt
- 大小:692.50 KB
- 文档页数:22
第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2 2k2 2(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。
试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14(3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。
*22mLn31*2V(2mng(E)=(E-EC)2解232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2(2mn1V Z0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V(2mn2(E-E)Ec+8m*L2Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
半导体物理学(刘恩科第七版)前五章课后习题解答( ) 半导体物理学(刘恩科第七版)前五章课后习题解答第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h 2 k 2 h 2 ( k ? k1 ) 2 h 2 k 21 3h 2 k 2 Ec= + , EV (k ) = ? 3m0 m0 6m 0 m0 m0 为电子惯性质量,k1 =(1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:由2? 2 k 2? 2 (k ? k1 ) + =0 3m0 m0π, a = 0.314nm。
试求:a3 k14 d 2E 2? 2 2? 2 8? 2 又因为:2c = + = >0 3m0 m0 3m0 dk 得:k = 所以:在k = 价带:3 k处,Ec取极小值4dEV 6? 2 k =? = 0得k = 0 dk m0 d 2 EV 6? 2 又因为=? < 0, 所以k = 0处,EV 取极大值m0 dk 22 k123 因此:E g = EC ( k1 ) ? E V (0) = = 0.64eV4 12m0 ?2 = 2 d EC dk 2 3 = m0 83 k = k1 4(2)m* nC* (3)mnV =2 d 2 EV dk 2=?k = 01m0 6(4)准动量的定义:p = ?k 所以:?p = (?k )3 k = k1 43 ? (?k ) k =0 = ? k1 ? 0 = 7.95 × 10 ? 25 N / s 42. 晶格常数为0.25nm 的一维晶格,当外加102V/m,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:f = qE = h ? (0 ??k ?t 得?t = ??k ? qEπ ) a ?t1 = = 8.27 × 10 ?8 s ?19 2 ? 1.6 × 10 × 10 π ? (0 ? ) a ?t 2 = = 8.27 × 10 ?13 s ?19 7 ? 1.6 × 10 × 10第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
第三章 半导体中载流子的统计半导体靠电子和空穴传导电流,为了了解和描述半导体的导电过程,必须首先了解其中电子和空穴按能量分布的基本规律,掌握用统计物理学的方法求解处于热平衡状态的一块半导体中的载流子密度及其随温度变化的规律。
这就是本章要讨论的主要问题。
§3.1 状态密度为了计算半导体中热平衡载流子的密度及其随温度变化的规律,我们需要两方面的知识:第一,载流子的允许量子态按能量如何分布;第二,载流子在这些允许的量子态中如何分布。
一、 热平衡状态下的电子和空穴1、 热平衡状态在一定温度下,如果没有其他外界作用,半导体中能量较低的价带和施主能级上的电子依靠热激发跃迁到能量较高的受主或(和)导带,分别在价带和导带中引入可以导电的空穴和电子。
同时,高能量状态上电子也有一定的几率退回到它原来的低能量状态。
于是,电子和空穴在所有允许量子态间的可逆跃迁达到稳定的动态平衡,使导带和价带分别具有稳定的电子密度和空穴密度,这种状态即是热平衡状态。
处于热平衡状态下的导带电子和价带空穴称为热平衡载流子。
热平衡载流子具有稳定的、与温度相关的密度。
因此,需要解决如何计算确定温度下半导体热平衡载流子密度的问题。
2、 热平衡状态下的载流子密度由于导电电子和空穴分别分布在导带和价带的量子态中,所以电子和空穴的密度必取决于这些状态的密度分布,以及电子和空穴占据这些状态的几率。
如果状态密度是与能量无关的常数N C 和N V ,则电子和空穴的热平衡密度n 0和p 0直接由N C 和N V 分别与相应的几率函数相乘得出;如果状态密度是能量的函数g C (E) 和g V (E),则载流子密度的计算须采用积分方式,即dE E f E g n CE C )()(0⎰∞=;dE E f E g p VE V )()(0⎰∞-=因此,须了解态密度函数和几率函数的具体函数形式。
二、 态密度的定义及求解思路假定在能带中无限小的能量间隔d E 内有d Z 个量子态,则状态密度g (E )定义为dE dZ E g /)(=也就是说,状态密度g (E )就是在能带中能量E 的附近每单位能量间隔内的量子态数。
半导体物理学第四版答案【篇一:半导体物理学第四章答案】. 300k时,ge的本征电阻率为47?cm,如电子和空穴迁移率分别为3900cm2/( v.s)和1900cm/( v.s)。
试求ge 的载流子浓度。
解:在本征情况下,n?p?ni,由??1/??211知 ?nqun?pqupniq(un?up)ni?1113?3??2.29?10cm?19?q(un?up)47?1.602?10?(3900?1900)2. 试计算本征si在室温时的电导率,设电子和空穴迁移率分别为1350cm2/( v.s)和500cm2/( v.s)。
当掺入百万分之一的as后,设杂质全部电离,试计算其电导率。
比本征si的电导率增大了多少倍?解:300k时,un?1350cm2/(v?s),up?500cm2/(v?s),查表3-2或图3-7可知,室温下si的本征载流子浓度约为ni?1.0?1010cm?3。
本征情况下,??nqun?pqup?niq(un?up)?1?1010?1.602?10-19?(1350+500)?3.0?10?6s/cm11金钢石结构一个原胞内的等效原子个数为8??6??4?8个,查看附录b知si的晶格常数为820.543102nm,则其原子密度为822?3。
?5?10cm?73(0.543102?10)1?5?1016cm?3,杂质全部电离后,nd??ni,1000000掺入百万分之一的as,杂质的浓度为nd?5?1022?这种情况下,查图4-14(a)可知其多子的迁移率为800 cm2/( v.s) ??ndqun?5?1016?1.602?10-19?800?6.4s/cm?6.4??2.1?106倍比本征情况下增大了?6?3?103. 电阻率为10?.m的p型si样品,试计算室温时多数载流子和少数载流子浓度。
解:查表4-15(b)可知,室温下,10?.m的p型si样品的掺杂浓度na约为1.5?1015cm?3,查表3-2或图3-7可知,室温下si的本征载流子浓度约为ni?1.0?1010cm?3,na??nip?na?1.5?1015cm?3ni(1.0?1010)24?3n???6.7?10cm15p1.5?104. 0.1kg的ge单晶,掺有3.2?10-9kg的sb,设杂质全部电离,试求该材料的电阻率??n=0.38m2/( v.s),ge的单晶密度为5.32g/cm3,sb原子量为121.8?。
g(E)=dZ dE其中,g(E)表示状态密度(即单位能量间隔内的量子态数),dZ表示E~E+dE能量间隔内的量子态。
理解记忆:如下图,假设高度为dE的容器中装了体积为dZ的水,则单位高度间隔内的水体积为dZdE知道了状态密度的定义,那么,如何计算呢?一般按照如下“套路”即可计算:知道了计算方法,那么我们就以计算导带底附近的状态密度为例,来做题练习一下呗。
1.计算单位k空间的的量子态数波失k具有量子数的作用,它描述晶体中电子共有化运动的量子状态。
根据周期性边界条件,波失k只能取分立的数值。
k x=2πn xL(n x=0,1,2…)k y=2πn yL(n y=0,1,2…)k z=2πn zL(n z=0,1,2…)其中,L是半导体晶体的线度,L3=V。
因为k描述了电子的量子状态,而且在k空间内,一组整数(n x,n y,n z)决定一点,并对应一个波失,该点就是电子的一个允许能量状态的代表点。
所以,电子有多少允许的量子态,在k空间内就要多少代表点。
每一个代表点的体积为(2πL )3,则单体积中的代表点为(L2π)3,加上电子的自旋,则在k空间内,电子允许的态密度为2V8π32. 计算E~E+dE对应的k空间的体积在k空间中,以∣k∣为半径作一球面,它就是能量为E(k)的等能面;再以k+dk 为半径所作的球面,它是能量为(E+dE)的等能面,则这两个球壳之间的体积是4πk2dk。
3. 计算k 空间内一共的量子态数(dZ)要计算能量在E ~ (E+dE)之间的量子态数,只要计算这两个球壳之间的量子态数即可。
因为这两个球壳之间的体积是4πk2dk,而k空间中,量子态密度是2v/8π3,所以,在能量E(E+De)之间的量子态数为dZ=2V8π3×4πk2dk在导带底附近,E(k)=E c+ℏ2k22m n∗,则有,k=(2m n∗)1/2(E−E c)1/2ℏkdk=m n∗dEℏ2所以,最终dZ=2V8π3×4π(2mn∗)12(E−E c)12ℏm n∗dEℏ2 =V2π3(2mn∗)32ℏ3(E−Ec)12dE4. 计算状态密度g(E)g(E)=dZ dE=V2π3(2mn∗)32ℏ3(E−Ec)12Ok!!搞定。
半导体物理课后习题答案(精)第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2 2k22(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。
试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14 (3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。
*22mLn31*2V(2mng(E)=(E-EC)2解 232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2(2mn1VZ0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V(2mn2(E-E)Ec+8m*L2 Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2 2k2 2(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。
试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14(3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。
*22mLn31*2V(2mng(E)=(E-EC)2解232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2(2mn1V Z0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V(2mn2(E-E)Ec+8m*L2Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
第三章习题和答案1. 计算能量在E=E c 到 之间单位体积中的量子态数。
2*n 2C L 2m 100E E π+=解:2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C22CL E m h E E E m V dE E E m V dE E g Vd dEE g d E E m V E g cn c C nlm h E C nlm E C nn c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)()(21)(,)"(2)()(,)(,)()(2~.2'213''''''2'21'21'21'2222222C a a lt tz y x ac c zla z y t ay x t a xz t y x C C e E E m hk V m mm m k g k k k k k m h E k E k m m k k m m k k m m k mlk m k k h E k E K IC E G si -=⎪⎪⎭⎫ ⎝⎛+∙=+++====+++=*****系中的态密度在等能面仍为球形等能面系中在则:令)(关系为)(半导体的、证明:[]3123221232'2123231'2'''')()2(4)()(111100)()(24)(4)()(~ltn c nc l t t z m m sm VE E hm E sg E g si V E E h m m m dE dz E g dkk k g Vk k g d k dE E E =-==∴-⎥⎥⎦⎤⎢⎢⎣⎡+∙∙==∴∙=∇∙=+**πππ)方向有四个,锗在(旋转椭球,个方向,有六个对称的导带底在对于即状态数。
态密度计算态密度(Density of States,DOS)是材料科学中常用的一个概念,用来描述材料中不同能级上的电子数目。
它是研究材料电子结构和相关物理性质的重要参数。
在固体材料中,电子的能级是连续的,而不是离散的。
态密度可以用来描述在给定能量范围内的电子能级的分布情况。
简单来说,态密度表示的是单位能量范围内存在的电子能级的数量。
态密度可以分为两类:自由电子态密度和带态密度。
自由电子态密度是指在不考虑晶格影响的情况下,单个电子在能量空间内的分布情况。
带态密度则是考虑了晶格效应,描述的是固体材料中电子能级的分布情况。
对于自由电子态密度,可以通过简单的数学推导得到。
在三维情况下,自由电子的态密度可以表示为:D(E) = V/(2π²)(2m/ħ²)^(3/2)√(E)其中,D(E)表示态密度,V表示体积,m表示电子质量,ħ表示约化普朗克常数,E表示能量。
在带态密度中,由于晶格的影响,电子的能级会发生分裂,形成能带结构。
带态密度的计算则需要考虑晶格的周期性。
对于简单的晶体,可以通过布里渊区的积分来计算带态密度。
带态密度的计算可以使用第一性原理方法,如密度泛函理论(DFT)等。
在DFT中,通过求解电子的薛定谔方程,可以得到材料的能带结构和带态密度。
态密度的计算在材料科学中有着广泛的应用。
例如,在设计新型材料时,通过计算不同能级上的态密度,可以预测材料的电子行为和物理性质。
在能源领域,态密度的计算可以帮助我们了解材料的导电性、光学性质等,从而指导材料的设计和优化。
总结起来,态密度是描述材料中电子能级分布情况的重要参数。
通过计算态密度,可以帮助我们了解材料的电子行为和物理性质,对材料的设计和优化具有重要意义。
无论是自由电子态密度还是带态密度,计算方法都有其特定的推导和应用。
态密度的研究将在材料科学领域中持续发展,为我们提供更多的理论基础和实验指导。