匀变速直线运动 典型例题
- 格式:doc
- 大小:593.50 KB
- 文档页数:4
第一章 运动的描述 匀变速直线运动的研究 第1讲 加速度和速度的关系(a=Δv/t )1.(单选)对于质点的运动,下列说法中正确的是( )【答案】BA .质点运动的加速度为零,则速度为零,速度变化也为零B .质点速度变化率越大,则加速度越大C .质点某时刻的加速度不为零,则该时刻的速度也不为零D .质点运动的加速度越大,它的速度变化越大 2、(单选)关于物体的运动,下列说法不可能的是( ).答案 BA .加速度在减小,速度在增大B .加速度方向始终改变而速度不变C .加速度和速度大小都在变化,加速度最大时速度最小,速度最大时加速度最小D .加速度方向不变而速度方向变化3.(多选)沿一条直线运动的物体,当物体的加速度逐渐减小时,下列说法正确的是( ).答案 BD A .物体运动的速度一定增大 B .物体运动的速度可能减小 C .物体运动的速度的变化量一定减少 D .物体运动的路程一定增大 4.(多选)根据给出的速度和加速度的正负,对下列运动性质的判断正确的是( ).答案 CD A .v 0>0,a <0,物体做加速运动 B .v 0<0,a <0,物体做减速运动 C .v 0<0,a >0,物体做减速运动 D .v 0>0,a >0,物体做加速运动5.(单选)关于速度、速度的变化量、加速度,下列说法正确的是( ).答案 BA .物体运动时,速度的变化量越大,它的加速度一定越大B .速度很大的物体,其加速度可能为零C .某时刻物体的速度为零,其加速度不可能很大D .加速度很大时,运动物体的速度一定很快变大 6.(单选)一个质点做方向不变的直线运动,加速度的方向始终与速度的方向相同,但加速度大小逐渐减小为零,则在此过程中( ).答案 BA .速度逐渐减小,当加速度减小到零时,速度达到最小值B .速度逐渐增大,当加速度减小到零时,速度达到最大值C .位移逐渐增大,当加速度减小到零时,位移将不再增大D .位移逐渐减小,当加速度减小到零时,位移达到最小值7.(单选)甲、乙两个物体在同一直线上沿正方向运动,a 甲=4 m/s 2,a 乙=-4 m/s 2,那么对甲、乙两物体判断正确的是( ).答案 BA .甲的加速度大于乙的加速度B .甲做加速直线运动,乙做减速直线运动C .甲的速度比乙的速度变化快D .甲、乙在相等时间内速度变化可能相等8. (单选)如图所示,小球以v 1=3 m/s 的速度水平向右运动,碰一墙壁经Δt =0.01 s 后以v 2=2 m/s 的速度沿同一直线反向弹回,小球在这0.01 s 内的平均加速度是( )答案:CA .100 m/s 2,方向向右B .100 m/s 2,方向向左C .500 m/s 2,方向向左D .500 m/s 2,方向向右 9.(多选)物体做匀变速直线运动,某时刻速度的大小为4m/s ,1s 后速度大小变为10m/s ,关于该物体在这1s 内的加速度大小下列说法中正确的是( )A .加速度的大小可能是14m/s 2B .加速度的大小可能是8m/s 2C .加速度的大小可能是4m/s 2D .加速度的大小可能是6m/s 2【答案】AD10、为了测定气垫导轨上滑块的加速度,滑块上安装了宽度为3.0 cm 的遮光板,如图所示,滑块在牵引力作用下先后匀加速通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间为Δt 1=0.30 s ,通过第二个光电门的时间为Δt 2=0.10 s ,遮光板从开始遮住第一个光电门到开始遮住第二个光电门的时间为Δt =3.0 s .试估算: (1)滑块的加速度多大?(2)两个光电门之间的距离是多少?解析 v 1=L Δt 1=0.10 m/s v 2=L Δt 2=0.30 m/s a =v 2-v 1Δt ≈0.067 m /s 2. (2) x =v 1+v 22Δt =0.6 m.第二讲:匀变速直线运动规律的应用基本规律(1)三个基本公式①v =v 0+at . ②x =v 0t +12at 2. ③v 2-v 20=2ax(2)两个重要推论 ①平均速度公式:v =v t 2=v 0+v 2= s t .中间位置速度v s 2=√v12+v222.②任意两个连续相等的时间间隔T 内的位移之差为一恒量,即Δx =aT 2.(3).初速度为零的匀变速直线运动的四个推论(1)1T 末、2T 末、3T 末……瞬时速度的比为:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n(2)1T 内、2T 内、3T 内……位移的比为:x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2(3)第一个T 内、第二个T 内、第三个T 内……位移的比为:x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1). (4)从静止开始通过连续相等的位移所用时间的比为:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…. 1.(单选)一物体从静止开始做匀加速直线运动,测得它在第n 秒内的位移为s ,则物体的加速度为( ) A .B .C .D .【答案】A2.(单选)做匀加速沿直线运动的质点在第一个3s 内的平均速度比它在第一个5s 内的平均速度小3m/s ,则质点的加速度大小为( )A .1 m/s 2B .2 m/s 2C .3 m/s 2D .4 m/s 2【答案】C 7.(单选)一个物体从某一高度做自由落体运动,已知它第1s 内的位移为它最后1s 内位移的一半,g 取10m/s 2,则它开始下落时距地面的高度为( )A . 5 mB . 11.25 mC . 20 mD . 31.25 m 【答案】B 3.(多选)一小球从静止开始做匀加速直线运动,在第15s 内的位移比第14s 内的位移多0.2m ,则下列说法正确的是()A . 小球加速度为0.2m/s 2B . 小球前15s 内的平均速度为1.5m/sC . 小球第14s 的初速度为2.8m/sD . 第15s 内的平均速度为0.2m/s 【答案】AB4.(单选)如图是哈尔滨西客站D502次列车首次发车,标志着世界首条高寒区高速铁路哈大高铁正式开通运营.哈大高铁运营里程921公里,设计时速350公里.D502次列车到达大连北站时做匀减速直线运动,开始刹车后第5 s 内的位移是57.5 m ,第10 s 内的位移是32.5 m ,则下列说法正确的有( ).答案 D A .在研究列车从哈尔滨到大连所用时间时不能把列车看成质点 B .时速350公里是指平均速度,921公里是指位移C .列车做匀减速运动时的加速度大小为6.25 m/s 2D .列车在开始减速时的速度为80 m/s5.一辆公共汽车进站后开始刹车,做匀减速直线运动.开始刹车后的第1s 内和第2s 内位移大小依次为9m 和7m .求:(1)刹车后汽车的加速度大小. (2)汽车在刹车后6s 内的位移.解答:解:设汽车的初速度为v 0,加速度为a .则第1s 内位移为:x 1=代入数据,得:9=v 0+ 第2s 内的位移为:x 2=v 0t 2+﹣x 1, 代入数据得:7= 解得:a=﹣2m/s 2,v 0=10m/s汽车刹车到停止所需时间为:t==则汽车刹车后6s 内位移等于5s 内的位移,所以有:==25m 故答案为:2,256.质点做匀减速直线运动,在第1 s 内位移为6 m ,停止运动前的最后1 s 内位移为2 m ,求: (1)在整个减速运动过程中质点的位移大小; (2)整个减速过程共用的时间。
一、口算题1.一个物体做匀变速直线运动,初速度为2m/s,加速度为3m/s²,经过4s后,物体的速度是多少?A.12m/s (答案)B.14m/sC.16m/sD.18m/s2.一辆汽车以10m/s的速度匀速行驶,突然刹车做匀减速直线运动,加速度大小为2m/s²,则刹车后6s内的位移是多少?A.24mB.25m (答案)C.26mD.27m3.一个物体从静止开始做匀加速直线运动,加速度为4m/s²,经过5s后,物体的位移是多少?A.40mB.50m (答案)C.60mD.70m4.一个物体做匀变速直线运动,初速度为5m/s,末速度为15m/s,运动时间为4s,则物体的加速度是多少?A. 2.5m/s²(答案)B.3m/s²C. 3.5m/s²D.4m/s²5.一个物体从静止开始做匀加速直线运动,经过3s后速度为9m/s,则物体的加速度是多少?A.1m/s²B.2m/s²C.3m/s²(答案)D.4m/s²6.一个物体做匀变速直线运动,初速度为10m/s,加速度为-2m/s²,经过5s后,物体的速度是多少?A.-10m/sB.0m/s (答案)C.10m/sD.20m/s7.一个物体做匀变速直线运动,经过连续相等的三个时间间隔,每个时间间隔为2s,物体的位移分别为24m、40m、56m,则物体的初速度是多少?A.2m/s (答案)B.4m/sC.6m/sD.8m/s8.一个物体从静止开始做匀加速直线运动,加速度为3m/s²,经过4s后的位移是24m,则物体在这4s内的平均速度是多少?A.4m/sB.5m/sC.6m/s (答案)D.7m/s9.一个物体做匀变速直线运动,初速度为8m/s,加速度为-2m/s²,则物体速度减为零所需的时间是多少?A.2sB.3sC.4s (答案)D.5s10.一个物体做匀变速直线运动,经过连续相等的两个时间间隔,每个时间间隔为4s,物体的位移差为16m,则物体的加速度是多少?A.1m/s²(答案)B.2m/s²C.3m/s²D.4m/s²。
计算题1. 一个物体从塔顶上下落,在到达地眼前最后 1 s 内经过的位移是整个位移的9,塔高为多少米?( g=10m/s2)252.一个物体从 45m 高处自由下落,那么(1)该物体经多长时间落到地面?(2)最后 1s 的初速度是多少?( 3)在最后 1s 内经过的高度是多少?(g 取 10 m/s2)3.从静止在必然高度的气球上自由落下两个物体,第一个物体下落 1 s后,第二个物体开始下落,若两物体用长93.1 m 的绳连接在一起. 问:第二个物体下落多长时间绳被拉紧?(g=9.8 m/s 2)4. 跳伞运动员做低空跳伞表演,他在离地面224 m 高处,由静止开始在竖直方向做自由落体运动. 一段时间后,马上打开降落伞,以 12.5 m/s 2的平均加速度匀减速降落,为了运动员的安全,要求运动员落地速度最大不得高出 5 m/s ( g 取 10 m/s 2).( 1)求运动员张开伞时,离地面高度最少为多少?着地时相当于从多高处自由落下?( 2)求运动员在空中的最短时间是多少?1.在水平导轨 AB 的两端各有一竖直的挡板 A 和 B ,AB 长 L = 4 m,物体从 A 处开始以 4 m/s 的速度沿轨道向 B运动,已知物体在碰到 A 或 B 今后,均以与碰前等大的速度反弹回来,并且物体在导轨上做匀减速运动的加速度大小不变,为了使物体可以停在AB 的中点,则这个加速度的大小应为多少?2.一辆汽车以90km/h 的速率在学校区行驶。
当这辆违章超速行驶的汽车经过警车时,警车马上从静止开始以2的加速度匀加速度追去。
⑴. 警车出发多长时间后两车相距最远?⑵ . 警车何时能截获超速车?⑶ . 警车截获超速车时,警车的速率为多大?位移多大?3.一个滑块沿斜面静止滑下,依次经过斜面上的 A 、 B、 C 三点,以下列图,已知AB=6m , BC=10m ,滑块经过 AB 、 BC 两段位移的时间都是2s ,求( 1)滑块运动的加速度?( 2)滑块在 B 点的瞬时速度?( 3)滑块 A 到初始地址的距离?4.甲、乙两运动员在训练交接棒的过程中发现:甲经短距离加速后能保持9m/s 的速度跑完满程;乙从起跑后到接棒前的运动是匀加速的。
匀变速直线运动题目一、选择题1. 一个物体做匀加速直线运动,初速度为v_0 = 2m/s,加速度为a=1m/s^2,则第3s末的速度为()- A. 5m/s- B. 6m/s- C. 7m/s- D. 8m/s- 解析:根据匀变速直线运动速度公式v = v_0+at,已知v_0 = 2m/s,a = 1m/s^2,t = 3s,则v=2 + 1×3=5m/s,所以答案是A。
2. 一物体做匀减速直线运动,初速度为10m/s,加速度大小为1m/s^2,则物体在停止运动前1s内的平均速度为()- A. 0.5m/s- B. 5m/s- C. 1m/s- D. 9.5m/s- 解析:采用逆向思维,把匀减速直线运动看成初速度为0的匀加速直线运动。
根据v = at,在停止运动前1s的速度v=a×1 = 1m/s。
根据匀变速直线运动平均速度公式¯v=(v_0 + v)/(2)(这里v_0 = 0,v = 1m/s),则平均速度¯v=(0 + 1)/(2)=0.5m/s,答案是A。
3. 物体做匀变速直线运动,初速度为v_0,末速度为v,则物体在中间时刻的速度v_{(t)/(2)}为()- A. (v_0 + v)/(2)- B. √(frac{v_0^2)+v^{2}{2}}- C. (v - v_0)/(2)- D. √(v_0v)- 解析:根据匀变速直线运动速度公式v = v_0+at,中间时刻t=(T)/(2)(设总时间为T),此时速度v_{(t)/(2)}=v_0 + a(T)/(2)。
又因为v = v_0+at,T=(v -v_0)/(a),代入可得v_{(t)/(2)}=v_0+(v - v_0)/(2)=(v_0 + v)/(2),答案是A。
二、填空题1. 一物体做匀加速直线运动,加速度为2m/s^2,经过3s速度由1m/s变为______。
- 解析:根据v = v_0+at,v_0 = 1m/s,a = 2m/s^2,t = 3s,则v=1+2×3 = 7m/s。
1.一辆车由静止开始作匀变速直线运动,在第8 s末开始刹车,经4 s停下来,汽车刹车过程也是匀变速直线运动,那么前后两段加速度的大小之比和位移之比x1 ׃ x2分别是( C )A.=14 ׃,x1 ׃ x2=14 ׃ B.=12 ׃,x1 ׃ x2=14 ׃C.=12 ׃,x1 ׃ x2=21 ׃ D.=41 ׃,x1 ׃ x2=21 ׃2.汽车在平直公路上由静止开始做加速度为a1的匀加速直线运动,经过时间t1,汽车刹车做匀减速运动,加速度大小为a2,经过时间t2后停下,则汽车在全程的平均速度为(ABD)A. B.C. D.3.如图所示,甲、乙、丙、丁是以时间为横轴的匀变速直线运动的图象,下列说法正确的是(C )A.甲是a-t图象 B.乙是x-t图象 C.丙是x-t图象 D.丁是v-t 图象4.如图所示为一质点运动的位移随时间变化的规律,图线是一条抛物线,方程为。
下列说法正确的是(AD )A.质点做匀减速直线运动,最大位移是80mB.质点的初速度是20 m/sC.质点的加速度大小是5 m/s2D.t=4s时,质点的速度为零5.在某高处A点,以v0的速度同时竖直向上与向下抛出a、b两球,不计空气阻力,则下列说法中正确的是( B )A.两球落地的时间差为v0/g B.两球落地的时间差为2v0/g C.两球落地的时间差与高度有关 D. 条件不足,无法确定6.如图所示,小球从竖直砖墙某位置静止释放,用频闪照相机在同一底片上多次曝光,得到了图中1、2、3、4、5…所示小球运动过程中每次曝光的位置.连续两次曝光的时间间隔均为T,每块砖的厚度为d。
根据图中的信息,下列判断错误的是 ( A )12453A.位置“1”是小球释放的初始位置 B.小球做匀加速直线运动C.小球下落的加速度为 D.小球在位置“3”的速度为7.一个质点正在做匀加速直线运动,用固定在地面上的照相机对该质点进行闪光照相,由闪光照片得到的数据,发现质点在第一次、第二次闪光的时间间隔内移动了2m;在第三次、第四次闪光的时间间隔内移动了8m。
匀变速直线运动例子
1. 你看自由落体呀,这就是匀变速直线运动的一个超棒例子呢!想想看,一个苹果从树上掉下来,是不是就直直地往下落,速度还越来越快!
2. 还记得坐电梯吗?电梯上升或下降的时候也是匀变速直线运动呀!它在那上上下下的,速度稳定变化,多明显呀,对吧?
3. 赛车在直线赛道上加速,这难道不是匀变速直线运动吗?那风驰电掣的感觉,速度不断增加,太刺激啦!
4. 小孩子玩的滑滑梯也可以看作是呀!屁股一坐,“咻”地滑下去,速度均匀变化,多有意思啊!
5. 飞机起飞的那一段过程,不也是匀变速直线运动吗?从在跑道上开始滑跑到慢慢飞起来,速度的改变多神奇呀!
6. 投出的篮球在空中的运动,某种程度上也符合匀变速直线运动呢。
它往上飞时速度变慢,落下来速度又变快,就像有只小手在操控一样,神奇吧?
7. 哎呀,运动员跑步呀,尤其是短跑,起跑后那就是匀变速直线运动呀!全力冲刺,速度的改变让人热血沸腾!
结论:原来我们的生活中有这么多匀变速直线运动的例子呀,真是无处不在呢!。
第一章 运动的描述 匀变速直线运动的研究 第1讲 加速度和速度的关系(a=Δv/t )1.(单选)对于质点的运动,下列说法中正确的是( )【答案】BA .质点运动的加速度为零,则速度为零,速度变化也为零B .质点速度变化率越大,则加速度越大C .质点某时刻的加速度不为零,则该时刻的速度也不为零D .质点运动的加速度越大,它的速度变化越大 2、(单选)关于物体的运动,下列说法不可能的是( ).答案 BA .加速度在减小,速度在增大B .加速度方向始终改变而速度不变C .加速度和速度大小都在变化,加速度最大时速度最小,速度最大时加速度最小D .加速度方向不变而速度方向变化3.(多选)沿一条直线运动的物体,当物体的加速度逐渐减小时,下列说法正确的是( ).答案 BD A .物体运动的速度一定增大 B .物体运动的速度可能减小 C .物体运动的速度的变化量一定减少 D .物体运动的路程一定增大 4.(多选)根据给出的速度和加速度的正负,对下列运动性质的判断正确的是( ).答案 CD A .v 0>0,a <0,物体做加速运动 B .v 0<0,a <0,物体做减速运动 C .v 0<0,a >0,物体做减速运动 D .v 0>0,a >0,物体做加速运动5.(单选)关于速度、速度的变化量、加速度,下列说法正确的是( ).答案 BA .物体运动时,速度的变化量越大,它的加速度一定越大B .速度很大的物体,其加速度可能为零C .某时刻物体的速度为零,其加速度不可能很大D .加速度很大时,运动物体的速度一定很快变大 6.(单选)一个质点做方向不变的直线运动,加速度的方向始终与速度的方向相同,但加速度大小逐渐减小为零,则在此过程中( ).答案 BA .速度逐渐减小,当加速度减小到零时,速度达到最小值B .速度逐渐增大,当加速度减小到零时,速度达到最大值C .位移逐渐增大,当加速度减小到零时,位移将不再增大D .位移逐渐减小,当加速度减小到零时,位移达到最小值7.(单选)甲、乙两个物体在同一直线上沿正方向运动,a 甲=4 m/s 2,a 乙=-4 m/s 2,那么对甲、乙两物体判断正确的是( ).答案 BA .甲的加速度大于乙的加速度B .甲做加速直线运动,乙做减速直线运动C .甲的速度比乙的速度变化快D .甲、乙在相等时间内速度变化可能相等8. (单选)如图所示,小球以v 1=3 m/s 的速度水平向右运动,碰一墙壁经Δt =0.01 s 后以v 2=2 m/s 的速度沿同一直线反向弹回,小球在这0.01 s 内的平均加速度是( )答案:CA .100 m/s 2,方向向右B .100 m/s 2,方向向左C .500 m/s 2,方向向左D .500 m/s 2,方向向右 9.(多选)物体做匀变速直线运动,某时刻速度的大小为4m/s ,1s 后速度大小变为10m/s ,关于该物体在这1s 内的加速度大小下列说法中正确的是( )A .加速度的大小可能是14m/s 2B .加速度的大小可能是8m/s 2C .加速度的大小可能是4m/s 2D .加速度的大小可能是6m/s 2【答案】AD10、为了测定气垫导轨上滑块的加速度,滑块上安装了宽度为3.0 cm 的遮光板,如图所示,滑块在牵引力作用下先后匀加速通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间为Δt 1=0.30 s ,通过第二个光电门的时间为Δt 2=0.10 s ,遮光板从开始遮住第一个光电门到开始遮住第二个光电门的时间为Δt =3.0 s .试估算: (1)滑块的加速度多大?(2)两个光电门之间的距离是多少?解析 v 1=L Δt 1=0.10 m/s v 2=L Δt 2=0.30 m/s a =v 2-v 1Δt ≈0.067 m/s 2. (2) x =v 1+v 22Δt =0.6 m.第二讲:匀变速直线运动规律的应用基本规律(1)三个基本公式①v =v 0+at . ②x =v 0t +12at 2. ③v 2-v 20=2ax(2)两个重要推论 ①平均速度公式:v =v t 2=v 0+v 2= s t .中间位置速度v s 2=√v12+v222.②任意两个连续相等的时间间隔T 内的位移之差为一恒量,即Δx =aT 2.(3).初速度为零的匀变速直线运动的四个推论(1)1T 末、2T 末、3T 末……瞬时速度的比为:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n(2)1T 内、2T 内、3T 内……位移的比为:x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2(3)第一个T 内、第二个T 内、第三个T 内……位移的比为:x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间的比为:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…. 1.(单选)一物体从静止开始做匀加速直线运动,测得它在第n 秒内的位移为s ,则物体的加速度为( )A .B .C .D . 【答案】A2.(单选)做匀加速沿直线运动的质点在第一个3s 内的平均速度比它在第一个5s 内的平均速度小3m/s ,则质点的加速度大小为( )A .1 m/s 2B .2 m/s 2C .3 m/s 2D .4 m/s 2【答案】C 7.(单选)一个物体从某一高度做自由落体运动,已知它第1s 内的位移为它最后1s 内位移的一半,g 取10m/s 2,则它开始下落时距地面的高度为( )A . 5 mB . 11.25 mC . 20 mD . 31.25 m 【答案】B 3.(多选)一小球从静止开始做匀加速直线运动,在第15s 内的位移比第14s 内的位移多0.2m ,则下列说法正确的是()A . 小球加速度为0.2m/s 2B . 小球前15s 内的平均速度为1.5m/sC . 小球第14s 的初速度为2.8m/sD . 第15s 内的平均速度为0.2m/s 【答案】AB4.(单选)如图是哈尔滨西客站D502次列车首次发车,标志着世界首条高寒区高速铁路哈大高铁正式开通运营.哈大高铁运营里程921公里,设计时速350公里.D502次列车到达大连北站时做匀减速直线运动,开始刹车后第5 s 内的位移是57.5 m ,第10 s 内的位移是32.5 m ,则下列说法正确的有( ).答案 D A .在研究列车从哈尔滨到大连所用时间时不能把列车看成质点 B .时速350公里是指平均速度,921公里是指位移C .列车做匀减速运动时的加速度大小为6.25 m/s 2D .列车在开始减速时的速度为80 m/s5.一辆公共汽车进站后开始刹车,做匀减速直线运动.开始刹车后的第1s 内和第2s 内位移大小依次为9m 和7m .求:(1)刹车后汽车的加速度大小. (2)汽车在刹车后6s 内的位移.解答: 解:设汽车的初速度为v 0,加速度为a .则第1s 内位移为:x 1=代入数据,得:9=v 0+ 第2s 内的位移为:x 2=v 0t 2+﹣x 1, 代入数据得:7= 解得:a=﹣2m/s 2,v 0=10m/s汽车刹车到停止所需时间为:t==则汽车刹车后6s 内位移等于5s 内的位移,所以有:==25m 故答案为:2,256.质点做匀减速直线运动,在第1 s 内位移为6 m ,停止运动前的最后1 s 内位移为2 m ,求: (1)在整个减速运动过程中质点的位移大小; (2)整个减速过程共用的时间。
3.1 匀变速直线运动的规律例题一、速度公式的应用1.飞机以10m/s2的加速度由静止开始沿水平跑道起飞,第3s初的速度是多少?第3s 内的平均速度是多少?前3s内的平均速度是多少?2.一质点从静止开始以1m/s2的加速度匀加速运动,经5s后做匀速运动,最后2s时间质点做匀减速运动直至静止,则质点匀速运动时的速度是多大?减速运动时的加速度是多大?5m/s 2.5m/s2,方向与v0的方向相反3.一个物体从静止开始做匀加速直线运动,5s末的速度为1m/s,则10s末的速度为多大?2m/s4.火车沿平直轨道匀加速前进,通过某一路标时的速度为10.8km/h,1min后变成54km/h,需再经多长时间,火车的速度才能达到64.8km/h? 15s5.一跳伞员从高空离开直升机落下,开始未打开降落伞,先做匀加速直线运动,落下一段距离后才打开伞,打开伞后做匀减速直线运动,加速度大小为2m/s2,经20s到达地面时的速度为4m/s,试求跳伞员在空中下落的最大速度。
6.一辆汽车以20m/s的初速度匀减速刹车,若刹车过程的加速度大小为3m/s2,求8s 后此汽车的速度。
07. 发射卫星一般应用多级火箭,第一级火箭点火后,使卫星向上匀加速运动的加速度为50m/s2,煅烧30s 后第一段脱离,第二段火箭没有马上点火,所以卫星向上做加速度为10m/s2的匀减速运动。
10s后第二级火箭启动,卫星的加速度为80m/s2,这样经过1分半钟第二级火箭脱离时,卫星的速度多大?8600m/s二、位移公式的应用1.某质点做直线运动的位移随时间变化的关系式为s=4t+2t2,s与t的单位分别是m和s,则质点的初速度和加速度分别是多少?4 42.以18m/s的速度行驶的汽车,紧急刹车后做匀减速直线运动,其加速度的大小为6m/s2,求汽车在6s内通过的距离。
27m3. 一辆汽车以10m/s的速度做匀速直线运动。
由于前方有危险,司机紧急刹车,加速度的大小为5m/s2,求在3s内汽车滑行的距离。
计算题1.一个物体从塔顶上下落,在到达地面前最后1 s 内通过的位移是整个位移的259,塔高为多少米?(g=10 m/s 2)2. 一个物体从45m 高处自由下落,那么(1)该物体经多长时间落到地面?(2)最后1s 的初速度是多少?(3)在最后1s 内通过的高度是多少?( g 取10 m/s 2)3.从静止在一定高度的气球上自由落下两个物体,第一个物体下落1 s 后,第二个物体开始下落,若两物体用长93.1 m 的绳连接在一起.问:第二个物体下落多长时间绳被拉紧?(g=9.8 m/s 2)4.跳伞运动员做低空跳伞表演,他在离地面224 m 高处,由静止开始在竖直方向做自由落体运动.一段时间后,立即打开降落伞,以12.5 m/s 2的平均加速度匀减速下降,为了运动员的安全,要求运动员落地速度最大不得超过5 m/s (g 取10 m/s 2).(1)求运动员展开伞时,离地面高度至少为多少?着地时相当于从多高处自由落下?(2)求运动员在空中的最短时间是多少?1.在水平导轨AB的两端各有一竖直的挡板A和B,AB长L=4 m,物体从A处开始以4 m/s的速度沿轨道向B运动,已知物体在碰到A或B以后,均以与碰前等大的速度反弹回来,并且物体在导轨上做匀减速运动的加速度大小不变,为了使物体能够停在AB的中点,则这个加速度的大小应为多少?2.一辆汽车以90km/h的速率在学校区行驶。
当这辆违章超速行驶的汽车经过警车时,警车立即从静止开始以2.5m/s2的加速度匀加速度追去。
⑴.警车出发多长时间后两车相距最远?⑵.警车何时能截获超速车?⑶.警车截获超速车时,警车的速率为多大?位移多大?3.一个滑块沿斜面静止滑下,依次通过斜面上的A、B、C三点,如图所示,已知AB=6m,BC=10m,滑块经过AB、BC两段位移的时间都是2s ,求(1)滑块运动的加速度?(2)滑块在B点的瞬时速度?(3)滑块A到初始位置的距离?4.甲、乙两运动员在训练交接棒的过程中发现:甲经短距离加速后能保持9m/s的速度跑完全程;乙从起跑后到接棒前的运动是匀加速的。
匀变速直线运动典型例题
等时间问题
例1:如图是用打点计时器打出一系列点的纸带,纸带固定在一个做匀加速直线运动的小车后面,A、B、C、D、E为选好的计数点.相邻计数点间的时间间隔为0.04s.由图上数据可从纸带上求出小车在运动中的加速度a=______m/s2以及打点计时器打下C 点时小车的瞬时速度v
=______m/s.
c
例2.已知O、A、B、C为同一直线上的四点,AB间的距离为l1,BC间的距离为l2,一物体自O点由静止出发,沿此直线做匀加速运动,依次经过A、B、C三点,已知物体通过AB段与BC段所用的时间相等。
求O与A的距离。
例3,如图所示,有若干相同的小钢球,从斜面的某一位置每隔0.1s释放一颗,在连续释放若干颗钢球后,对斜面上正在滚动的若干小球摄下照片如图,测得AB=15 cm,BC=20 cm,试求:
(1)拍照时B球的速度;
(2)A球上面还有几颗正在滚动的小球?
例4.调节水龙头,让水一滴滴流出,在下方放一盘子,调节盘子高度,使一滴水滴碰到盘子时,恰有另一滴水滴开始下落,而空中还有两滴正在下落中的水滴,测出水龙头到盘子的距离为h,从第一滴开始下落时计时,到第n滴水滴落在盘子中,共用去时间t,则此时第(n+1)滴水滴与盘子的距离为多少?当地的重力加速度为多少?
等位移问题
例1.一物体做匀加速直线运动,通过一段位移△x所用的时间为t1,紧接着通过下一段位
移△x 所用时间为t 2。
则物体运动的加速度为( ) A.
1212122()()x t t t t t t ∆-+ B.121212()()x t t t t t t ∆-+ C.1212122()()x t t t t t t ∆+- D.121212()
()
x t t t t t t ∆+-
例2, 一个做匀加速直线运动的物体,先后经过A 、B 两点时的速度分别是v 和7v ,经过AB 的时间是t ,则下列判断中正确的是 A .经过A 、B 中点的速度是4v B .经过A 、B 中间时刻的速度是4v C .前
时间通过的位移比后
时间通过的位移少1.5vt
D .前位移所需时间是后位移所需时间的2倍
等比例问题
例1:完全相同的三木块并排固定在水平面上,一颗子弹以v 水平射入,若子弹在木块中做匀减速直线运动,恰好
射穿三块木块,则子弹依次在每块木块中运动的时间之比为( ) A 3:2:1 B 3:2:1 C 1: 2:3 D (3-2):(2-1):1 例2:一列火车有n 节相同的车厢,一观察者站在第一节车厢的前端,当火车由静止开始做匀加速直线运动时,( )
A .每节车厢末端经过观察者时的速度之比是1∶2∶3∶…∶n
B .在连续相等时间里,经过观察者的车厢节数之比是1∶3∶5∶7∶…∶(2n -1)
C .每节车厢经过观察者所用的时间之比是1∶(
-1)∶(-)∶…∶(-
)
D .如果最后一节车厢末端经过观察者时的速度为v ,那么在整个列车通过观察者的过
程 中,平均速度是
速度时间、位移时间图像问题
例1、 a 、b 、c 三个质点都在x 轴上做直线运动,它们的位移-时间图象如图所示。
下列说法正确的是( ) A. 在0-t 3时间内,三个质点位移相同
B. 在0-t 3时间内,质点c 的路程比质点b 的路程大
C .质点a 在时刻t 2改变运动方向,质点c 在时刻t 1改变运动方向
D .在t 2-t 3这段时间内,三个质点运动方向相同
E .在0-t 3时间内,三个质点的平均速度大小相等
例2.(2009年海南物理卷8)甲乙两车在一平直道路上同向运动,其v-t 图像如图所示,图中ΔOPQ 和ΔOQT 的面积分别为s 1和s 2(s 2>s 1)初始时,甲车在乙
车前方s 0处。
则( ) A .若s 0=s 1+s 2,两车不会相遇 B .若s 0<s 1,两车相遇2次 C .若s 0=s 1,两车相遇1次 D .若s 0=s 2,两车相遇1次 追击相遇问题
例1.(匀减速追匀速) 某辆汽车正以10m/s 的速度匀速行驶,突然发现正前方有一辆自行车以4m/s 的速度也在匀速向前行驶,汽车立即刹车,刹车后,汽车做匀减速运动,加速度大小2/6s m ,若要避免事故发生,则刹车前汽车离自行车的距离至少为多少?
例2.(匀速追匀减速) 某人骑自行车以8m/s 的速度匀速前进,某时刻在他前面24m 处以10m/s 的速度同向行驶的汽车开始关闭发动机,以2m/s 2的加速度减速前进,求:
(1)自行车未追上前,两车的最远距离 (2)自行车需要多长时间才能追上汽车
例3:(匀减速追匀加速)在水平直轨道上有两辆汽车,相距为s ,开始时,A 车以初速度v 0,加速度大小为3a 正对B 车做匀减速直线运动,而B 车同时以初速为零,加速度大小为a 匀加速直线运动,两车同一方向,要使两车不相撞,求v 0应满足的关系式。
匀变速直线运动——数理推导
1. 根据变形,分别求解,a,t
2. 根据,分别求消去t,v0,a的公式
3.根据,,消去t求。
4.根据,,消去x求。
5. 根据,,,且,求解与a,t 的关系
6.根据,,,求
7. 根据,,,求
8.根据,,,求
9.根据,,,求。