三年级奥数巧数图形ppt例题加练习题
- 格式:pptx
- 大小:175.46 KB
- 文档页数:12
【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。
学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。
谢谢使用!!!】
巧数图形
一、考点、热点回顾
1、一类有趣的图形问题:数出某种图形的个数。
2、由于图形千变万化,错综复杂,所以要想准确地数出其中包含的某种图形的个数,还真需要动点脑筋。
3、有条理、不重复、不遗漏地数出所要图形的个数,最常用的方法就是分类数。
二、典型例题
例1、数出下图中共有多少条线段。
例2 、下列各图形中,三角形的个数各是多少?
例3、下列图形中各有多少个三角形?
例4、右图中有多少个三角形?
例5、数出左下图中锐角的个数。
例6、在下图中,包含“*”号的长方形和正方形共有多少个?
三、习题巩固
1、下列图形中各有多少条线段?
2、下列图形中各有多少个三角形?
3、下列图形中,各有多少个小于180°的角?
4、下列图形中各有多少个三角形?
5、下列图形中各有多少个长方形?
6、下列图形中,包含“*”号的三角形或长方形各有多少?
7、下列图形中,不含“*”号的三角形或长方形各有几个?
四、习题练习
1、数出下图中一共有多少条线段?
2、数一数,下图中共有多少个角?
O
A
D B
C
A
B C D E
4、数一数,下图中共有多少个长方形?
5、数一数,下图中共有多少个正方形?
7、数一数,下图中有多少个角?
9、数一数,下图中共有多少个长方形?
10、数一数,下图中共有多少个正方形?。
例3下列图形中各有多少个三角形?分析与解:(1)只需分别求出以AB,ED为底边的三角形中各有多少个三角形。
以AB为底边的三角形ABC中,有三角形 1+2+3=6(个)。
以ED为底边的三角形CDE中,有三角形 1+2+3=6(个)。
所以共有三角形6+6=12(个)。
这是以底边为标准来分类计算的方法。
它的好处是可以借助“求底边线段数”而得出三角形的个数。
我们也可以以小块个数作为分类的标准来计算:图中共有6个小块。
由1个小块组成的三角形有3个; 由2个小块组成的三角形有5个; 由3个小块组成的三角形有1个; 由4个小块组成的三角形有2个; 由6个小块组成的三角形有1个。
所以,共有三角形 3+5+1+2+1=12(个)。
例4右图中有多少个三角形?解:假设每一个最小三角 形的边长为1。
按边的长度来分 类计算三角形的个数。
边长为1的三角形,从上到下一层一层地数,有 1+3+5+7=16(个); 边长为2的三角形(注意,有一个尖朝下的三角形)有1+2+3+1=7(个); 边长为3的三角形有1+2=3(个); 边长为4的三角形有1个。
所以,共有三角形 16+7+3+1=27(个)。
例6在下图中,包含“*”号的长方形和正方形共有多少个?解:按包含的小块分类计数。
包含1小块的有1个;包含2小块的有4个; 包含3小块的有4个;包含4小块的有7个; 包含5小块的有2个;包含6小块的有6个; 包含8小块的有4个;包含9小块的有3个; 包含10小块的有2个;包含12小块的有4个; 包含15小块的有2个。
所以共有 1+4+4+7+2+6+4+3+2+4+2=39(个)。
练习11 1.下列图形中各有多少条线段? 2.下列图形中各有多少个三角形? 3.下列图形中,各有多少个小于180°的角? 4.下列图形中各有多少个三角形? 5.下列图形中各有多少个长方形? 6.下列图形中,包含“*”号的三角形或长方形各有多少? 7.下列图形中,不含“*”号的三角形或长方形各有几个? 答案与提示 练习111.(1)28;(2)210。
三年级奥数第五讲巧数图形
一、知识要点
数图形要根据图形的特点,按照一定的顺序有条理地来数,分类是数图形的一种重要方法,合理有序的分类可以大大地节省我们数的时间,也能使我们做到不重复、不遗漏。
二、例题精讲
例1 数出下图中有多少条线段。
分析图1中,基本线段2条,两条组成的有1条,因此,图中的线段共有2+1=3(条)图2中的线段共有3+2+1=6条。
图3中共有4+3+2+1=10条不同的线段。
例2 数一数下图中各有多少个三角形?
分析这个图形由5个基本三角形组成,由2个基本三角形组成的图形有4个,由3个基本三角形组成的图形有3个,由4个基本三角形组成的图形有2个,由5个基本三角形组成的图形有1个,合起来一共有5+4+3+2+1=15(个)
策略小结: 数图形的个数时,总是从最基本的图形开始数起,接着由两个基本图形组成的图形,依次类推。
三、巩固练习:
1.数出下列图形中有多少条线段。
有()条线段
2、
有()个三角形
四、拓展与提高
1、
有()个三角形
2分别数出图中各图里的长方形(包括正方形)的个数。
3、图中有多少个小于180°的角?
分析解答:
以A、B、C、D、E、F为顶点的角:各有3个,共6×3=18(个);
以O为顶点的角:单个的角6个,由两个角构成的角有6个,
共12个;
因此小于180°的角共有:18+12=30(个)
答:图中有30个小于180°的角.。