曲面积分对称性
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
积分的奇偶对称性----定积分、二重积分、三重积分、第一类曲线积分、第一类曲面积分.)(2)()()2(;0)()()1(],,[0⎰⎰⎰==-∈--aa a a a dx x f dx x f x f dx x f x f a a C f 为偶函数,则若为奇函数,则若设01 定积分的奇偶对称性.),(2),(),,(),(),()2(;0),(),,(),(),()1(,,,),(12121⎰⎰⎰⎰⎰⎰==-=-=-+=D D Ddxdy y x f dxdy y x f y x f y x f x y x f dxdy y x f y x f y x f x y x f y D D D D D D y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在有界闭区域设02 二重积分的奇偶对称性.),(2),(),,(),(),()4(;0),(),,(),(),()3(,,,),(12121⎰⎰⎰⎰⎰⎰==-=-=-+=D D Ddxdy y x f dxdy y x f y x f y x f y y x f dxdy y x f y x f y x f y y x f x D D D D D D y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在有界闭区域设02 二重积分的奇偶对称性03 三重积分的奇偶对称性;),,(2),,(),,,(),,(),,()2(;0),,(),,,(),,(),,()1(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f z z y x f dxdydz z y x f z y x f z y x f z z y x f xoy z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设;),,(2),,(),,,(),,(),,()4(;0),,(),,,(),,(),,()3(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f x z y x f dxdydz z y x f z y x f z y x f x z y x f yoz z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设03 三重积分的奇偶对称性;),,(2),,(),,,(),,(),,()6(;0),,(),,,(),,(),,()5(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f y z y x f dxdydz z y x f z y x f z y x f y z y x f zox z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设03 三重积分的奇偶对称性04 第一类曲线积分的奇偶对称性.⎰⎰⎰==-=-=-+=1),(2),(),,(),(),()2(;0),(),,(),(),()1(,,,),(2121L L Lds y x f ds y x f y x f y x f x y x f ds y x f y x f y x f x y x f y L L L L L L y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在平面曲线设04 第一类曲线积分的奇偶对称性.⎰⎰⎰==-=-=-+=1),(2),(),,(),(),()4(;0),(),,(),(),()3(,,,),(2121L L Lds y x f ds y x f y x f y x f y y x f ds y x f y x f y x f y y x f x L L L L L L y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在平面曲线设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()2(;0),,(),,,(),,(),,()1(,,,),,(2121dS z y x f dS z y x f z y x f z y x f z z y x f dS z y x f z y x f z y x f z z y x f xoy z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()4(;0),,(),,,(),,(),,()3(,,,),,(2121dS z y x f dS z y x f z y x f z y x f x z y x f dS z y x f z y x f z y x f x z y x f yoz z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()6(;0),,(),,,(),,(),,()5(,,,),,(2121dS z y x f dS z y x f z y x f z y x f y z y x f dS z y x f z y x f z y x f y z y x f zox z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设。
关于曲线、曲面积分对称性的几个结论
曲线和曲面积分的对称性是数学中一个重要的概念,它提供了一种有效的方法来计算复杂的函数的积分。
曲线和曲面积分的对称性可以用来求解复杂的函数的积分,从而节省大量的计算时间。
首先,曲线和曲面积分的对称性可以用来求解复杂的函数的积分。
例如,如果一个函数具有对称性,那么可以将函数分成两部分,分别求解,然后将两部分的结果相加,从而节省大量的计算时间。
其次,曲线和曲面积分的对称性可以用来求解复杂的函数的积分。
例如,如果一个函数具有对称性,那么可以将函数分成两部分,分别求解,然后将两部分的结果相加,从而节省大量的计算时间。
最后,曲线和曲面积分的对称性可以用来求解复杂的函数的积分。
例如,如果一个函数具有对称性,那么可以将函数分成两部分,分别求解,然后将两部分的结果相加,从而节省大量的计算时间。
总之,曲线和曲面积分的对称性是一个重要的概念,它可以用来求解复杂的函数的积分,从而节省大量的计算时间。
它的应用范围很广,可以用来解决各种复杂的数学问题,为我们的研究提供了很大的帮助。
华北水利水电学院数学实践报告华北水利水电学院对称性在积分中的应用学院:环境与市政工程学院专业:建筑环境与设备工程班级:2010108成员:王永辉 201010804朱虹光 201010810余维召 201010811对称性在积分中的应用积分的计算是积分运用中的一个难点.在某些积分的计算过程中,若能利用对称性,则可以简化积分的计算过程.本文介绍了几种常见的对称性在积分计算过程中的几个结论及其应用,并通过实例讨论了利用积分区域的对称性及被积函数的奇偶性简化重积分,曲线积分,曲面积分的计算方法.另外,对于曲面积分的计算,本文还给出了利用积分曲面关于变量的轮换对称性简化曲面积分的计算,是曲面积分的计算更加便捷.积分的对称性包括重积分,曲线积分,曲面积分的对称性.在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果.下面我将从积分相关的定理和结论,再结合相关的实例进行具体的探讨.本文结合积分域关于平行于坐标轴的直线,平行于坐标面的平面,平行于坐标轴对角线的直线的对称性定义,以及相应对称区域上定理中的函数约定在该区域都连续或偏导数连续定义1: 设平面区域为D ,若点),(y x ),2(y x a D -⇔∈,则D 关于直线a x =对称,对称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ⇔)2,(y b x -),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然当0=a ,0=b 对D 关于y ,x 轴对称)定义2: 设平面区域为D ,若点),(y x D ∈⇔),(a x a y --,则D 关于a x y +=对称,称点),(y x 与),(a x a y --是关于a x y +=的对称点.若点),(y x D ∈⇔),(x a y a --D ∈,则D 关于直线z y ±=对称) 1、 二重积分的对称性定理定理1:设有界闭区域12D D D =,1D 与2D 关于y 或x 轴对称.设函数),(y x f 在有界闭区域D 上连续,那么(ⅰ)若),(y x f 是关于y (或x )的奇函数,则(,)Dif x y d σ⎰⎰0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则Df(x,y)d σ⎰⎰=2(,)Dif x y d σ⎰⎰1(=i ,)2注释:设函数),(y x f 在有界闭区域D 上连续(ⅰ)若D 关于y 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD x y x f d y x f y x f d y x f !),(),(2),(,0),(为偶函数关于变量,如果关于变量为奇函数如果σσ其中1D 是D 的右半部分:1D =}0|),{(≥∈x D y x(ii )若D 关于x 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD y y x f d y x f y x f d y x f 2),(),(2),(,0),(为偶函数关于变量,如果关于变量为奇函数如果σσ其中2D 是D 的上半部分:2D =}0|),{(≥∈y D y x定理2:设有界闭区域D 关于x 轴和y 轴均对称,函数),(y x f 在D 上连续且),(y x f 关x 和y 均为偶函数,则⎰⎰⎰⎰=DD d y x f d y x f 3),(4),(σσ其中3D 是D 的第一象限的部分:3D =}0,0|),{(≥≥∈y x D y x 定理3:则设有界闭区域D 关于原点对称,函数),(y x f 在D 上连续,则⎰⎰⎰⎰⎰⎰⎪⎩⎪⎨⎧=--=-=--=DD D y x f y x f d y x f d y x f y x f y x f d y x f 12),(),(,),(2),(2),(),(,0),(如果如果σσσ其中1D =}0|),{(≥∈x D y x ,2D =}0|),{(≥∈y D y x 例1:计算⎰⎰Dxydxdy ,其中D 由下列双纽线围成:(1) )(2)(22222y x y x -=+ (2)xy y x 2)(222=+解:(1)由于)(2)(22222y x y x -=+围成的区域关于x 轴y 轴均对称,而被积函数xy 关于x (或y 轴)为奇函数则有⎰⎰Dxydxdy 0=(2)由)(2)(22222y x y x -=+围成的区域对称于原点,而被积函数xy 是关于x ,y 的偶函数则有⎰⎰Dxydxdy =2⎰⎰1D xydxdy由极坐标知θθsin ,cos r y r x ==,代入xy y x 2)(222=+得θ2sin =r 且由xy 0>,知02sin 212>θr则20πθ≤≤于是⎰⎰Dxydxdy 61cos 2sin 220sin 03=⎰⎰dr r d θθθπθ定理4:设有界闭区域D 关于x y =对称, 函数),(y x f 在D 上连续,则Df(x,y)d σ⎰⎰=(,)Df y x d σ⎰⎰例2:设函数f(x)在]1,0[上的正值连续函数 证明:()()1()()()2Daf x bf y dxdy a b f x f y +=++⎰⎰,其中b a,为常数,1}y x,0|y){(x,D ≤≤=证明:∵积分区域D 关于x y =对称∴(,)(,)DDf x y d f y x d σσ=⎰⎰⎰⎰设()()()()Daf x bf y I dxdy f x f y +=+⎰⎰由函数关于两个变量()()()()Daf x bf y I dxdy f x f y +=+⎰⎰,以上两式相,得2()DI a b dxdy a b =+=+⎰⎰,从而1()2I a b =+一般地,有以下定理:定理5:设有界闭区域12D D D =,1D 与2D 关于直线0:=++c by ax L 对称, 函数),(y x f 在D 上连续,那么:(ⅰ)若),(y x f 是关于直线L 的奇函数,则(,)Df x y d σ⎰⎰0=(ⅱ)若),(y x f 是关于直线L 的偶函数,则(,)Df x y d σ=⎰⎰2(,)Dif x y d σ⎰⎰1(=i ,)22、三重积分的对称性定理定理6:设空间有界闭区域12Ω=ΩΩ,1Ω与2Ω关于xoy 坐标面对称,函数),,(z y x f 在Ω上连续,那么:(ⅰ)若),,(z y x f 是关于z 的奇函数,则(,,)f x y z dv Ω⎰⎰⎰=0(ⅱ)若),,(z y x f 是关于z 的偶函数,则:(,,)f x y z dv Ω⎰⎰⎰=2⎰⎰⎰Ω1),,(dv z y x f同时,若Ω关于yox 坐标面对称,),,(z y x f 关于奇函数或偶函数;或者若Ω关于xoz 坐标面对称),,(z y x f 关于y 为奇函数或偶函数,同样也有类似结论.例7:求下列曲面所界的均匀物体的重心坐标222x y z a b c++,c z =解: 若令cos ,sin ,x ar y br z z θθ===,则质量为203zcc abcM ab dz d rdr ππθ==⎰⎰⎰设重心坐标为0x ,0y ,o z 由对称性知000==y x ,而o z =22033..44z cc abc cdz d rdr abc ππθπ=⎰⎰⎰于是,重心为点(0,0,34c ) ※曲线积分的对称性1、第一型曲线积分的对称性定理定理7:设平面内光滑曲线12L L L =+,1L 与2L 关于x (或y )轴对称,函数),(y x f 在L 上连续,那么:(ⅰ)若),(y x f 是关于y (或x )的奇函数,则(,)f x y ds ⎰0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则(,)f x y ds ⎰=2(,)if x y ds ⎰1(i =,)2注:设平面分段光滑曲线L 关于y 轴对称,则10,(,)(,)(,),(,)LL f x y f x y ds f x y ds f x y x ⎧⎪=⎨⎪⎩⎰⎰如果关于变量x 为奇函数2如果关于变量为偶函数其中1L 是L 的右半段:1L =}0|),{(≥∈x D y x定理8:设平面内光滑曲线12L L L =+,1L 与2L 关于x 轴对称且方向相反,函数),(y x p 在L 上连续,那么:(ⅰ)若),(y x p 是关于x 的偶函数,则(,)p x y dx ⎰0=(ⅱ)若),(y x p 是关于y 的奇函数,则(,)2(,)ip x y dx p x y dx =⎰⎰1(i =,)2例4:求曲线积分[]22()cos(2)sin(2)xy ce xy dx xy dy -++⎰,其中c 是单位圆周221x y +=,方向为逆时针方向解: ∵曲线积分c 可分为上,下两个对称的部分,在对称点),(y x 与),(y x -上, 函数22()cos(2)xy e xy dx -+大小相同,但投影元素dx 在上半圆为负,下半圆为正∴22()cos(2)xy e xy dx -+在对称的两个半圆上大小相等,符号相反故22()cos(2)xy ce xy dx -+⎰0=类似可知22()sin(2)xy ce xy dy -+⎰0=因此[]22()cos(2)sin(2)xy ce xy dx xy dy -++⎰0=定理9:设L 是xoy 平面上关于直线a x =对称的一条曲线弧 (ⅰ)若),(y x f =),2(y x a f --,则(,)Lf x y ds ⎰0=(ⅱ)若),(y x f =),2(y x a f -,则(,)Lf x y ds ⎰=21(,)L f x y ds ⎰})|),{((1a x L y x L ≤∈=例5:计算3(2)LI y y x ds =+-⎰,其中L 是曲线22(2)4x y -+=所围成的回路解: ∵L 关于轴及直线2=x 对称∴3(2)(2)2LLLI y y ds x ds ds =+--+⎰⎰⎰设),(y x f =32y y + 则),(y x f =),(y x f -设 ),(y x g =2-x则),2(y x f --=2-x =),(y x f 即200I ++=lds ⎰=8π2、第二类曲线积分的对称性定理定理1:对于第二类曲线积分还需考虑投影元素的符号.当积分方向与坐标正方向之间的夹角小于2π时,投影元素为正,否则为负.就(,)p x y dx ⎰而言,考察(,)p x y dx 在对称点上的符号定理2:若积分曲线T 关于x ,y ,z 具轮换对称性,则(,,)(,,)(,,)tttp x y z dz p y z x dy p z x y dx ==⎰⎰⎰=13 (,,)(,,)(,,)tp x y z dz p y z x dy p z x y dx ++⎰ 定理3:设L 是xoy 平面上关于a x =对称的一条光滑曲线弧,12L L L =+,任意),(y x ∈L ,有),2(y x a -∈2L ,且1L ,2L 在y 轴投影方向相反,则(ⅰ)若θ),(y x =-θ),2(y x a -,则(,)Lx y dy θ⎰0=(ⅱ)若θ),(y x =θ),2(y x a -,则(,)L x y dy θ⎰=2(,)Lx y dy θ⎰定理3中,若1L ,2L 在x 轴投影方向相同,其他条件不变,则有 (ⅰ)若p ),(y x =-p ),2(y x a -,则(,)Lp x y dx ⎰0=(ⅱ)若θ),(y x =θ),2(y x a -,则(,)Lp x y dx ⎰=21(,)L p x y dx ⎰例:计算I =|2|(2)(1)LLx x y dx -+--⎰⎰,其中抛物线2(2)x -上从)1,1(A 到)1,3(B 的一段弧解:I =|2|(2)(1)LLx x y dx -+--⎰⎰=12I I +因为关于2=x 对称θ),4(y x =|2|-x θ),(y x由定理3有)1)(2(),4(---=-y x y x p =),(y x p -所以2I =0,即12I I I =+0=※曲面积分的对称性定义1:若∀)(),,(321N n R D x x x x p n n n ∈⊂∈⋅⋅⋅⋅⋅有),,(1211111-+⋯⋯i x x x x x x p n)2,1(n i D n ⋯=∈成立,则称n D 关于),,(321n x x x x p ⋅⋅⋅⋅⋅具有轮换对称性.定义2:若函数),,(321n x x x x F ⋅⋅⋅⋅⋅),,(321n x x x x F ⋅⋅⋅⋅⋅≡)2,1(n i X ⋅⋅⋅⋅⋅⋅=,则称函数),,(321n x x x x F ⋅⋅⋅⋅⋅关于函数n x x x x ⋅⋅⋅⋅⋅321,,具有轮换对称性. 1、第一类曲面积分对称性定理定理1:若积分曲面S 可以分成对称的两部分12S S S =+,在对称点上被积函数的绝对值相等{即光滑曲面S 关于xoy (或yoz ,或zox )坐标面对称},则有(ⅰ)(,,)sf x y z ds ⎰⎰0=,在对称点上),,(z y x f 取相反的符号{即),,(z y x f 关于z(或x ,或y )的奇函数}(ⅱ)(,,)sf x y z ds ⎰⎰=2(,,)sf x y z ds ⎰⎰,在对称点上),,(z y x f 取相同的符号{即),,(z y x f 为关于z (或x ,或y )的偶函数}推论1:若光滑曲面S 可以分成对称的两部分12S S S =+,且关于原点对称, 则(ⅰ)(,,)sf x y z ds ⎰⎰0=,为关于z (或x ,或y )的奇函数(ⅱ)(,,)sf x y z ds ⎰⎰=81(,,)s f x y z ds ⎰⎰,),,(z y x f 为关于z (或x ,或y )的偶函数例1:计算下列面积的曲面积分,()x y z ds ∑++⎰⎰,其中∑为球面2222x y z a ++=上z h ≥)0(a h <<的部分解: 利用对称性知xds yds ∑∑=⎰⎰⎰⎰0=设xy D ={|),(y x 2222x y a h +≤-} 则()x y z ds ∑++⎰⎰=zds ∑⎰⎰=⎰⎰=aDxydxdy ⎰⎰=22()a a h π-例2:计算曲面积分x ∑⎰⎰,其中2222:x y z a ∑++=解: 令22221:x y z a ∑++=,0,0,0x a y a z a ≤≤≤≤≤≤ 则 2221:,0,0D x y a x a y a +≤≤≤≤≤ds ==∑关于原点对称,解被积函数),,(z y x f =x 为关于),,(z y x 的偶函数由推论1.1x ∑⎰⎰=8x ∑⎰⎰=a881D x dsdy ⎰⎰⎰⎰=189cos 8D d r a θθdr r d a a⎰⎰=209cos 8πθθ=a810117!!7.108!!264a a ππ= 定理2:若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)f x y z ds f y z x ds f z x y ds ∑∑∑==⎰⎰⎰⎰⎰⎰1(,,)(,,)(,,)3f x y z ds f y z x ds f z x y ds ∑∑∑=++⎰⎰⎰⎰⎰⎰ 例3:计算曲面积分2z ds ∑⎰⎰,其中s 是球面2222x y z a ++=解:如果按照常规方法来解,计算量比较大,如果利用对称函数的特性,非常简捷∵球面2222x y z a ++=关于x ,y ,z 具有对称性∴222x ds y ds z ds ∑∑∑==⎰⎰⎰⎰⎰⎰∴2z ds ∑⎰⎰=2221()3x y z ds ∑++⎰⎰ =21133a ds ds ∑∑=⎰⎰⎰⎰ 22214.433a a a ππ== 2、第二类曲面积分的对称性定理利用对称性计算第二类曲面积分同样需要注意投影元素的符号.现以曲面积分(,,)sf x y z ds ⎰⎰为例来讨论.当曲面指定侧上动点的法线方向与z 轴正向成锐角时,面积元素ds 在xoy 面上的投影dxdy 为正减钝角时为负.一般地,有如下定理:定理1:若积分曲面S 可以分成对称的两部分12S S S =+,在对称点上|f|的值相等,则有(ⅰ)1(,,)s f x y z dxdy ⎰⎰0=,在对称点上fdxdy 取相反的符号(ⅱ)1(,,)s f x y z dxdy ⎰⎰=21(,,)s f x y z dxdy ⎰⎰,在对称点上fdxdy 的符号相同,对于积分1(,,)s f x y z dydz ⎰⎰,1(,,)s f x y z dzdx ⎰⎰也有类似的结论定理2:若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)p x y z dydz p y z x dzdx p z x y dxdy ∑∑∑==⎰⎰⎰⎰⎰⎰=1(,,)(,,)(,,)3p x y z dydz p y z x dzdx p z x y dxdy ∑++⎰⎰ 例3:计算sxdydz ydxdy zdxdy ++⎰⎰,其中S 是球面2222x y z R ++=的外侧解: ∵球面2222x y z R ++=关于x ,y ,z 具有对称性∴sssxdydz ydxdz zdxdy ==⎰⎰⎰⎰⎰⎰先计算sxdydz ⎰⎰为此应分别考虑前半球面(记为1S )及后半球面(记为2S )上的曲面部分1S的方程为x =它在oyz 平面上的投影域y D 为圆域222y z R +≤,因此,若用1w S 表示前半球面的外侧则有:1S w Dyxdydz σ=⎰⎰=230023R d r R πθπ=⎰⎰ 对于在后半球面2S 上的曲面积分,由于2S的方程为:x =后外侧,故关于后半球面外侧(记为2w S )的曲面积分为:2S w xdydz =⎰⎰Dy σ=323R π 因此S xdydz =⎰⎰31243S w S wxdyxz xdydz R π+=⎰⎰⎰⎰ 3S Sxdydz ydxdz zdxdy xdyxz ++=⎰⎰⎰⎰ 334343R R ππ=⋅= ※小结应用对称性计算积分时应注意以下几点:1.必须兼顾被积函数和积分区域两个方面,只有当两个方面面都具有某种对称性是才能利用,如果只有积分区域具有某种对称性,这时根据具体情况,我们可以把被积函数经过恒等变形使之具有某种对称性,在考虑利用上述结论2.对第二类曲线积分和第二类曲面积分,在利用对称性时,尚需考虑积分路 线的方向和曲面的侧,确定投影元素的符号,需慎重3.有些问题利用轮换对称性可得到简便的解答对于重积分,曲线积分,曲面积分等定理的研究,是积分学运用的一个难点.本 文在探讨相关定理的同时,特别是巧妙的运用其对称性的特点,通过具体实例对积分运用的几个重要的定理进行了一些列研究,发现积分区域与被积函数二者均具对称性时,运用上述对称性定理可以极大地简化计算过程,尤其对于第二类曲线积分和第二类曲面积分来说,应用此方法能够 方向和曲面侧的讨论,简化了计算的过程,给积分的运算带来了便捷,.在以后的学习中,只要我们能把对称性这个重要的特点结合在实际中,相信一定会达到了事倍功半的效果.。
关于积分对称性定理1、定积分:设 f ( x) 在 a,a 上连续,则2、 二重积分:若函数f(x,y)在平面闭区域D 上连续,则(1) 如果积分区域D 关于x 轴对称,f(x,y)为y 的奇(或偶)函数, 即 f(x, y) f(x, y)(或 f(x, y) f (x, y)),则二重积分0,f x,y 为y 的奇函数f x, y dxdy2 f x, y dxdy, f x,y 为y 的偶函数DD 1其中:D i 为D 满足y 0上半平面区域。
(2) 如果积分区域D 关于y 轴对称,f(x,y)为x 的奇(或偶)函数, 即 f x, y f x, y (或 f x, y f x, y ),则二重积分0, f x, y 为x 的奇函数,fx,ydxdy 2 f x,ydxdy, f x, y 为)的偶函数.DD 2其中:D 2为D 满足x 0的右半平面区域。
(3) 如果积分区域D 关于原点对称,f(x,y)为x,y 的奇(或偶)函a -ax dx0,a2 f x dx,0 x 为X 的奇函数, X 为X 的偶数,即卩f ( x, y) f (x,y)(或 f ( x, y) f(x,y))则二重积分0, f x,y为x,y的奇函数f x,ydx:y2 f xydxy,f x,y 为Xy的偶函数DD2其中:D1为D在y 0上半平面的部分区域。
(4)如果积分区域D关于直线y x对称,则二重积分f x, ydxdy f y,x dxdy .(二重积分的轮换对称性)D D(5)如果积分区域D关于直线y x对称,则有0, 当f( y, x) f(x,y)时f(x,y)dxdy 2 f(x,y)dxdy 当仁y, x) f(x,y)时D D利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D对称及被积函数fx,y具有奇偶性两个特性。
3、三重积分:(1)若f X, y,z为闭区域上的连续函数,空间有界闭区域关于xoy坐标面对称,1为位于xoy坐标面上侧z 0的部分区域,贝卩有0, f x, y, z为z的奇函数f儿y,zcXdydz 2 f x,y,zdxdydz, f x,y,z 为z的偶函数1注:f (x, y,z)是z的奇函数:f(x, y z) f (x,y,z)f (x, y,z)是z的偶函数:f(x,y z) f(x, y,z)同样,对于空间闭区域关于xoz, yoz坐标面对称也有类似的性质。
2类曲⾯积分对称性的问题的理解
若曲⾯∑关于x=0对称,∑1是∑⼤于等于部分,正侧不变,则当f(-x,y,z)=-f(x,y,z)时
∫∫(∑)f(x,y,z)dxdz=∫∫(∑)f(x,y,z)dxdy=0;∫∫(∑)f(x,y,z)dydz=2∫∫(∑1)f(x,y,z)dydz
f(-x,y,z)=f(x,y,z)时
∫∫(∑)f(x,y,z)dydz=0
∫∫(∑)f(x,y,z)dxdz=2∫∫(∑1)f(x,y,z)dxdz
∫∫(∑)f(x,y,z)dxdy=2∫∫(∑1)f(x,y,z)dxdy
若关于y=0(z=0)对称,则有类似结论。
对亏了他⼈为我指点迷津,我才真正的理解了这个结论。
先整理如下
曲⾯关于x=0对称就是说关于yoz⾯对称,xy⾯这边有⼀个微元,那边也有⼀个微元,投影到xy⾯或xz⾯上时,投影域⼤⼩、形状、⽅向都相同;⽽投影到yz⾯时⼤⼩形状相同,但是⽅向相反。
f(-x,y,z)=f(x,y,z)就是说函数f在上述两个微元处函数值相等,对dydz积分时,因为两个微元的投影域反向,积分值为零。
对dxdy或dxdz积分时是单侧积分的2倍。
f(-x,y,z)=-f(x,y,z)的情况正好相反,在投影域⼤⼩、形状、⽅向都相同是由于f(-x,y,z)=-f(x,y,z)所以导致⽅向前加个负号,也就是与f(-x,y,z)=f(x,y,z)时的情况完全相对。
这类问题由于区⾯是可以分解投影到3个坐标平⾯,所以要结合空间想象能⼒,弄清楚投影区域与⽅向的关系。
同时本题也可以从物理流量的⾓度来考虑!。
关于积分对称性定理1、 定积分:设)(x f 在[],a a -上连续,则()()()()-00,d 2d ,a aaf x x f x x f x x f x x ⎧⎪=⎨⎪⎩⎰⎰为的奇函数,为的偶函数.2、 二重积分:若函数),(y x f 在平面闭区域D 上连续,则(1)如果积分区域D 关于x 轴对称,),(y x f 为y 的奇(或偶)函数,即 ),(),(y x f y x f -=-(或),(),(y x f y x f =-),则二重积分()()()()10,,,d d 2,d d ,,D D f x y y f x y x y f x y x y f x y y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数. 其中:1D 为D 满足0≥y 上半平面区域。
(2) 如果积分区域D 关于y 轴对称,),(y x f 为x 的奇(或偶)函数,即()(),,f x y f x y -=-(或()(),,f x y f x y -=),则二重积分()()()()20,,,d d 2,d d ,,DD f x y x f x y x y f x y x y f x y x ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:2D 为D 满足0x ≥的右半平面区域。
(3)如果积分区域D 关于原点对称,),(y x f 为y x ,的奇(或偶)函数,即),(),(y x f y x f -=--(或),(),(y x f y x f =--)则二重积分()()()()20,,,,d d 2,d d ,,,D D f x y x y f x y x y f x y x y f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:1D 为D 在0≥y 上半平面的部分区域。
(4)如果积分区域D 关于直线x y =对称,则二重积分()()y x x y f y x y x f DDd d ,d d ,⎰⎰⎰⎰=.(二重积分的轮换对称性)(5)如果积分区域D 关于直线y x =-对称,则有10,(,)(,)(,)2(,),(,)(,)D D f y x f x y f x y dxdy f x y dxdy f y x f x y --=-⎧⎪=⎨--=⎪⎩⎰⎰⎰⎰当时当时利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D 对称及被积函数()y x f ,具有奇偶性两个特性。
曲线,曲面积分的对称性,奇偶性是什么?1、曲线的对称性,奇偶性是指根据对函数性质的分析,找出图像上控制形状的关键点,比较简便、迅速、准确地用描绘,熟练掌握函数奇偶性(曲线对称性)的判别:如果函数的定义域D是关于原点对称的,对任意的x∈D,若都有f(x)=-f(x),则为奇函数,图像关于坐标原点对称。
2、曲面积分的对称性,奇偶性:区域Q的对称性:(1)若(x,y,z)∈S则(x,y,一z)∈Q那么0关于xoy面对称。
8关于xox面yo面对称类似。
(2) 若(x.y,z)∈Q则(一x,一 y.z)∈Q那么2关于z轴对称。
Q关于x轴)轴对称类似。
(3)若(xy.2)∈则(x一)2)(y1一二)和(-.y2)均∈2那么O关于三个坐标面对称。
(4)若(x.y.2)∈Q则(一x-γ→∈Q那么0关于原点对称。
(5)若(x,y,z)∈Q则(,r.2)和(一x、z)∈2那么0关于x和y∞面对称。
1.2函数的奇偶性。
(6)若f(x,y,z)在2上满足f(-x,y.z)-干了(x,y.2),称f为o上关于x的奇、偶函数。
f关于y或2的奇偶性类似。
(7)若f(x.y.z)在2上满足f(一x,一y,z)=干f(x.y.c),称厂为关于:与y的奇偶函数。
」关于心与:或)与z的奇偶性类似。
(8)若f(x.y,z)在2上满足F(-x,2-2)元Ff(x.y.2).称厂为关于x和:的奇、偶函数。
扩展资料:学好积分的方法:首先仔仔细细的看一下那四类积分,把那些积分公式写下来,然后尽量直观的理解一下,比如对坐标的曲线积分以及对弧长的曲线积分,前者可以理解为力的做功,后者理解为已知曲线密度,求曲线质量,这样有了理解之后对公式的记忆会有帮助的,要不然会很乱。
理解了公式之后,就可以运用一些对称性了,那些对称性的公式也要理解,并不是硬背的,什么关于x是偶函数,关于y是奇函数,积分是两倍还是为0这点也很重要,陈文登的书上面好像都总结了。
然后理解公式以后就到教科书上找相应的例子巩固一下,同济第五版的高等数学,上面的例题很简单,并且也把知识点包含进去,所以是个很不错的教材。
对面积的曲面积分的可代入性和对称性第十二章 曲面积分一、对面积的曲面积分的可代入性对面积的曲面积分中被积函数可代入性:是指可以将曲面的表达式代入被积函数。
所以x , y , z 满足曲面的方程.是定义在曲(,,)f x y z面 上的,也就是说以 f (x , y , z ) 的自变量x , y , z 为坐标的点P 就是曲面Σ上,比如:设 f (x , y , z )=xyz 是定义在曲面Σ:z = x 2 + y 2 上,从而 f (x ,y ,z ) 就可以写成 xy (x 2+y 2),即f (x ,y ,z ) = xy (x 2+y 2).因为 f 中的x , y , z 是约定在曲面之上的,所以 z 的取值为x 2 + y 2 , 而点的坐标必须满足曲面的方程,而二重积分计算时则不能把边界曲线的表达式代入被积函数,满足的关系式通过不等式描述,一般含有“≤”或“≥”。
因为被积函数中的x , y 是平面区域D 内部的点对应的x , y ,此时x , y +≤+⎰⎰22221()d ,x y x y x y σ比如:中的取值限定在圆内,满足的是x 2 + y 2 ≤ 1,所以22221()d x y x y σ+≤+⎰⎰+≤≠⎰⎰2211d .x y σ二、对面积的曲面积分的对称性定义1设曲面∑上任取一点P(x, y, z),若(x, y, – z)对应的点Q也在∑上,或者说:将∑的关系式中“z”换成“–z”,而关系式不变,则称曲面∑关于xOy面对称.【曲面还可以关于yOz面对称或zOx面对称。
】例如: Σ的关系式为:x2 + y2 + z2= a2 (z ≥ 0), 若将z改成-z,则关系式变成了: x2 + y2 +(-z)2= a2 (-z ≥0),即x2 + y2 + z2= a2 (z ≤ 0),关系式发生了变化,即曲面发生了变化,所以曲面不关于xOy面对称。
当然,如果大家把x改成-x,则关系式不变,所以曲面关于yOz面对称。
关于积分对称性定理1、 定积分:设)(x f 在[],a a -上连续,则()()()()-00,d 2d ,a aaf x x f x x f x x f x x ⎧⎪=⎨⎪⎩⎰⎰为的奇函数,为的偶函数.2、二重积分:若函数),(y x f 在平面闭区域D 上连续,则(1)如果积分区域D 关于x 轴对称,),(y x f 为y 的奇(或偶)函数,即 ),(),(y x f y x f -=-(或),(),(y x f y x f =-),则二重积分()()()()10,,,d d 2,d d ,,D D f x y y f x y x y f x y x y f x y y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:1D 为D 满足0≥y 上半平面区域。
(2) 如果积分区域D 关于y 轴对称,),(y x f 为x 的奇(或偶)函数,即()(),,f x y f x y -=-(或()(),,f x y f x y -=),则二重积分()()()()20,,,d d 2,d d ,,DD f x y x f x y x y f x y x y f x y x ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:2D 为D 满足0x ≥的右半平面区域。
(3)如果积分区域D 关于原点对称,),(y x f 为y x ,的奇(或偶)函数,即),(),(y x f y x f -=--(或),(),(y x f y x f =--)则二重积分()()()()20,,,,d d 2,d d ,,,D D f x y x y f x y x y f x y x y f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:1D 为D 在0≥y 上半平面的部分区域. (4)如果积分区域D 关于直线x y =对称,则二重积分()()y x x y f y x y x f DDd d ,d d ,⎰⎰⎰⎰=。
第一类曲面积分的对称性
第一类曲面积分的对称性是指当它们在相同的条件下接受交换或旋转等操作时,仍可达到完全相同的结果。
从确定一个曲面积分的角度来看,它有一定的对称性,这个对称性可以包括对称性(如内积、外积和交错积)和空间的对称性(如空间翻转和空间旋转)。
要说明第一类曲面积分的对称性,首先要强调内积对称性。
内积是指当一个曲面积分与其法矢量(即曲面积测量的单位矢量)平行时,可以积出完整的曲面积分。
也就是说,当曲面积分向外旋转90°时,其结果可以与原结果相等。
此外,要特别指出外积的对称性。
外积是指在曲面积分不与其法矢量平行时,也能保持积分的完整性。
与内积不同的是,外积的结果可以与原积分的结果相等,而不需要将曲面积分转动90°。
最后,也要强调空间对称性。
空间对称性是指当一个曲面积分被特定的方式翻转或旋转后,其结果与原结果相同。
举例来说,将曲面积分沿y轴进行翻转后,其结果可以与原曲面积分的结果完全相同。
并且,在将空间积分旋转180°或360°后,它仍然可以保持完整性,其结果也
可以与原曲面积分的结果完全相同。
总之,第一类曲面积分的对称性是指它们接受交换或旋转等操作后,还可以达到完全相同的结果,而这种对称性主要体现在内积、外积以及空间的对称性上。
第20卷第4期2000年10月 数学理论与应用MA THEMA TICAL THEOR Y AND APPL ICA TIONSVol.20No.4Oct.2000对称性在积分中的应用Ξ陈云新(中南工学院基础部,衡阳市421001)摘 要 本文讨论了在各类积分中利用对称性解题的技巧和使用方法.关键词 积分,对称在积分中的计算中,经常遇到积分区域具备对称性的题型.如果能利用其对称性的性质,则可以简化其计算过程,特别是有些题不用计算可以直接判断出其结果.本文讨论了利用积分区域的对称性配合被积函数的奇,偶性简化定积分,重积分,第一类曲线,曲面积分计算过程的使用方法.(以下都在积分存在的前提下予以讨论)一、定积分的对称性若积分区间为[-a,a],则(1)当f(-X)=f(X)时∫a-a f(x)dx=2∫a0f(x)dx(2)当f(-X)=-f(X)时,∫a-a f(x)dx=0二、二重积分的对称性在二重积分κDf(x,y)dσ的计算过程中;11若积分区域D关于X轴对称,记位于X轴上半部分区域为D1,则(1)当f(x,-y)=f(x,y)时,κD f(x,y)dσ=2κD1f(x,y)dσ(2)当f(x,-y)=-f(x,y)时,κDf(x,y)dσ=021若积分区域D关于Y轴对称,记位于Y轴右半部分区域为D1,则;(1)当f(-x,y)=f(x,y)时κD f(x,y)dσ=2κD1f(x,y)dσ(2)当f(-x,y)=-f(x,y)时,κDf(x,y)dσ=0三、三重积分的对称性在三重积分µΩf(x,y,z)dv的计算过程中;Ξ收稿日期:2000年4月11若积分区域Ω关于XO Y面对称,记Ω位于XO Y面上半部分为Ω1,则:(1)当f(x,y,-z)=f(x,y,z)时,µΩf(x,y,z)dv=2µΩ1f(x,y,z)dv(2)当f(x,y,-z)=-f(x,y,z)时µΩf(x,y,z)dv=021若积分区域#W关于YOZ面对称,记Ω位于YOZ面前冲击2部分为Ω1,则(1)当f(-x,y,z)=f(x,y,z)时,µΩf(x,y,z)dv=2µΩ1f(x,y,z)dv(2)当f(x,-y,z)=-f(x,y,z)时,µΩf(x,y,z)dv=031若积分区域Ω关于ZO Y面对称,记Ω位于ZOX面右半部分为Ω1,则:(1)当f(x,-y,z)=f(x,y,z)时,µΩf(x,y,z)dv=2µΩ1f(x,y,z)dv(2)当f(x,-y,z)=-f(x,y,z)时,µΩf(x,y,z)dv=0四、第一类曲线积分的对称性A1平面曲线积分∫L f(x,y)ds的计算过程11若曲线L关于X轴对称,记L位于X轴上半部分为L1:则:(1):当f(x,-y)=f(x,y)时∫L f(x,y)ds=2∫L1f(x,y)ds(2):当f(x,-y)=-f(x,y)时,∫L f(x,y)ds=021若曲线L关于Y轴对称,记L位于Y轴右半部分为L1:则:(1):当f(-x,y)=f(x,y)时,∫L f(x,y)ds=∫L1f(x,y)ds(2):当f(-x,y)=-f(x,y)时,∫L f(x,y)ds=0B:空间曲线积分∫ΓF(x,y,z)ds的计算过程11若积分曲线Γ关于XO Y面对称,记Γ位于XO Y面上半部分为Γ1,则:(1)当F(x,y,-z)=f(x,y,z)时,∫ΓF(x,y,z)ds=2∫Γ1F(x,y,z)ds (2):当F(x,y,-z)=-F(x,y,z)时,∫ΓF(x,y,z)ds=021若积分曲线Γ关于YOZ面对称,记Γ位于YOZ面前半部分为Γ1,则:(1)当F(-x,y,z)=F(x,y,z)时,∫ΓF(x,y,z)ds=2∫Γ1F(x,y,z)ds (2)当F(-x,y,z)=-F(x,y,)时,∫ΓF(x,y,z)ds=031若积分曲线Γ关于ZOX面对称,记Γ位于ZOX面右半部分为Γ1,则:(1)当F(x,-y,z)=F(x,y,z)时,∫ΓF(x,y,z)=2∫Γ1F(x,y,z)ds (2):当F(x,-y,z)=-F(x,y,z)时,∫ΓF(x,y,z)=014第4期陈云新:对称性在积分中的应用五、第一类曲面积分的对称性在第一类曲面积分κ∑F(x,y,z)ds的计算过程中.11若积分曲面∑关于XO Y面对称,记∑位于XO Y面上半部分为∑1;则:(1):当F(x,y,-z)=F(x,y,z)时,κ∑F(x,y,z)ds=2κ∑1F(x,y,z)ds(2)当F(x,y,-z)=-F(x,y,z)时,κ∑F(x,y,z)ds=021若积分曲面∑关于YOZ面对称,记∑位于YOZ面前半部分为∑1;则:(1)当F(-x,y,z)=F(x,y,z)时,κ∑F(x,y,z)ds=2κ∑1F(x,y,z)ds(2)当F(-x,y,z)=-F(x,y,z)时,κ∑F(x,y,z)ds=031若积分曲面∑关于ZOX面对称,记∑位于ZOX面右半部分为∑1;则:(1)当F(x,-y,z)=F(x,y,z)时,κ∑F(x,y,z)ds=2κ∑1F(x,y,z)ds(2)当F(x,-y,z)=-F(x,y,z)时,κ∑F(x,y,z)ds=0六、应用举例例1:求µΩzln(x2+y2+z2+1)x2+y2+z2+1dv,其中Ω:x2+y2+z2Φ1.解:∵积分区域Ω关于XO Y面对称而被积函数f(x,y,z)=zln (x2+y2+z2+1)x2+y2+z2+1满足:f(x,y,-z)=-f(x,y,z)∴µΩzln(x2+y2+z2+1)x2+y2+z2+1dv=0例2:求∮L x2+y2ds,其中L为圆周x2+y2=ax.解:因为曲线L关于X轴对称,记位于X轴上方部分为L1而被积函数f(x,y)=x2+y2满足:f(x,-y)=f(x,y)所以∮L x2+y2ds=2∮L1x2+y2ds=2a2例3:计算λ∑xyzds,其中∑是球面x2+y2+z2=1.解:此题中积分区域∑具有多重对称性,任选其中一种都可以得出本题的结果.所以24数学理论与应用第20卷λ∑xyzds =0参考文献[1] 同济大学编《高等数学》第四版下期,高等教育出版社,1996,12(上接39页)而求得所求积分值为π24.从以上的分析讨论可以看到,分解变形这一技巧在积分运算中是一种用途广泛的方法,应用得恰当,不但可以将复杂问题简单化,而且有时还可以起到提示解题思路的作用.附:主要参考资料[1]同济大学数学教研室编.高等数学1高教出版社[2]西安交通大学高等数学教研室编.复变函数论1高等教育出版社出版34第4期陈云新:对称性在积分中的应用。
2 对称性在曲线积分计算中的应用2。
1 对称性在第一类曲线积分计算中的应用结论1 若积分曲线L关于x轴(或y轴)对称,记L1为曲线L被坐标轴所分割的两个对称区域之一,则有:①∫Lf(x,y)ds=0,f(x,y)为关于y(或x)的奇函数;②∫Lf(x,y)ds=2∫L1f(x,y)ds,f(x,y)为关于y(或x)的偶函数.结论2 若积分曲线L关于直线y=x对称,则当点(x,y)∈L时,有(y,x)∈L,即L关于x,y具有轮换对称性,这时有:∫Lf(x,y)ds=∫Lf(y,x)ds=12∫L[f(x,y)+f(y,x)]ds若f(x,y)=—f(y,x),即f(x,y)关于直线y=x奇对称,则∫Lf(x,y)ds=0;若f(x,y)=(y,x),即f(x,y)关于直线y=x偶对称,则∫Lf(x,y)ds=2∫L1f(y,x)ds。
其中L1为曲线L被直线y=x所分割的两个对称区域之一。
2.2 对称性在第二类曲线积分计算中的应用设有曲线积分I=∫L P(x,y)dx,其中L为光滑的有向曲线弧,如果L关于某条直线(包括坐标轴)对称,这时利用对称性计算上述曲线积分时,不仅要考虑P(x,y)的大小和符号,还要考虑投影元素dx的符号。
当积分方向和坐标轴正向之夹角小于π2时,投影元素为正,否则为负。
一般地,我们有:结论若积分曲线L关于某直线对称,记L1为曲线L被这条直线所分割的两个对称区域之一,则有:①∫Lf(x,y)ds=0,P(x,y)dx在对称点上取相反的符号;②∫Lf(x,y)ds=2∫L1f(x,y)ds,P(x,y)dx 在对称点上取相同的符号。
对于积分∫L Q(x,y)dy也有类似地结论。
上述结论都可推广到空间曲线的情形。
3 对称性在曲面积分计算中的应用3。
1 对称性在第一类曲面积分计算中的应用结论1 若积分曲面关于某平面(或某点)对称,记1为曲面被某平面(或某点)所分割的两个对称曲面之一,则有:①f(x,y,z)dS=0,在对称点上f(x,y,z)取相反的符号;②f(x,y,z)dS=21f(x,y,z)dS,在对称点上f(x,y,z)取相同的符号.结论2 若积分曲面关于x,y,z具有轮换对称性,则有:f(x,y,z)dS=f(y,z,x)dS=f(z,x,y)dS=13[f(x,y,z)+f(y,z,x)+f(z,x,y)]dS3。
曲面积分轮换对称性使用条件轮换对称性使用条件:只要积分区域关于y=x对称就可以使用轮换对称性,使用轮换对称性的目的是简化计算,通常可以配合极坐标使用。
积分轮换对称性特点及规律(1)对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y, z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0,也就是积分曲面的方程没有变,那么在这个曲面上的积分JJf(x,y,z)dS=Jf(y,z,x)dS;如果将函数u(x,y,z)=0中的x,y, z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分JJf(x,y,z)dS=JJf(y,x,z)dS;如果将函数u(x,y, z)=0中的x,y, z换成z,x,y后,u(z,x,y)=,那么在这个曲面上的积分Jf(x,y, z)dS=J Jf(z,x,y)dS,同样可以进行多种其它的变换。
(2)对于第二类曲面积分只是将dxdy也同时变换即可,比如:如果将函数u(x,y, z)=0中的x,y,z 换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积分IJf(x,Y,z)dxdy=JJf(y,z,x)dydz,J Jf(x,Y,z)dydz=J Jf(y,z,x)dzdx,j Jf(x,y,z)d:(3)将(1)中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,那么在这个曲线上的积分Jf(x,y)ds=Jf(y,x)ds; 实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称。
第二类三维空间的曲线积分跟(2)总结相同同。
但第二类平面上的曲线积分不同Jf(x,y)dx=-Jf(y,x)dy.(注意前面多了一个负号)(4)二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后相当于将坐标轴重新命名,积分区间没有发生变化,则被积函数作相应变换后,积分值不变2利用轮换对称性求最值在高考或竞赛的选择、填空题中,常会遇到一类求最值词题,这类问题的特征是条件式与待求式都是轮换对称式即所给式中的字母x、y、z能依次轮换,相互代替,而结果不变,则关于x、Y、z的代数式的最大(小)值,一定是在x=y=z=时的值。
一、曲线积分的对称性① 关于弧长的曲线积分。
有奇偶对称性和轮换对称性。
奇偎对称性:设积分曲线弧关于y 轴对称,则rhf /(对刀山,当2、小关于工为偶函数 J=]几1Lb, 当心、心关于为为奇函数. 英中在’轴右侧的部分.若L 关于R 轴对称,则有类似结论•轮换对称性:设积分曲线孤L 关于直线y -工对称,则了)d$ = J/(>,兀〉山.② 关于地标的乎面曲线积分•有奇偶对称性•奇偶对称性;若L 关于y 轴对称,则 f 2〔 P (x, j )dx, F (s 》>血=]仏J J L h,其中轴右侧的部分.若L 夬于文轴对称,则f [2( P (H,,)d4 j P (=,,)dz = y L 2L b,其中乙2为L 在文轴上侧的部分・关于\Q (x,y )dy 亦有类似结论.③ 关二坐标的空间曲线积分•有奇偶对称性. 奇偶对称性:若F 关于心 面对称,则2 z )dx, Jr i0,其中巧为I*在垃y 面上方的部分.若厂关于.:Qz 面对称,则2|z )dLr ・ 符别有^/( X )ds 二 5 )ds.当PG Q 〉关于工为偶函数当关于力为奇函数 当关于夕为奇函数当PR”)关于y 为偶画数 £(巾 j, z)dx = 当P (孙八幻关于乂为奇函效 当Pg*关于2为偶函数当PQ,"")关于工为偶西数当FQ”, z )关于,为奇函数Jr20,其中&为尸在妙面前方的部分•若厂关于25面射称,则fM P(z,g)dg 当P(z,y,2〉关于』为奇函数 J f P(x,y ^)d.r "3r b 当P(^.y^)关于•为偶函数其中C 为F 在以直面右方的部分.关于仁(2(巧屏,z)dy 及|^jR[x,y, z)dz 有类似结论•二、曲面积分的对称性®关于面积的曲面积分奇偶对称性:按工关于戈Qy 面对称,则|‘2『/(x,y^)d5,当/(…“)为农的偶函数, J /(JE ,y,z)dS = y 莒S 0»当V, X)为Z 的奇函数.②关于坐标的曲面积分奇偶对称性:设工关于乂氏面对称.则Q(rr, y Q)dzdLr 与『R(r, y. x)d^dy 有类似结论• 轮换对称性:若》关于工,%2对称,则 ^P(x,y y z)dydz =『P(z,朮,y)(h?dy - 特别有JJ'P C X )dydz 二 j[p(3i )d«dac = T P ( «)dxdj.2 15 0,x f y,z)dydz =当P(x, “黑)为 当 z)为 乂的奇函数, Z 的偶函数. THJS于 对,z, x)d^djr.。
对称性在积分计算中的应用引言积分在数学分析中是相当重要的一项内容,而在计算积分的过程中,我们经常会碰到积分区域或者被积函数具有某种对称性的题型.那么,如果我们在解题中发掘或注意到问题的对称性,并巧妙地把它们应用到积分的计算过程中去,往往可以简化计算过程,达到事倍功半的效果,我们甚至可以不用计算就可以直接判断出其结果.在积分计算中利用对称性来解题这种方法,是一种探索性的发现方法,它与其他方法的不同之处主要体现在其创造性功能. 因此,掌握和充分利用对称性求积分这一方法,对于活跃和开拓我们学生的创造性思维,提高判断解题能力,探讨解题方法是十分有益的.下面从定积分、积分、线面积分三方面来介绍一下对称性在积分计算中的应用.一、相关的定义设平面区域为D ,若点),(y x ),2(y x a D -⇔∈,则D 关于直线a x =对称,称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ⇔)2,(y b x - ),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然当0=a ,0=b 对D 关于y ,x 轴对称)。
二、对称性在定积分中的应用(一) 定积分的概念 1. 概念设函数)(x f 在],[b a 上有界,(1) 在],[b a 内插入若干个分点,......210b x x x x a n =<<<<=把区间[,]a b 分成n 个小区间01121[,],[,],......[,],n n x x x x x x -各个小区间长度依次为110221,,x x x x x x ∆=-∆=-1.......n n n x x x -∆=-(2) 在每个小区间上任取一点1(),()i i i i i x x f ξξξ-≤≤作函数与小区间长度i x ∆的乘积()(1,2,......,),i i f x i n ξ∆=,并作出和 1().ni i i S f x ξ==∆∑(3) 记12max{,,......,},n x x x λ=∆∆∆如果不论对[,]a b 怎样划分,也不论在小区间1[,]i i x x -上点i ξ怎样选取,只要当0λ→时,和S 总趋于确定的极限I ,那么这个极限称为函数的()f x 在区间],[b a 上的定积分,记为⎰ba dx x f )(即记为1()()nbi i ai f x dx I f x ξ===∆∑⎰其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],[b a 叫做积分区间. 2. 几何意义几何上,⎰<ba b a dx x f )()(表示曲线()y f x x =与轴,,x a x b ==所围曲边梯形面积的代数和.(二) 对称性在定积分中的性质性质 1 若()x f [,]a b k 在上可积,为常数,则()x kf 在],[b a 上也可积,则⎰b adx x kf )(⎰=badx x f k )(性质 2 ()()上也可积,且在则上可积都在若],[)()(,],[,b a x g x f b a x g x f ±.)()()]()([dx x g dx x f dx x g x f bab aba⎰⎰⎰±=±性质 3 ()()()()上也可积在上可积,则在都在若],[],[,b a x g x f b a x g x f ⋅ 性质 4 ()()上与在任给上可积的充要条件是:在],[],[),,(],[b c c a x f b a c b a x f ∈.都可积.)()()(⎰⎰⎰+=bcc ab adx x f dx x f dx x f 此时又有等式规定 1 0)(⎰==badx x f b a 时,令当.规定 2 .)()(⎰⎰-=>abb adx x f dx x f b a 时,令当 .性质 5 ()⎰≥∈≥badx x f b a x x f b a x f .0)(],,[,0)(.],[则若上的可积函数为设推论(积分不等式性)()()],,[),()(],[b a x x g x f b a x g x f ∈≤上的两个可积函数,且为与若性质 6()().)()(],[],[dx x f dx x f b a x f b a x f baba⎰⎰≤上也可积,且在上可积,则在若(三) 对称性在定积分中的定理定理1 若)(x f 在a][-a,(a>0)上连续且为偶函数,则⎰⎰=-aaadx x f dx x f 0)(2)(.证明 因为 ⎰⎰⎰+=--aaaadx x f dx x f dx x f 0)()()(对积分作代换-t x =,则得⎰⎰⎰⎰-=-=--=-aaaa dx x f dt t f dt t f dx x f 0)()()()(所以 ⎰⎰⎰⎰-+=+=--aa aaadx x f x f dx x f dx x f dx x f 00)]()([)()()((1) 若)(x f 为偶函数,则)(2)()(),()(x f x f x f x f x f =+-=-即 所以⎰⎰=-aaadx x f dx x f 0)(2)((2) 若)(x f 为奇函数,则0)()(),()(=+--=-x f x f x f x f 即 所以0)(=⎰-aa dx x f .注 定理1可简化计算偶函数,奇函数在对称于原点的区间上的定积分为0.(四) 对称性在定积分中的应用举例 例 1 dx x x 23111)1(-+⎰-解 =⎰⎰---+-112311211dxx x dx x因为积分区间关于原点对称,而2-1x 是偶函数,231x x -是奇函数,故,011123=-⎰-dx x x设 x =y sin 2cos 1222112πππ⎰⎰--==-dy y dx x原式=2π 例 2 计算()2x 2ln 1e x dx -+⎰因为积分区间关于原点对称,但()x e 1ln +既不是奇函数也不是偶函数,我们可()().b ba af x dxg x dx ≤⎰⎰则有利用()()()()()22x f x f x f x f x f --+-+=.其中()()2x f x f -+为偶函数,()()2x f x f --为奇函数,把它分解为一个偶函数和一个奇函数之和.解 令()()x x f e 1ln +=,则()()()x x x f x f -++=-+e e 2ln 212,()()x x f x f 212=--,()()2222x x -x 222220118ln 1+e ln 2e e d 223x dx x x dx x x x dx ---⎡⎤=+++===⎣⎦⎰⎰⎰⎰所以有例3 计算 ⎰-+22223sin )cos (ππxdx x x分析 由于x x 23sin 是一个奇函数, x x 22sin cos 是一个偶函数,并且积分区域]2,2[ππ-关于原点对称,因此可用定理1来计算. 解 由定理1得 原式⎰⎰--+=22222223sin cos sin ππππxdx x xdx x⎰-+=2222sin cos 0ππxdx x=)sin sin (2204202⎰⎰-ππxdx xdx 其中220sin xdx π⎰=22222220sin cos (sin cos cos )sin xd x x xx dx dx x dx πππππ-=--=-⎰⎰⎰⎰2220sin xdx π⎰=2π ,220sin xdx π⎰=221π⋅ 同理得:22143)sin 204ππ⋅⋅=⎰xdx原式 )22143221(2ππ⋅⋅-⋅=8π=.利用函数关于直线对称以及区间关于直线对称,应用定理得出积分为0,使上述复杂积分简单化,易得出结论.三、对称性在二重积分中的应用(一)二重积分的概念 1 概念设(,)f x y 是有界闭区域D 上的有界函数,(1) 将闭区域D 任意分成n 个小闭域12,,......,,n σσσ∆∆∆其中i σ∆表示第i 个小闭区域,也表示它的面积.(2) 在每个i σ∆上任取一点(,),i i εη 作乘积(,)i i i f εησ∆ (1,2,......,),i n =并作和1(,),niiii f εησ=∆∑(3) 如果当个小闭区域的直S 径的最大值0λ→时,这和的极限总存在,则称此极限为函数(,)f x y 在闭区域D 上的二重积分,记作 01(,)lim (,)ni i i i Df x y d f λσεησ→==∆∑⎰⎰其中(,)f x y 叫做被积函数,(,)f x y d σ叫做被积表达式,d σ叫做面积元素,x y 与叫做积分变量,D 叫做积分区域,1(,)ni i i i f εησ=∆∑叫做积分和.2 几何意义当(,)f x y 为闭区域D 上的连续函数,且(,)0,f x y ≥则二重积分(,)Df x y d σ⎰⎰表示以曲面(,)z f x y =为顶,侧面以D 的边界曲面为准线,母线平行于z 轴的曲顶柱体的体积.一般地,(,)Df x y d σ⎰⎰表示曲顶柱体体积的代数和.(三) 二重积分的性质性质 7 上也可积,且在为常数,则上可积,在区域若D y x kf k y x f ),(D ),(⎰⎰⎰⎰=DDd y x f k d y x kf .),(),(σσ性质 8 上也可积,且在上都可积,则在若D y)g(x,y)f(x,D ),(),,(±y x g y x f⎰⎰⎰⎰⎰⎰±=±DDDd y x g d y x f d y x g y x f .),(),(]),(),([σσσ性质 9 若 ),(y x f 在1D 和2D 上都可积,且1D 与2D 无公共内点,则),(y x f 在1D ⋃2D 上可积,且.),(),(),(2121σσσd y x f d y x f d y x f D D D D ⎰⎰⎰⎰⎰⎰+=⋃性质 10 则上可积,且在与若,),(),,(),(),(),(D y x y x g y x f D y x g y x f ∈≤⎰⎰⎰⎰≤DDd y x g d y x f .),(),(σσ性质 11 ⎰⎰Dd y x f D y x f D y x f σ),(),(),(上也可积,且在上可积,则在若σd y x f D⎰⎰≤),(性质 12 σd y x f mS D y x M y x f m D y x f DD ),(,),(,),(),(⎰⎰≤∈≤≤则上可积,在若.,的面积是积分区域这里D S MS D D ≤(三) 对称性在二重积分中的定理定理2 设有界闭区域12D D D = ,1D 与2D 关于y 或x 轴对称.设函数),(y x f 在有界闭区域D 上连续,那么(ⅰ)若),(y x f 是关于y (或x )的奇函数,则⎰⎰Dd y x f σ),(0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则Df(x,y)d σ⎰⎰=2(,)iD f x y d σ⎰⎰(1,2)i =注 设函数),(y x f 在有界闭区域D 上连续(i)若D 关于x 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD y y x f d y x f y y x f d y x f 2),(),(2),(,0),(为偶函数关于,如果为奇函数关于如果σσ其中2D 是D 的上半部分 2D =}0|),{(≥∈y D y xy)(x y ϕ=1Da 0b x2D)(-x y ϕ= 图1 证明12(,)(,)(,)DD D f x y dxdy f x y dxdy f x y dxdy =+⎰⎰⎰⎰⎰⎰ (1)若区域D 对称于x 轴(图1),对任意(,)P x y ∈1D ,其对称点(,)P x y '-∈2D1D ={}0(),y x a x b ϕ≤≤≤≤,2D ={}()0,x y a x b ϕ-≤≤≤≤,令x xy t=⎧⎨=-⎩, 则2D 变换为xot 坐标面上的{}10()D t x a x b ϕ=≤≤≤≤,,且雅可比行列式(,)(,)x y x t ∂∂10101==--. 故2(,)D f x y dxdy ⎰⎰=1(,)1D f x t dxdt -∙-⎰⎰=1(,)D f x y dxdy -⎰⎰=11(,),(,)(,)(,),(,)(,)D D f x y dxdy f x y f x y f x y dxdy f x y f x y ⎧-=⎪⎪⎨--=-⎪⎪⎩⎰⎰⎰⎰,于是,代入(1)式得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y =--⎧⎪=⎨=-⎪⎩⎰⎰⎰⎰ 0 , ,(ii) 若D 关于y 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD x y x f d y x f x y x f d y x f 1),(),(2),(,0),(为偶函数关于,如果为奇函数关于如果σσ其中1D 是D 的右半部分:1D =}0|),{(≥∈x D y xy)(y x ϕ-= d )(y x ϕ=2D 1D 0 xc图2证明 若区域D 对称于y 轴(图2),对任意(,)P x y ∈1D ,对称点(,)P x y '-∈2D ,类似 (i) 的证明可得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y -=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰ 0 , ,定理 3 设有界闭区域D 关于x 轴和y 轴均对称,函数),(y x f 在D 上连续 (1)若),(y x f 关x 和y 均为偶函数,则1(,)4(,),DD f x y d f x y d σσ=⎰⎰⎰⎰其中1D 是D的第一象限的部分1{(,)|0,0}D x y D x y =∈≥≥(,)f x y (2)若关x 和y 均为奇函数,则(,)0Df x y d σ=⎰⎰定理 4 设有界闭区域D 关于原点对称,函数),(y x f 在D 上连续,则⎰⎰⎰⎰⎰⎰⎪⎩⎪⎨⎧=--=-=--=DD D y x f y x f d y x f d y x f y x f y x f d y x f 12),(),(,),(2),(2),(),(,0),(如果如果σσσ其中1D =}0|),{(≥∈x D y x ,2D =}0|),{(≥∈y D y xy2D 1D )(x y ϕ= 0 x a b)(x y ψ=图3证明 若区域D 对称于原点(图3),对任意(,)P x y ∈1D ,对称点P '(,)x y --∈2D ,{}1()()D x y x a x b ψϕ=≤≤≤≤,, {}2()()D x y x b x a ϕψ=--≤≤---≤≤-,,令x uy v =-⎧⎨=-⎩, 则区域2D 变换为uov 坐标平面内区域{}1()()D x y x a x b ψϕ=≤≤≤≤,,雅可比行列式(,)(,)x y u v ∂∂10101-==-,所以2(,)D f x y dxdy ⎰⎰=1(,)D f u v dudv --⎰⎰=1(,)D f x y dxdy --⎰⎰=11(,),(,)(,)(,),(,)(,)D D f x y dxdyf x y f x y f x y dxdy f x y f x y ⎧---=-⎪⎪⎨--=⎪⎪⎩⎰⎰⎰⎰,代入12(,)(,)(,)DD D f x y dxdy f x y dxdy f x y dxdy =+⎰⎰⎰⎰⎰⎰,得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y --=-⎧⎪=⎨--=⎪⎩⎰⎰⎰⎰ 0 ,若 ,若定理 5 设有界闭区域D 关于x y =对称, 函数),(y x f 在D 上连续,则Df(x,y)d σ⎰⎰=(,)Df y x d σ⎰⎰(四) 对称性在二重积分中的应用举例例 4 计算二重积分25sin Sx ydxdy ⎰⎰,其中S 是由1x y +=,0x =,1x y -=所围成的区域.解 积分区域S 关于x 轴对称(见图),且ydxdy x S52sin ⎰⎰为关于y 的奇函数,故由定理225sin 0Sx ydxdy =⎰⎰例 5 设 :sin ,,12D y x x y π==±= 围成求 (1)Dxy dxdy-⎰⎰x 2π-= y x 2π=y=1x图5x11-10 图4y解 12DDD D DI xydxdy dxdy xydxdy xydxdy dxdy =-=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰因为12D D 和关于y 轴对称,所以由定理2知120D D xydxdy xydxdy +=⎰⎰⎰⎰所以 原式 =Ddxdy π=⎰⎰例 6 计算二重积分 222(373),: 1.DI x x y d D x y σ=++++≤⎰⎰其中解 见下图 D 关于x y 轴轴都对称,而37x y 和分别关于变量x 和变量y 为奇数 所以由定理330,Dxd σ=⎰⎰70Dyd σ=⎰⎰设 θσθr d r d d r x ==,c o s ,=⎰⎰σd x D2rdr r d ⎰⎰πθθ2012)cos ( 所以 原式πθθπ3)cos (2012+=⎰⎰rdr r d π411=yDx图6例 7 计算 (),DI x y d x d y =+⎰⎰ 其中: 1.D x y +≤解 D x y 关于轴,轴对称,且被积函数关于x 和y 是偶函数,即有(,)f x y -=(,)(,)f x y f x y -=由定理3,有1()()DD I x y dxdy x y dxdy =+=+⎰⎰⎰⎰,其中1D D 是的第一象限部分,由对称性知11D D x dxdy y dxdy =⎰⎰⎰⎰22(3)3DDDI x d x d d σσσ=+=+⎰⎰⎰⎰⎰⎰故 11144()4()8.3D D D I x y d x d y xx d x d y x d x d y =+=+==⎰⎰⎰⎰⎰⎰例 8 计算2()Dxy x y dxdy +⎰⎰其中D 是由,1,1y x y y ===-0x =以及所围城的闭区域图7解 如图, 12D D D =+,1D 、2D 关于原点对称,但被积函数不满足(,)(.)f x y f x y =--,也不满足(,)(.)f x y f x y =---,故不能直接用定理来计算, 所以令1(,)f x y xy = , 22(,)f x y x y =对1(,)f x y 和2(,)f x y 分别应用定理4,则11(,)2DD f x y dxdy xydxdy =⎰⎰⎰⎰,2(,)0Df x y dxdy =⎰⎰,故 2()DI xy x y dxdy =+⎰⎰41221001==⎰⎰⎰⎰xD xydydx xydxdy 例 9 设()f x 为恒正的连续函数,计算积分222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰ 解 由于积分区域222x y r +≤关于y x =对称,所以由定理5 ,可得222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰=222()()()()x y r af y bf x dxdy f y f x +≤++⎰⎰, 于是222()()2()()x y r af x bf y dxdy f x f y +≤++⎰⎰ 222222()()()()()()()()x y r x y r af x bf y af y bf x dxdy dxdy f x f y f y f x +≤+≤++=+++⎰⎰⎰⎰ 222()x y r a b dxdy +≤=+⎰⎰=2()a b r π+.故222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰=2()2a b r π+.四、对称性在三重积分中的应用根据被积函数的奇偶性及积分区域的对称性可以简化三重积分的计算,三重积分的计算中也有相应的对称性定理. (一) 对称性在三重积分中的定理定理6 设Ω由0),,(≤z y x ϕ表示,若将x 和y 的位置交换后,0),,(≤z x y ϕ仍然表示Ω,则⎰⎰⎰Ωdv z y x f ),,(=⎰⎰⎰Ωdv z x y f ),,(,这种位置的对称,也称变量可轮换性.定理7 设三维实空间有界闭区域21Ω⋃Ω=Ω,且1Ω与2Ω关于xoy 面对称,函数),,(z y x f 在Ω上可积,则⎰⎰⎰⎰⎰⎰ΩΩ⎪⎩⎪⎨⎧ΩΩ=的奇函数上是关于在当的偶函数上是关于在当z f z f dxdydvz y x f dv z y x f ,0,),,,(2),,,(1定理8 设三维实空间有界闭区域21Ω⋃Ω=Ω,且1Ω与2Ω关于z 轴对称,函数),,(z y x f 在Ω上可积,则:⎰⎰⎰⎰⎰⎰ΩΩ⎪⎩⎪⎨⎧ΩΩ=的奇函数上为关于在当的偶函数上为关于在当y x f y x f dxdydzz y x f dxdydz z y x f ,,0,,),,,(2),,,(1(二) 对称性在三重积分中的应用举例例10 计算⎰⎰⎰++ωdu z y x )(,其中Ω:≤++222z y x R 2,(0,00,≥≥≥z y x ).解 本题具有变量位置的对称,因此有⎰⎰⎰ωxdu =⎰⎰⎰ωydu =⎰⎰⎰ωzdu 设D z :)0,0(2222≥≥=++y x R z y x ,则原式为 3⎰⎰⎰ωzdu =3⎰⎰⎰RD zdxdy zdz 0=43⎰Rdz z R z 022)-(π=1634R π 可见,类似的题目都只需计算其中任意一元数值,及对应系数,即可求得结果.例11 计算⎰⎰⎰++++++ωdxdydz z y x z y x z 1)1ln(222222,其中ω:≤++222z y x 1. 分析 很显然,ω关于xoy 面对称,可以直接运用定理7.解 因为ω关于xoy 面对称,且被积函数1)1ln(),,(222222++++++=z y x z y x z z y x f 在ω上连续并为关于z 的奇函数,故 ⎰⎰⎰++++++ωdxdydz z y x z y x z 1)1ln(222222 =0. 例12 计算⎰⎰⎰Ω+dV yx xyz 22,其中Ω为xy a 22222)z y (x =++与0=z 两曲面所围区域.解 显然,积分区域Ω关于z 轴对称,且22),,(y x xyzz y x f +=为关于x 、y 的偶函数,又因为≥++2222)(z y x 0,所以xy 同号.因而Ω分布在一、四象限内,从而由定理8得到⎰⎰⎰Ω+dV y x xyz 22=⎰⎰⎰Ω+1222y x xyzdxdydz =⎰⎰⎰θθϕππθθϕϕϕθcos sin sin 03202cos sin cos sin 2a dr r d d= ⎰⎰=202045334144cos sin cos sin 2ππϕϕϕθθθad d a .小结 用对称性定理来简化二重积分和三重积分的计算,有时候可以起到事半功倍的效果.对于一般的对称性定理,若加以适当拓广,还可以用来巧妙地求解一些重积分的计算和证明问题.五、对称性在曲线积分中的应用(一) 对称性在曲线积分中的定理 设函数),(y x f 定义在二维光滑曲线上1.若),(y x f 满足关系式),(y x f -=),(y x f 或),(y x f -=),(y x f ,则称),(y x f 为偶函数.2.若),(y x f 满足关系式),(y x f -=),(y x f -或),(y x f -=),(y x f -,则称),(y x f 为奇函数.定理9 设分段光滑的平面曲线L 关于x 轴对称,记L 在上半平面的部分为1L ,下半平面部分为2L ,则⎪⎩⎪⎨⎧=⎰⎰1),(,),(2),(,0),(L Ly y x f ds y x f y y x f ds y x f 的偶函数为关于的奇函数为关于 定理10 设分段光滑的平面曲线L 关于y 轴对称,记L 在右半平面的部分为1L ,左半平面部分为2L ,则⎪⎩⎪⎨⎧=⎰⎰1),(,),(2),(,0),(L L x y x f ds y x f x y x f ds y x f 的偶函数为关于的奇函数为关于 推论1 设分段光滑的平面曲线L 关于原点对称,则⎪⎩⎪⎨⎧I =⎰⎰11),(,),(4),(, 0),(L L L L x y y x f ds y x f x y y x f ds y x f 象限中的部分)位于第是的偶函数(其中或为关于的奇函数或为关于定理11 设分段光滑的平面曲线L 关于x 轴对称,则(1)⎰L dx y x P ),(=⎰--L dx y x P ),(=21⎰--Ldx y x P y x P )],(),([(2)⎰L dx y x P ),(=⎰-L dy y x P ),(=21⎰-+L dy y x P y x P )],(),([定理12 设分段光滑的平面曲线L 关于y 轴对称,则 (1)⎰Ldx y x P ),(=⎰-Ldx y x P ),(=21⎰-+Ldx y x P y x P )],(),([(2)⎰L dx y x P ),(=⎰--L dy y x P ),(=21⎰--L dy y x P y x P )],(),([ 推论2 设分段光滑的有向平面曲线L 关于x 轴对称,(L 在上半平面部分记为1L ,在下半平面部分记为2L ),1L 与2L 方向相反,则(1) ⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的奇函数为关于的偶函数为关于y y x P dy y x P y y x P dy y x P(2) ⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的偶函数为关于的奇函数为关于y y x Q dy y x Q y y x Q dy y x Q推论3 设分段光滑的有向平面曲线L 关于y 轴对称,(L 在右半平面部分记为1L ,在左半平面部分记为2L ),1L 与2L 方向相反,则(1)⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的偶函数为关于的奇函数为关于x y x P dy y x P x y x P dy y x P(2)⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的奇函数为关于的偶函数为关于x y x Q dy y x Q x y x Q dy y x Q(二) 对称性在曲线积分中的应用举例 例13 计算⎰=++1||||||||y x ds y x x解 因为积分曲线关于原点对称,被积函数||||),(y x xy x f +=为关于x 的奇函数,由推论1,得⎰=++1||||||||y x ds y x x=0 例14 计算⎰+Lxydy e x1,其中L 关于x 轴对称,取逆时针方向, L 所围成的闭区域D 的面积为σ.分析 显然,题目已知L 关于x 轴对称,又是分段曲线积分,可直接运用定理求得结果解 由定理11,有⎰+Lxydy e x 1=21dy e xe x Lxy xy ⎰-+++)11(=21⎰++Lxy xy dy e xe x 1=21⎰Lxdy =21⎰⎰Dd σ=21σ. 例15 计算⎰++L xy dydx 1||,其中1:=+y x L ,取逆时针方向.解 因为⎰++L xy dy dx 1||=⎰+L xy dx 1||+⎰+L xy dy 1||而L 关于x 轴、y 轴对称且对称两部分方向相反,函数),(y x f =1||1+xy 既为关于x 的偶函数,又为关于y 的偶函数,由推论2、推论3,原式=0.六、对称性在曲面积分的对称性(一) 对称性在曲面积分中的定理 设函数),,(z y x f 定义在三维光滑曲面上1.若),,(z y x f 满足关系式=-),,(z y x f ),,(z y x f )或=-),,(z y x f ),,(z y x f ,则称),,(z y x f 为偶函数.2.若),,(z y x f 满足关系式=-),,(z y x f ),,(z y x f -或=-),,(z y x f ),,(z y x f -,则称),,(z y x f 为奇函数.定理13 设分段光滑的空间曲线Γ关于xoy (或yoz 或zox )坐标面对称,记1Γ为位于对称坐标面一侧的部分, 则⎪⎩⎪⎨⎧=⎰⎰1)(y)f(x,,),,(2)(),(,0),,(τ的偶函数或或为关于的奇函数或或为关于y x z ds z y x f y x z y x f ds z y x f z定理14 设曲面S 是由关于P (或平面α)对称的1S 和2S 组成,设1M ∈1S 的对称点为22S M ∈,则:⎰⎰⎰⎰⎪⎩⎪⎨⎧-===S12S 12)(M )(M ,0)(M )(M ,(M)2(M)1f f f f ds f ds f 若若 证明 以曲面S 关于平面α对称为例,不妨设曲面S 是关于xoy 对称的曲面1S 和2S 组成,设1M ∈1S 的坐标为),,(z y x ,则其对称点22S M ∈的坐标为),,(z y x -,设1S 、2S 在xoy 平面上的射影区域为xy σ,则⎰⎰⎰⎰⎰⎰+=21),,(),,(),,(S S Sds z y x f ds z y x f ds z y x f =⎰⎰++-+dxdy z zy x z y x f y x z y x f y x 221)]},(,,[)],(,,[{(1)当=-),(z y x f ),,(z y x f 时,⎰⎰Sds z y x f ),,(=⎰⎰1),,(2S ds z y x f(2)当=-),(z y x f -),,(z y x f 时,⎰⎰Sds z y x f ),,(=0.(二) 对称性在曲面积分中的应用举例例16 计算⎰⎰++εds zx yz xy )(,其中∑为锥面z =22y x +被曲面ax y x 222=+所截下的部分.分析 由于曲面∑关于zox 面对称,而被积函数中xy 与yz 都是y 的奇函数 解 根据定理,知⎰⎰++εds zx yz xy )(=⎰⎰εzxds =⎰⎰+++xyD y x dxdy z z y x x22221=⎰⎰+xyD dxdy y x x 222=2⎰⎰-22cos 203cos ππθθθa dr r d =42⎰-225cos ππθθd =156424a .例17 计算曲面积分⎰⎰=Sds xyz I ||,其中S 为曲面22y x z +=介于平面0=z 和1=z 之间的部分.解 因曲面S 关于平面xoz 和yoz 对称,而||),,(xyz z y x f =,由定理知⎰⎰=14S xyzds I ,其中1S 是S 在第一象限的部分22y x z +=,'x z x 2=,y z y 2'=,dxdy y x ds 22441++=.故I=dxdy y x y x xy xyD 2222441)(4+++⎰⎰=⎰⎰122cos sin 4θθθπr d ·2r ·241r +·rdr=4201-5125.由此可见,上述关于积分(定积分,重积分,线面积分)对称性的定理性质对于在特殊情况下简化积分的计算是非常有效的,它可以避免很多干扰,所以在解题中注意积分区间是否具有某种对称性是简化题目的关键,若对称性不明显则可以通过一定的方法,根据题目的特点构造对称性,可以减少一些繁琐的计算,提高解题效率.参考文献1 华东师范大学数学系, 数学分析(上册,下册),高等教育出版社2 同济大学,高等数学(上册,下册),高等教育出版社3 王莉,海天2013年考研数学基础班高数辅导讲义4 薛春荣,王芳,对称性在定积分及二重积分计算中的应用[J],科学技术与工程,2010,(1)5 赵达夫.高等数学的辅导讲义[M].新华出版社.6 孙钦福.二重积分的对称性定理及其应用.曲阜师范大学学报,2008.7 张仁华.二重积分计算中的若干技巧.湖南冶金职业技术学院学报,2008.8 温田丁.考研数学中二重积分的计算技巧.高等数学研究, 2008.后记本论文在选题及研究过程中得到指导老师的悉心指导。
2 对称性在曲线积分计算中的应用
2.1 对称性在第一类曲线积分计算中的应用
结论1 若积分曲线L关于x轴(或y轴)对称,记L1为曲线L被坐标轴所分割的两个对称区域之一,则有:
①∫Lf(x,y)ds=0,f(x,y)为关于y(或x)的奇函数;
②∫Lf(x,y)ds=2∫L1f(x,y)ds,f(x,y)为关于y(或x)的偶函数。
结论2 若积分曲线L关于直线y=x对称,则当点(x,y)∈L时,有(y,x)∈L,即L关于x,y具有轮换对称性,这时有:
∫Lf(x,y)ds=∫Lf(y,x)ds=12∫L[f(x,y)+f(y,x)]ds
若f(x,y)=-f(y,x),即f(x,y)关于直线y=x奇对称,则∫Lf(x,y)ds=0;
若f(x,y)=(y,x),即f(x,y)关于直线y=x偶对称,则∫Lf(x,y)ds=2∫L1f(y,x)ds。
其中L1为曲线L被直线y=x所分割的两个对称区域之一。
2.2 对称性在第二类曲线积分计算中的应用
设有曲线积分I=∫L P(x,y)dx,其中L为光滑的有向曲线弧,如果L关于某条直线(包括坐标轴)对称,这时利用对称性计算上述曲线积分时,不仅要考虑P(x,y)的大小和符号,还要考虑投影元素dx的符号。
当积分方向和坐标轴正向之夹角小于π2时,投影元素为正,否则为负。
一般地,我们有:
结论若积分曲线L关于某直线对称,记L1为曲线L被这条直线所分割的两个对称区域之一,则有:
①∫Lf(x,y)ds=0,P(x,y)dx在对称点上取相反的符号;
②∫Lf(x,y)ds=2∫L1f(x,y)ds,P(x,y)dx 在对称点上取相同的符号。
对于积分∫L Q(x,y)dy也有类似地结论。
上述结论都可推广到空间曲线的情形。
3 对称性在曲面积分计算中的应用
3.1 对称性在第一类曲面积分计算中的应用
结论1 若积分曲 面关于某平面(或某点)对称,记 1为曲面 被某平面(或某点)所分割的两个对称曲面之一,则有:
① f(x,y,z)dS=0,在对称点上f(x,y,z)取相反的符号;
② f(x,y,z)dS=2 1f(x,y,z)dS,在对称点上f(x,y,z)取相同的符号。
结论2 若积分曲面 关于x,y,z具有轮换对称性,则有:
f(x,y,z)dS= f(y,z,x)dS= f(z,x,y)dS
=13 [f(x,y,z)+f(y,z,x)+f(z,x,y)]dS
3.2 对称性在第二类曲面积分计算中的应用
利用对称性计算第二类曲面积分同样需要注意投影元素的符号。
现以曲面积分
f(x,y,z)dxdy为例来讨论。
当曲面指定侧上动点的法线方向与z轴正向成锐角时,面积元素dS在xoy面上的投影dxdy为正;成钝角时为负。
一般地,我们有:
结论若积分曲面 可分成对称的两部分 1、 2( = 1+ 2),在对称点上|f|的值相等,则有
① f(x,y,z)dxdy=0,在对称点上fdxdy取相反的符号;
② f(x,y,z)dxdy=2 f(x,y,z)dxdy,在对称点上fdxdy的符号相同。
对于积分 f(x,y,z)dydz, f(x,y,z)dzdx也有类似的结论。
总之,应用对称性计算积分时应注意以下几点:
①必须兼顾被积函数和积分区域两个方面,只有当两个方面都具有某种对称性时才能
利用。
如果只有积分区域具有某种对称性,这时根据具体情况,我们可以把被积函数经过恒等变形使之具有某种对称性,再考虑利用上述结论。
②对第二类曲线积分和第二类曲面积分,在利用对称性时,尚需考虑积分路线的方向和曲面的侧,确定投影元素的符号,需慎重。
③有些问题利用轮换对称性可得到简便的解答。