二重积分的对称性教程文件
- 格式:ppt
- 大小:238.00 KB
- 文档页数:7
情形一:积分区域关于坐标轴对称定理4设二元函数在平面区域连续,且关于轴对称,则1)当(即就是关于得奇函数)时,有、2)当(即就是关于得偶函数)时,有、其中就是由轴分割所得到得一半区域.例5 计算,其中为由与围成得区域。
解:如图所示,积分区域关于轴对称,且即就是关于得奇函数,由定理1有、类似地,有:定理5设二元函数在平面区域连续,且关于轴对称,则其中就是由轴分割所得到得一半区域。
例6 计算其中为由所围。
解:如图所示,关于轴对称,并且,即被积分函数就是关于轴得偶函数,由对称性定理结论有:、定理6设二元函数在平面区域连续,且关于轴与轴都对称,则(1)当或时,有、(2)当时,有其中为由轴与轴分割所得到得1/4区域。
9例7 计算二重积分,其中: 、解:如图所示,关于轴与轴均对称,且被积分函数关于与就是偶函数,即有,由定理2,得其中就是得第一象限部分,由对称性知,,故、情形二、积分区域关于原点对称定理7 设平面区域,且关于原点对称,则当上连续函数满足1)时,有2)时,有、例8 计算二重积分,为与所围区域、解:如图所示,区域关于原点对称,对于被积函数,有,有定理7,得、情形三、积分区域关于直线对称定理8 设二元函数在平面区域连续,且,关于直线对称,则1);、2)当时,有、3)当时,有、例9 求,为所围、解:积分区域关于直线对称,由定理8,得,故、类似地,可得:定理9设二元函数在平面区域连续,且,关于直线对称,则(1)当,则有;(2)当,则有、例10 计算,其中为区域:, 、解:如图所示,积分区域关于直线对称,且满足,由以上性质,得:、注:在进行二重积分计算时,善于观察被积函数得积分区域得特点,注意兼顾被积函数得奇偶性与积分区域得对称性,恰当地利用对称方法解题,可以避免繁琐计算,使二重积分得解答大大简化。
积分区域关于原点对称二重积分积分区域关于原点对称二重积分是一类重要的积分问题,在数学分析和应用数学中有着广泛的应用。
在这篇文章中,我们将介绍积分区域关于原点对称二重积分的概念、性质以及计算方法,并提供一些应用举例。
我们来回顾一下二重积分的定义。
二重积分是对平面上的一块区域内的函数进行积分的操作。
对于一个定义在平面上的函数f(x,y),如果存在一个有限的积分区域D,可以用矩形D[i][j]来逼近这个积分区域,并且该区域上的函数f(x,y)在D[i][j]上是近似连续的,那么二重积分可以表示为:∬D f(x,y) dA = lim ∑(f(ξi,ηj)ΔAij)其中,ξi和ηj是D[i][j]上的某个点,ΔAij是D[i][j]的面积。
在二重积分中积分区域关于原点对称意味着满足对任意(x,y)∈D,都有(-x,-y)∈D。
这样的积分区域可以具有各种形状,如圆形、椭圆形、矩形等。
接下来,我们将介绍积分区域关于原点对称二重积分的性质。
首先,根据对称性,如果积分区域D关于原点对称,那么积分区域D内的函数f(x,y)满足f(x,y)=f(-x,-y)。
其次,如果积分区域D关于原点对称,那么计算二重积分时可以通过变量替换来简化计算。
可以选择新的坐标系(u,v),使得(u,v)在原点处对称,然后利用变量替换公式将积分区域D变换为新的坐标系下的积分区域D'。
这样,可以简化计算,并且往往能够将积分区域D'变为关于u或v的对称区域。
然后,我们将介绍积分区域关于原点对称二重积分的计算方法。
对于关于原点对称的积分区域D,可以根据具体的形状和函数的性质进行分析和计算。
以圆形积分区域为例,可以选择极坐标系进行计算。
在极坐标系下,积分区域可以表示为r∈[0,R],θ∈[0,2π]。
利用极坐标系的变换公式,可以将二重积分变为极坐标下的一重积分。
然后,根据函数的对称性和积分区域的性质,可以进一步简化计算。
其他形状的积分区域可以使用类似的方法进行计算,选择合适的坐标系进行变换,并利用对称性和性质进行简化。
二重积分的对称性
对称性计算二重积分:当被积函数integrand是奇函数时,在对称于原点的区域内积
分为0。
被积函数或被积函数的一部分是否关於某个坐标对称,积分区间是否对称,如果
可以就可以用对称性,只用积分一半再乘以2。
性质须知:
1、被内积函数提供更多不定积分内积出的函数,虽然看看可以探讨原函数的奇偶性,但是探讨分数函数回去奇偶性时,考量的仅仅就是被内积函数。
2、有界性:设函数f(x)在区间x上有定义,如果存在m\ue0,对于一切属于区间x 上的x,恒有|f(x)|≤m,则称f(x)在区间x上有界,否则称f(x)在区间上无界。
3、单调性:设立函数f(x)的定义域为d,区间i涵盖于d。
如果对于区间上任一两点x1及x2,当x1\ucx2时,恒存有f(x1)\ucf(x2),则表示函数f(x)在区间i上
就是单调递减的。
积分区域关于原点对称二重积分积分区域关于原点对称的二重积分是一种在平面上计算函数在某个区域上的积分值的方法。
在这种情况下,将积分区域分为两个对称部分,并利用对称性简化计算过程。
对于平面上的二重积分而言,我们可以将积分区域分成有限个子区域,然后对每个子区域进行积分后再求和得到最终的积分值。
在一些问题中,积分区域往往具有某种对称性,例如关于原点对称,这种对称性可以大大简化计算过程。
假设我们要计算一个关于原点对称的二重积分,即要计算的函数f(x, y)在关于原点对称的区域D上的积分。
为了利用对称性简化计算,我们可以将区域D分成两个关于x轴对称的子区域D1和D2,其中D1位于x轴的上方,D2位于x轴的下方。
我们可以利用对称性将D1和D2的积分值相加得到整个区域D上的积分值。
即∬Df(x, y)dA = ∬D1f(x, y)dA + ∬D2f(x, y)dA。
然后,我们可以进一步利用区域D1和D2的对称性来简化计算。
由于D1和D2是关于x轴对称的,所以在计算D1的积分时,我们可以先对x轴上方的一半区域D1'进行积分,然后将积分值乘以2。
同样地,在计算D2的积分时,我们可以先对x轴下方的一半区域D2'进行积分,然后将积分值乘以2。
即∬Df(x, y)dA = 2∬D1'f(x, y)dA + 2∬D2'f(x, y)dA =4∬D1'f(x, y)dA。
接下来,我们可以继续利用对称性简化D1'和D2'的计算过程。
由于D1'和D2'是关于y轴对称的,所以在计算D1'的积分时,我们可以先对y轴右侧的一半区域D1''进行积分,然后将积分值乘以2。
同样地,在计算D2'的积分时,我们可以先对y轴左侧的一半区域D2''进行积分,然后将积分值乘以2。
即∬Df(x, y)dA = 4∬D1'f(x, y)dA = 8∬D1''f(x, y)dA。
情形一:积分区域D 关于坐标轴对称定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则 1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有(,)0Df x y dxdy =⎰⎰ .2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有1(,)2(,)DD f x y dxdy f x y dxdy =⎰⎰⎰⎰ .其中1D 是由x 轴分割D 所得到的一半区域。
例5 计算3()DI xy y dxdy =+⎰⎰,其中D 为由22y x =与2x =围成的区域。
解:如图所示,积分区域D 关于x 轴对称,且3(,)()(,)f x y xy y f x y -=-+=-即(,)f x y 是关于y 的奇函数,由定理1有3()0Df xy y dxdy +=⎰⎰.类似地,有:定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则22(,),(,)(,).(,)0,(,)(,).D Df x y dxdy f x y f x y f x y dxdy f x y f x y ⎧-=⎪=⎨⎪-=⎩⎰⎰⎰⎰当当其中2D 是由y 轴分割D 所得到的一半区域。
例 6 计算2,DI x y d x d y =⎰⎰其中D 为由22;-22y x y x y =+=+=及所围。
解:如图所示,D 关于y 轴对称,并且2(,)(,)f x y x y f x y-==,即被积分函数是关于x 轴的偶函数,由对称性定理结论有:1122222022215x DD I x ydxdy x ydxdy dx x ydxdy -+====⎰⎰⎰⎰⎰⎰. 定理6 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴和y 轴都对称,则 (1)当(,)(,)f x y f x y -=-或(,)(,)f x y f x y -=-时,有(,)0Df x y dxdy =⎰⎰.(2)当(,)(,)(,)f x y f x y f x y -=-=时,有1(,)4(,)DD f x y dxdy f x y dxdy =⎰⎰⎰⎰其中1D 为由x 轴和y 轴分割D 所的到的1/4区域。
二重积分的对称性计算1.关于x轴对称:如果函数f(x,y)在以x轴为对称轴的区域D上连续,则有:∬D f(x, y) dxdy = ∬D f(x, -y) dxdy通过对称轴的改变,积分结果不会改变。
2.关于y轴对称:如果函数f(x,y)在以y轴为对称轴的区域D上连续,则有:∬D f(x, y) dxdy = ∬D f(-x, y) dxdy同样地,通过对称轴的改变,积分结果不会改变。
3.极坐标对称:如果函数f(r,θ)在以极轴(θ=0或θ=π)为对称轴的极坐标区域D上连续,则有:∬D f(r, θ) rdrdθ = ∬D f(r, -θ) rdrdθ通过极坐标的对称性,可以简化求解一些区域的积分。
4.直角坐标轴对称:如果函数f(x,y)在以直角坐标轴为对称轴的区域D上连续,则有:∬D f(x, y) dxdy = ∬D f(-x, y) dxdy = ∬D f(x, -y) dxdy = ∬D f(-x, -y) dxdy通过直角坐标轴的对称性,可以简化计算积分。
5.奇偶函数对称:如果函数f(x,y)在区域D上连续,且满足:f(-x,y)=-f(x,y),称之为关于x轴的奇函数;f(x,-y)=-f(x,y),称之为关于y轴的奇函数;f(-x,-y)=f(x,y),称之为关于原点的偶函数。
对于奇函数∬D f(x, y) dxdy = 0对于偶函数,有:∬D f(x, y) dxdy = 2∬R f(x, y) dxdy其中,R是D在第一象限的对称区域。
通过奇偶函数对称性,可以将积分范围缩小到对称区域,从而简化计算。
除了以上的对称性,还有一些特殊的积分对称性,例如平移对称、旋转对称等。
这些对称性的应用能够大大简化二重积分的计算过程,提高计算效率。
总结起来,二重积分的对称性计算是通过改变积分区域或者改变函数本身的形式,使得积分结果保持不变。
在具体计算的过程中,可以利用对称性将积分范围缩小,从而简化计算。
积分区域关于原点对称二重积分一、引言在数学中,积分是一个重要的概念,用于描述曲线、曲面以及空间中的面积、体积等量。
而对称性也是数学中一个重要的概念,可以帮助我们简化问题的求解过程。
本文将介绍关于原点对称的二重积分,并讨论如何利用对称性简化计算过程。
二、二重积分及其性质1. 二重积分的定义设函数f(x,y)在闭区域D上有界,将D分成无穷多个小区域,每个小区域用Δσi表示。
在每个小区域上取任意一点(ξi,ηi),构成面积Δσi。
当maxΔσi→0时,如果极限limmaxΔσi→0∑f(ξi,ηi)Δσi存在,则称此极限为函数f(x,y)在闭区域D上的二重积分,记作∬fD(x,y)dσ2. 二重积分的性质•线性性质:设函数f(x,y)和g(x,y)在闭区域D上可积,c为常数,则有∬(f(x,y)+g(x,y)) D dσ=∬fD(x,y)dσ+∬gD(x,y)dσ∬c D ⋅f(x,y)dσ=c⋅∬fD(x,y)dσ•区域可加性:若将闭区域D分成两个不相交的闭区域D1和D2,则有∬fD (x,y)dσ=∬fD1(x,y)dσ+∬fD2(x,y)dσ•积分保号性:若在闭区域D上有界函数f(x,y)恒有f(x,y)≥0,则有∬fD(x,y)dσ≥0三、关于原点对称的二重积分1. 关于原点对称的定义一个闭区域或曲线称为关于原点对称的,是指当(x,y)在该区域或曲线上时,有(−x,y),(x,−y),(−x,±y)(其中±表示取正或负)也在该区域或曲线上。
2. 关于原点对称的性质•若函数f(x,y)关于原点对称,即f(x,y)=f(−x,−y),则有∬f D (x,y)dσ=4∬fD1(x,y)dσ其中D1为闭区域D中关于原点的一个象限。
•若函数f(x,y)关于y轴对称,即f(x,y)=f(−x,y),则有∬f D (x,y)dσ=2∬fD1(x,y)dσ其中D1为闭区域D中关于y轴的一侧。
二重积分积分区域关于y轴对称
二重积分是高等数学中的一个重要概念,它是对二元函数在一个有限区域内的积分运算。
在二重积分中,积分区域的对称性是一个非常重要的性质,其中以关于y轴对称的积分区域为例,下面我们来详细介绍一下。
我们需要了解什么是对称性。
对称性是指在某种变换下,物体或者图形的形状、大小、位置等性质不变。
在数学中,对称性是指在某种变换下,函数的值不变。
在二重积分中,积分区域的对称性是指在某种变换下,积分区域的形状、大小、位置等性质不变。
以关于y轴对称的积分区域为例,我们可以通过以下两种方法来计算二重积分:
方法一:利用对称性
由于积分区域关于y轴对称,因此我们可以将积分区域分成两个对称的部分,然后只计算其中一个部分的积分值,最后将结果乘以2即可得到整个积分区域的积分值。
方法二:利用变量代换
我们可以通过变量代换的方法将积分区域变换成一个关于x轴对称的区域,然后再进行积分计算。
具体来说,我们可以令x=-u,然后将积分区域变换成一个关于u轴对称的区域,最后再进行积分计算。
无论是哪种方法,都可以有效地利用积分区域的对称性来简化计算过程,提高计算效率。
因此,在进行二重积分计算时,我们应该充分利用积分区域的对称性,以便更加高效地完成计算任务。
二重积分是高等数学中的一个重要概念,积分区域的对称性是其中一个非常重要的性质。
以关于y轴对称的积分区域为例,我们可以通过对称性和变量代换两种方法来计算二重积分,从而提高计算效率。
在实际应用中,我们应该充分利用积分区域的对称性,以便更加高效地完成计算任务。
.f (x, y)dxdyD2 f (x, y)dxdy ,当 f (-x, y)二D20,当 f ( — x, y) f (x, y).二 f (x, y).情形一:积分区域D 关于坐标轴对称定理4设二元函数f(x,y)在平面区域D 连续,且D 关于x 轴对称,则 1)当f (x, _y)二一 f(x, y)(即f (x, y)是关于y 的奇函数)时,有i i f (x, y)dxdy = 0 -D2)当f (x,—y) =f (x, y)(即f (x, y)是关于y 的偶函数)时,有f (x, y )dxdy =2 f (x, y) dxdyDD i其中D i 是由x 轴分割D 所得到的一半区域。
例5 计算|二 (xy - y 3)dxdy ,其中D 为由y 2=2x 与x = 2围成的区域。
D其中D 2是由y 轴分割D 所得到的一半区域。
解:如图所示,积分区域D 关于x 轴对称,且y 」x= 23f (x, —y) = -(xy + y ) = _f (x, y)2 7即f(x,y)是关于y 的奇函数,由定理1有 02F仃 f ( xy + y 3) dxdy = 0 .D类似地,有: 定理5设二元函数f (x, y)在平面区域D 连续,且 D 关于y 轴对称,则解:如图所示,2所®。
于y轴对称,并且y = -2x+2f ( _x, y) = x2y 二 f (x, y),即被积分函数是关于x轴的偶函数,由对称性定理结论有:2 2I =打x ydxdy =2x ydxdy = 2 ° dxD D i i _2 x 亠2 x2ydxdyi5D i9例7 计算二重积分| = . . ( x y|)dxdy ,其中D :解:如图所示,D关于x轴和y轴均对称,且被积分函数关于x和y是偶函数,即有f (x, - y )二f ( -x, y ) =f (x, y),由定理2,得其中D!是x dxdyy )dxdyD的第H y dxdyD iy )dxdy分,由对称性知,緒・DiDiD i+ |y )dxdyD ix )dxdy 8 | x dxdyD i定理6设二元函数f(x, y)在平面区域D连续,且D关于x轴和y轴都对称,则(1 )当f (―x, y)二-f (x, y)或f (x, - y)二-f (x, y)时,有f ( x , y ) dxdy = 0D(2)当f (_x, y)二f (x, -y)二f (x, y)时,有! ! f ( x, y ) dxdy = 4 1 1 f ( x, y ) dxdyD其中D!为由x轴和y轴分割D所的到的1/4区域。
二重积分积分区域的对称性Company number:【0089WT-8898YT-W8CCB-BUUT-202108】情形一:积分区域D 关于坐标轴对称定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有(,)0Df x y dxdy =⎰⎰ .2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有1(,)2(,)D D f x y dxdy f x y dxdy =⎰⎰⎰⎰ . 其中1D 是由x 轴分割D 所得到的一半区域。
例5 计算3()DI xy y dxdy =+⎰⎰,其中D 为由22y x =与2x =围成的区域。
解:如图所示,积分区域D 关于x 轴对称,且3(,)()(,)f x y xy y f x y -=-+=- 即(,)f x y 是关于y 的奇函数,由定理1有3()0D f xy y dxdy +=⎰⎰.类似地,有:定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则其中2D 是由y 轴分割D 所得到的一半区域。
例6 计算2,DI x ydxdy =⎰⎰其中D 为由22;-220y x y x y =+=+=及所围。
解:如图所示,D 关于y 轴对称,并且2(,)(,)f x y x y f x y -==,即被积分函数是关于x 轴的偶函数,由对称性定理结论有:11222220022215x D D I x ydxdy x ydxdy dx x ydxdy -+====⎰⎰⎰⎰⎰⎰. 定理6 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴和y 轴都对称,则(1)当(,)(,)f x y f x y -=-或(,)(,)f x y f x y -=-时,有(,)0D f x y dxdy =⎰⎰ .(2)当(,)(,)(,)f x y f x y f x y -=-=时,有其中1D 为由x 轴和y 轴分割D 所的到的1/4区域。
积分区域关于原点对称二重积分一、什么是积分区域关于原点对称二重积分?在数学中,积分是一种重要的运算工具,它可以用来计算函数在某个区域上的总量。
积分区域关于原点对称二重积分是一种特殊的积分形式,它要求被积函数关于原点对称。
在这种情况下,我们可以通过一些特殊的技巧来简化积分计算过程。
二、如何计算积分区域关于原点对称二重积分?要计算积分区域关于原点对称二重积分,我们可以按照以下步骤进行:1. 确定积分区域首先,我们需要确定被积函数的积分区域。
积分区域通常由一些特定的几何形状所构成,如圆、矩形、三角形等。
在确定积分区域时,我们需要考虑被积函数的定义域和对称性。
2. 利用对称性简化积分由于积分区域关于原点对称,我们可以利用对称性简化积分计算。
具体来说,如果被积函数关于原点对称,则可以将积分区域分为对称的两个部分,并只计算其中一个部分的积分,然后将结果乘以2。
3. 坐标变换在计算积分时,我们通常需要进行坐标变换,以便更方便地表示积分区域和被积函数。
常见的坐标变换方法包括极坐标变换和直角坐标变换。
4. 积分计算最后,我们可以根据坐标变换后的积分区域和被积函数,利用积分的定义进行计算。
根据具体情况,我们可以选择使用定积分、累次积分或其他积分方法。
三、积分区域关于原点对称二重积分的应用积分区域关于原点对称二重积分在数学和物理领域中有广泛的应用。
以下是一些常见的应用场景:1. 几何体的体积计算积分区域关于原点对称二重积分可以用来计算几何体的体积。
例如,我们可以通过将几何体划分为对称的两个部分,并计算其中一个部分的体积,然后将结果乘以2来得到整个几何体的体积。
2. 质心的计算质心是一个几何体的重心或平均位置。
通过对积分区域关于原点对称二重积分进行计算,我们可以求得几何体的质心坐标。
3. 物理问题的建模积分区域关于原点对称二重积分在物理问题的建模中也有重要的应用。
例如,在电磁场中计算电荷分布的势能、计算质点在力场中的位能等问题中,我们可以利用积分区域关于原点对称二重积分来进行计算。