矿物型导热油
- 格式:doc
- 大小:1.67 MB
- 文档页数:3
导热油知识一、导热油简介:1、导热油是有机热载体,分矿油型及合成型两大类,目前国内使用的大都是矿油型导热油矿物油型导热油是石油进行高温裂解或催化裂化过程中,形成的馏分油作为原料经添加抗氧化剂后精制而成,主要组分为烃类混合物。
合成型导热油是以化学合成工艺生产的,具有一定化学结构和确定的化学名称,主要分子特征是分子结构中含有芳烃或环烷烃结构,而且大都是两环或三环的芳烃化合物。
2、性能特点对比:(1)、合成型导热油使用温度范围宽,低、高温都可用,如联苯-联苯醚12~400℃,氢化三联苯-7~345℃。
矿物油200~300℃范围内(2)、合成型导热油热稳定性好。
联苯-联苯醚最好,其次氢化三联苯,每年补充量1%左右。
矿物油每年补充量5~20%。
(3)、合成型导热油使用寿命长,至少用5年以上,氢化三联苯可用十年。
矿物油仅用1~2年,(4)、合成型导热油可再生后重复使用。
矿物油不可再生,废油仅能作为燃料油使用。
二、导热油简史及现状1、合成型20世纪30年代,美国道氏化学公司(DOW)首次生产出联苯—联苯醚的混合物,商品名为道生(Dowtherm A),获得专利并应用于加热系统,开创了世界上第一个和成型热载体的生产。
其后在欧美市场开发出一些类似的产品。
50年代后得到迅速发展,其中美国孟山都(首诺)研制的氢化三联苯成为最畅销的产品。
60年代后,日本推出了烷基联苯类系列产品;德国推出了苄基甲苯系列、二甲基联苯醚等;英国推出了聚乙烯醇合成热载体。
我国起步较晚始于60年代,90年代后得到迅速发展。
目前全球范围内合成油制造商主要集中在德国朗盛(拜耳)、美国陶氏、美国首诺、日本综研、南非萨索耳、法国道达尔六家化工公司。
产品类型基本上为联苯—联苯醚、氢化三联苯、二苄基甲苯、二芳基烷、二甲苯基醚、一苄基甲苯类高温合成热载体。
2、矿物型美国50年代开始采用,70年代加入添加剂使性能得提高。
我国始于70年代研制和生产。
国内外生产厂家较多,品种繁多。
导热油知识一、导热油简介:1、导热油是有机热载体,分矿油型及合成型两大类,目前国内使用的大都是矿油型导热油矿物油型导热油是石油进行高温裂解或催化裂化过程中,形成的馏分油作为原料经添加抗氧化剂后精制而成,主要组分为烃类混合物。
合成型导热油是以化学合成工艺生产的,具有一定化学结构和确定的化学名称,主要分子特征是分子结构中含有芳烃或环烷烃结构,而且大都是两环或三环的芳烃化合物。
2、性能特点对比:(1)、合成型导热油使用温度范围宽,低、高温都可用,如联苯-联苯醚12~400℃,氢化三联苯-7~345℃。
矿物油200~300℃范围内(2)、合成型导热油热稳定性好。
联苯-联苯醚最好,其次氢化三联苯,每年补充量1%左右。
矿物油每年补充量5~20%。
(3)、合成型导热油使用寿命长,至少用5年以上,氢化三联苯可用十年。
矿物油仅用1~2年,(4)、合成型导热油可再生后重复使用。
矿物油不可再生,废油仅能作为燃料油使用。
二、导热油简史及现状1、合成型20 世纪30年代,美国道氏化学公司(DOW)首次生产出联苯—联苯醚的混合物,商品名为道生(Dowtherm A),获得专利并应用于加热系统,开创了世界上第一个和成型热载体的生产。
其后在欧美市场开发出一些类似的产品。
50 年代后得到迅速发展,其中美国孟山都(首诺)研制的氢化三联苯成为最畅销的产品。
60年代后,日本推出了烷基联苯类系列产品;德国推出了苄基甲苯系列、二甲基联苯醚等;英国推出了聚乙烯醇合成热载体。
我国起步较晚始于60年代,90年代后得到迅速发展。
目前全球范围内合成油制造商主要集中在德国朗盛(拜耳)、美国陶氏、美国首诺、日本综研、南非萨索耳、法国道达尔六家化工公司。
产品类型基本上为联苯—联苯醚、氢化三联苯、二苄基甲苯、二芳基烷、二甲苯基醚、一苄基甲苯类高温合成热载体。
2、矿物型美国50年代开始采用,70年代加入添加剂使性能得提高。
我国始于70年代研制和生产。
国内外生产厂家较多,品种繁多。
1.有机热载体(导热油)老化的定义及如何判断其老化程度有机热载体(导热油)经过加热后,发生热裂解和热聚合反应,有机热载体(导热油)与空气中的氧接触后会发生氧化反应,这些反应使有机热载体(导热油)原来的结构发生变化生成的高分子和低分子物质增多,从而改变了有机热载体(导热油)的本来特性,这种反应即为老化。
老化是一个复杂、渐进的化学过程。
在60℃以下,有机热载体(导热油)的老化较为缓慢,超过60℃,其老化速度加快。
根据检测证实,在60℃以上,温度每升高10℃,其老化速度约增加一倍,使用寿命也就减少一倍。
如联苯醚在300℃的条件下使用寿命为10年以上,340℃为5-6年,360℃为2-3年;烷基联苯在280℃条件下使用寿命为10年以上,320℃为3-4年,340℃仅为一年;烷基苯在260℃条件下使用寿命为10年以上,300℃条件下使用仅为1年;矿油型有机热载体(导热油)在240℃条件下,使用寿命为3-6年,260℃2-3年。
在280℃条件下使用,其寿命仅为1年。
这说明使用温度是有机热载体(导热油)使用寿命的决定因素,有机热载体(导热油)的热氧化反应,是氧原子与有机热载体(导热油)中的碳氢化合物中的碳原子相连,而且可以加入到两个氢原子之间。
这一反应过程把饱和烃类(烷烃)物质转化为有机酸,促使有机热载体(导热油)老化,其表现为生成有机酸并生成聚合物,而聚合物达到一定程度后,就会成为淤渣沉淀出来。
而一旦产生的氧化物溶于有机热载体(导热油)中,有机热载体(导热油)的粘度就会升高。
有机热载体(导热油)的老化还与其接触的材料有关。
有些材料对有机热载体(导热油)的老化有催化作用,特别是在高温下,其作用影响更甚。
灰尘、水、铁锈及其他杂质对有机热载体(导热油)也有促进氧化的作用。
究其有机热载体(导热油)老化的主要因素是热裂解和氧化。
判定有机热载体(导热油)老化的程度,。
应通过对运行中的有机热载体(导热油)取样检验分析的结果,进行综合评价,判断有机热载体(导热油)老化的指标和老化的程度。
合成导热油与矿物导热油的区别以及优势导热油是一种优良的传热介质,在几乎常压的条件下,可以获得很高的操作温度,提高了系统和设备的安全可靠性。
因其具有传热均匀、温控精准、操作简便、节能环保、安全高效等优点,而逐渐被人们所认识,并越来越得以广泛应用。
随着我国工业的不断发展,新技术新领域的不断开拓,导热油应用市场的前景也更加的广阔。
近年来导热油的需求量不断增长,品牌、型号繁杂,但按导热油的制取工艺和原料基本上可分为两大类,即合成型导热油和矿物型导热油:合成型导热油是以化学或石油作为原料,经有机合成工艺生产的,具有一定化学结构和确定的化学名称的产品。
矿物型导热油是以石油为原料,经蒸馏和精制(包括溶剂精制和加氢精制)工艺得到的适当馏分生产的产品。
其主要组分为烃类的混合物。
合成型导热油和矿物型导热油在使用过程中,具有以下优势,以供用户参考:1、首先是使用温度的区别,矿物型导热油的最高允许使用温度一般不超过300℃,而合成型导热油液相最高使用温度在350℃(如氢化三联苯),汽相最高使用温度可达到400℃(如联苯/联苯醚)。
2、热稳定性的区别,目前市场上矿物型导热油的使用寿命一般在3~5年,而合成型导热油的使用寿命在5~10年以上。
这是因为矿物油在高温状态下,氧化、裂解率较高,易产生结焦;合成型导热油抗氧化性高于矿物油,并且合成油在裂解时多产生低沸物,不易结焦。
故合成型导热油使用10年以上的用户比比皆是。
3、安全环保性,矿物油在达到报废标准时,如不及时更换,可能会对加热系统造成损坏,甚至引发安全事故;合成型导热油使用周期长,即使达到报废标准,也不会产生过多结焦和积炭,在定期排放较组分并补充一定量的新油,可以更长时间运行于加热系统。
使用合成型导热油可有效减少换油和清洗系统的次数,减少废油排放量。
4、综合经济性,近几年因受产能过剩和原油价格下调的影响,导热油价格也有所下降,矿物油与合成油的差价也降低很多,项目一次投入的成本矿物油会更低些,但计算综合成本,合成油则更具优势。
导热油基础知识导热油知识一、导热油简介:1、导热油是有机热载体,分矿油型及合成型两大类,目前国内使用的大都是矿油型导热油矿物油型导热油是石油进行高温裂解或催化裂化过程中,形成的馏分油作为原料经添加抗氧化剂后精制而成,主要组分为烃类混合物。
合成型导热油是以化学合成工艺生产的,具有一定化学结构和确定的化学名称,主要分子特征是分子结构中含有芳烃或环烷烃结构,而且大都是两环或三环的芳烃化合物。
2、性能特点对比:(1)、合成型导热油使用温度范围宽,低、高温都可用,如联苯-联苯醚12~400℃,氢化三联苯-7~345℃。
矿物油200~300℃范围内(2)、合成型导热油热稳定性好。
联苯-联苯醚最好,其次氢化三联苯,每年补充量1%左右。
矿物油每年补充量5~20%。
(3)、合成型导热油使用寿命长,至少用5年以上,氢化三联苯可用十年。
矿物油仅用1~2年,(4)、合成型导热油可再生后重复使用。
矿物油不可再生,废油仅能作为燃料油使用。
二、导热油简史及现状1、合成型20世纪30年代,美国道氏化学公司()首次生产出联苯—联苯醚的混合物,商品名为道生(A),获得专利并应用于加热系统,开创了世界上第一个和成型热载体的生产。
其后在欧美市场开发出一些类似的产品。
50年代后得到迅速发展,其中美国孟山都(首诺)研制的氢化三联苯成为最畅销的产品。
60年代后,日本推出了烷基联苯类系列产品;德国推出了苄基甲苯系列、二甲基联苯醚等;英国推出了聚乙烯醇合成热载体。
我国起步较晚始于60年代,90年代后得到迅速发展。
目前全球范围内合成油制造商主要集中在德国朗盛(拜耳)、美国陶氏、美国首诺、日本综研、南非萨索耳、法国道达尔六家化工公司。
产品类型基本上为联苯—联苯醚、氢化三联苯、二苄基甲苯、二芳基烷、二甲苯基醚、一苄基甲苯类高温合成热载体。
2、矿物型美国50年代开始采用,70年代加入添加剂使性能得提高。
我国始于70年代研制和生产。
国内外生产厂家较多,品种繁多。
导热油使用手册导热油使用手册一、主要术语1.导热油●以液相或气相进行热量传递的物质。
●导热油即有机热载体,又名热传导液,分矿物油型和合成型●矿物油型热传导油:石油加工过程中某段馏分经精制后调配功能添加剂制得。
●合成型导热油:以化工或石油化工产品为原料,经有机合成工艺制得。
2.开式和闭式传热系统●膨胀油槽直接与大气相通的传热系统称为开式传热系统。
●膨胀油槽采用惰性气体(一般为氮气)封闭的传热系统称为闭式系统。
3.最高使用温度●根据导热油分类标准(GB/T 7631.12-94),产品类别按最高使用温度划分。
最高使用温度采用热稳定性试验法确定。
最高使用温度系指某产品经热稳定性试验测得变质率不大于10%所对应的温度,最高实际使用温度系指加热器出口处测得的主流体最高平均温度。
●一般情况下,任何一种导热油产品,尤其是矿物油型产品,其最高实际使用温度应较其最高使用温度至少低20℃,以保证一定的使用寿命及较好的安全性和经济性。
4.热稳定性●从试验角度讲,热稳定性是在规定的试验温度及时间条件下,导热油在隔绝空气状态下,因受热作用(热裂解和热聚合)而表现出的稳定性。
●对某一特定产品来说,其热稳定性由组成、纯度、精制深度、馏程范围等因素决定。
●热裂解反应,生成气体和低沸物。
●热聚合反应,生成高沸物和高分子粘稠状聚合物,最后形成沉渣。
●导热油在实际运行中,热裂解和热聚合反应会伴随始终,其组成无时无刻不在发生变化,是不可避免的,但其程度可以控制。
●热氧化反应,生成低分子或高分子的醇、醛、酮、酸等酸性组分,并进一步生成胶质、沥青质等粘稠物质,最后形成沉渣。
●热氧化是非正常情况引起的,一旦发生,会产生很坏的影响(加速热裂解和热聚合反应,酸性物质造成设备腐蚀和泄漏,粘度迅速增大,传热效率降低,造成过热和炉管结焦),但可以通过加入高温导热油复剂避免或延缓。
二、主要技术指标1. 热稳定性热稳定性是导热油区别于其他油品的重要使用性能,标准号为SH/T 0680-1999。
导热油使用手册深圳市特种设备安全检验研究院张居光一、主要术语1.导热油●以液相或气相进行热量传递的物质。
●导热油即有机热载体又名热传导液分矿物油型和合成型●矿物油型热传导油石油加工过程中某段馏分经精制后调配功能添加剂制得。
●合成型导热油以化工或石油化工产品为原料经有机合成工艺制得。
2.开式和闭式传热系统●膨胀油槽直接与大气相通的传热系统称为开式传热系统。
●膨胀油槽采用惰性气体一般为氮气封闭的传热系统称为闭式系统。
3.最高使用温度●根据导热油分类标准GB/T 7631.12-94产品类别按最高使用温度划分。
最高使用温度采用热稳定性试验法确定。
最高使用温度系指某产品经热稳定性试验测得变质率不大于10所对应的温度最高实际使用温度系指加热器出口处测得的主流体最高平均温度。
●一般情况下任何一种导热油产品尤其是矿物油型产品其最高实际使用温度应较其最高使用温度至少低20℃以保证一定的使用寿命及较好的安全性和经济性。
4.热稳定性●从试验角度讲热稳定性是在规定的试验温度及时间条件下导热油在隔绝空气状态下因受热作用热裂解和热聚合而表现出的稳定性。
●对某一特定产品来说其热稳定性由组成、纯度、精制深度、馏程范围等因素决定。
●热裂解反应生成气体和低沸物。
●热聚合反应生成高沸物和高分子粘稠状聚合物最后形成沉渣。
●导热油在实际运行中热裂解和热聚合反应会伴随始终其组成无时无刻不在发生变化是不可避免的但其程度可以控制。
●热氧化反应生成低分子或高分子的醇、醛、酮、酸等酸性组分并进一步生成胶质、沥青质等粘稠物质最后形成沉渣。
●热氧化是非正常情况引起的一旦发生会产生很坏的影响加速热裂解和热聚合反应酸性物质造成设备腐蚀和泄漏粘度迅速增大传热效率降低造成过热和炉管结焦但可以通过加入高温导热油复剂避免或延缓。
二、产品牌号参考国内按最高使用温度划分产品牌号的方式考虑到不同使用温度的要求和对原料初馏点的限制导热油按最高使用温度将L-QB和L-QC产品划分为L-QB240、L-QB280、L-QB300和L-QC320四个牌号。
导热油中水分对系统运行的危害及预防导热油一般分为矿物油型导热油及合成形导热油。
新投人使用的导热油中含有微量的水分,在运行前必须进行脱水处理,否则会造成严重后果。
由于导热油是一种油类,与水不相溶。
而导热油本身含有微量的水分及低馏分,以及导热油炉及管道在水压试验完毕后,内残留的水分,再加上机械密封不严密等原因,当导热油受热时,其中的水份逐渐蒸发而形成气泡,当升温速度不妥时,即在系统中集聚成气塞,影响系统正常运行。
如果气塞在导热油炉受热管中形成,则会使此处管壁传热恶化,炉中导热油老化变质,碳化层附着在炉壁上,进一步恶化传热,从而使导热油炉使用寿命大大缩短,甚至出现爆管、泄漏等严重事故,当系统中出现气塞时,系统中导热油处于断流状态,流量、压力大幅度波动,循环泵抽空,甚至引发管道震动等现象。
所以导热油使用升温时要特别谨慎,尤其注油前必须将系统中积水排除。
可用0.5MPa压缩空气对系统进行吹扫,管内气流速度不低于8~1Om/s。
每1O分钟一次,直到出现痕迹水方可。
同时注油到系统中需循环4~5小时,将系统中的杂物通过过滤除去,以确保系统处于正常运行。
使用新导热油或改灌其它导热油,均要先进行除水处理。
先打开高位罐放空管阀门,导热油升温时要特别缓慢,以使水分逐渐蒸发并排出。
导热油温升至95C时便开始脱水,升温速度控制在不超过30C/h,此时是驱赶系统内残存水分及导热油内含有的微量水分阶段。
在升温过程中一旦发生泵有抽空现象,便不宜升温,应保持恒温状态,直到抽空现象得以缓和,及高位槽只见微量的汽,甚至不见汽时,再引运3~5小时,确保导热油中残存的微量水分排出,当温度升到11OC~14OC时,保持24小时,以充分脱去导热油中的水分。
再升至180C~200C时,导热油中其它低馏分气体排出,此时应根据高位槽中排气量来决定升温,否则,升温不当就会造成大量油泥喷出,也造成设备热胀冷缩,应力不均,同样会导致设备渗漏,产生结焦,使导热油分解老化而失败。
导热油应用技术基础知识导热油的概念、用途及发展1、什么是导热油导热油是有机热载体的俗称,我国统一命名为热传导液。
其英文名称为Heat tranferoil,它是以液相或气象形态进行热量传递的介质。
它包括矿物性导热油(称为热传导油)和合成型导热油(称为热传导液)。
2、矿物性导热油和合成型导热油的制取矿物性导热油是石油加工过程中,提取某段馏分,经过精制,再加入多种添加剂制取;合成型导热油是以某种化工或石油化工产品作原料,经过有机合成工艺制取。
合成型导热油是纯的或比较纯的化学品,它与矿物型导热油相比较,具有热稳定性好、使用温度高、寿命长及可再生等特点。
3、导热油的用途、主要用于哪些行业?由于利用导热油与利用蒸汽相比具有加热均匀、操作简单、安全环保、节约能源控温精度高、操作压力低等优点,在现代工业生产中已被作为传热介质得到广泛应用。
广泛应用于石油、化工、油脂、食品、纺织印染、医药、合成纤维、造纸、塑料、橡胶、木材、建材、冶金、机械加工和铸造、空调及电器设备、脂肪和油漆、撂跤、汽车制造、碳素工业中。
还应用于筑路工程中、国防科研中、海运业中。
除上述行业外,还应用于温水发声器、热水发生器、蒸汽发生器、散热器以及肥皂洗涤剂工业、焦油加工业、洗衣业的用热。
4、导热油的发展历史、现状及发展前景导热油的研究和应用始于20 世纪 30 年代前后。
1929 年,美国道氏( DOW )化学公司首次生产出联苯醚和联苯的混合物,其商品名称为 Dowtherm A ,后的专利并应用于加热系统,开创了生产导热油的先河,为热载体的发展开辟了新的途径。
自此,导热油作为一种新的传热介质的优越性逐步为人们所认识。
在欧美市场陆续开发出一些与Dowtherm A 组分相似的产品,如德国拜尔公司的Dipnyl 系列产品及 Dowtherm E、三氯苯与氯化氢混合物、邻苯二甲酸异丙脂、邻苯二甲酸二乙脂等。
1948 年日本也开始了对导热油的研究, 1952 年生产出 sk-OIL260 和 sk-OIL170 的导热油。
热传导液一.概述加热有直接加热和间接加热两种方式。
热传导液是填充在间接加热系统中的一种热载体,用于高温加热过程中精确控制温度、同一系统中加热和冷却或单一冷却目的。
热传导液已广泛用于现代化学、纺织印染、造纸、建材、制药、塑料、冶金、粮食加工、能源等行业。
热传导液从构成上分为合成型和矿物油型两类。
合成型系列产品使用温度在-60~400℃,如联苯混合物等。
矿物油型系列产品使用温度在-30~320℃,它是经过一定深度精制的石油烃类加入添加剂而制成的。
根据合成型和矿物油型产品用量比例,美国为1︰1,欧州和日本为2︰1,我国为1︰2。
据估计,九十年代国内每年热传导液的需求量约1万吨,现今其需求量以每年20%递增,是量大面广的经济型产品。
当今热传导液正向耐高温、高效节能、降低成本、操作简便安全、延长使用寿命、无毒无味、利于环保等方向发展。
二.热传导液的特性1 热传导液传热系统工作原理热传导液从广义上讲包括热量的提供和导出,即高温加热和低温冷却或致冷操作,高温加热又有直接加热和间接加热之分。
在加热器和使用加热器之间用循环的热传导液传递热量的装置称热传导液传热系统。
热传导液传热有两种基本方式。
一种是在初始点或沸点以下的液相传热。
另一种是在沸点温度以上气相传热。
大部分热传导液为液相传热介质。
最高使用温度为320~350℃。
少数热传导液为气/液传热介质,最高使用温度可达400℃。
液相传热蒸汽压低,安全性好,使用更为广泛,而气相传热能满足更高的温度和控温精度要求,但不能完全为液相系统取代。
2.热传导液的性能要求由于工艺要求不同,加热方式亦不同,系统的设计有多种类型。
装置的一次填装从几十公斤到几百吨不等,工况条件也有很大差别。
因此要求热传导液要具有良好的热、氧化稳定性,初馏点高、蒸气压低、低粘度(特别是低温时)、异味小、无腐蚀及良好的相容性,从提高热效率角度考虑,其导热性能要良好,即传热系数要大,同时还需要较高的安全性。
矿物油和合成油的区别通常把通过物理蒸馏方法从石油中提炼出的基础油称为矿物油,它主要是通过选用适合于润滑油性能要求的石油,经分馏、精制、脱蜡等工艺生产而成。
生产以物理过程为主,不改变烃类结构。
基础油的质量取决于原料中理想组分的含量与性质。
在提炼过程中,矿物油因无法将所含的杂质清除干净,因此矿物油类基础油质量的提高受到一定限制。
合成油是通过化学合成方法制备成较高分子的化合物,再经过调配或进一步加工而成的润滑油。
它包括合成酯类,聚α—烯烃、聚醚类、硅油等,其成分与石油烃类不同。
半合成油指的是合成油与矿物油按一定比例混合制成的润滑油。
由于合成油的原材料贵,合成工艺复杂,投资高,因此合成油及半合成油的价格普遍比矿物油高。
合成油与矿物型润滑油相比具有以下优良特性。
(1)极佳的黏温性和低温流动性合成型机油比矿物油黏度指数高,黏度随温度变化小。
在高温黏度相同时,大多数合成油比矿物油的倾点(或凝点)低,低温黏度小。
同样的油膜要求,合成油可用较低的黏度就可形成,达到保护发动机的目的。
因此,可以减少汽车在低温启动时的能耗,延长蓄电池寿命;同时,由于润滑油流到摩擦表面需要的时间短,可以减少发动机部件在启动时出现的干磨损现象,延长发动机使用寿命。
(2)高温抗氧化性强合成油的热氧化安定性能远较矿物油型机油好,即因氧化而产生酸质、油泥的趋势小,在各种恶劣操作条件下,对发动机都能提供适当的润滑和有效的保护,因而具有更长的使用寿命,保证了机油在长期使用期内的性能稳定性。
在相同的工作环境里,合成油因为使用期限比矿物油长很多,因此虽然成本较高,但是比较换油次数之后,并不比矿物油高很多。
(3)蒸发损失低合成油一般是一种纯化合物,沸点范围较窄,其蒸发损失远较矿物油低,可以降低油耗、减少废气排放以及延长催化转换器的使用寿命。
此外,与传统矿物油型机油相比,合成机油还具有优良的化学稳定性,抗辐射性好及油膜强度高和泡沫少的特点。
导热油的基本分类为:·矿物型导热油·一般合成型导热油·高级合成型导热油·气(液)相型导热油YD320矿物导热油属于矿物型导热油产品,其结构属烷烃和环烷烃的混合物。
目录导热油的特点选择导热油时应注意事项1.1、选择导热油时应注意的问题:2.2、选择导热油参考指南:导热油特性:导热油品牌:导热油应用范围:导热油的类型1.1合成导热油主要有以下几种类型:2.2矿物型导热油导热油的安全隐患及防护高温导热油应用范围:导热油的特点选择导热油时应注意事项1.1、选择导热油时应注意的问题:2.2、选择导热油参考指南:导热油特性:导热油品牌:导热油应用范围:导热油的类型1.1合成导热油主要有以下几种类型:2.2矿物型导热油导热油的安全隐患及防护高温导热油应用范围:导热油的特点导热油具有抗热裂化和化学氧化的性能,传热效率好,散热快,热稳定性很好。
国内的像博源BD系列,国外同类产品有法国TOTAL公司生产的SERIOLA K3120、首诺公司生产的T55合成导热油。
导热油作为工业油传热介质具有以下特点:■在几乎常压的条件下,可以获得很高的操作温度。
即可以大大降低高温加热系统的操作压力和安全要求,提高了系统和设备的可靠性;■可以在更宽的温度范围内满足不同温度加热、冷却的工艺需求,或在同一个系统中用同一种导热油同时实现高温加热和低温冷却的工艺要求。
即可以降低系统和操作的复杂性;■省略了水处理系统和设备,提高了系统热效率,减少了设备和管线的维护工作量。
即可以减少加热系统的初投资和操作费用;■在事故原因引起系统泄漏的情况下,导热油与明火相遇时有可能发生燃烧,这是导热油系统与水蒸气系统相比所存在的问题。
但在不发生泄漏的条件下,由于导热油系统在低压条件下工作,故其操作安全性要高于水和蒸汽系统。
导热油与另一类高温传热介质熔盐相比,在操作温度为400℃以上时,熔盐较导热油在传热介质的价格及使用寿命方面具有绝对的优势,但在其它方面均处于明显劣势,尤其是在系统操作的复杂性方面。
选择导热油时应注意事项目前,我国导热油产品执行SH/T 0677-1999“导热油”标准,用户在购买前应注意以下问题: 1、选择导热油时应注意的问题:在选择导热油前,首先应确定适当的加热工艺流程,最好委托专业部门做系统设计。
1.AAO01金属表面受周围介质的化学作用和电化学作用而引起的一种破坏现象称为( C腐蚀)。
2.AAO01化学腐蚀的特点是:在腐蚀过程中( B没有电流)产生。
3.AAO01 化学腐蚀的特点是:腐蚀产物直接生成于( A发生化学反应的表面区域)。
4.AA002金属表面与非电解质直接发生( D氧化)作用而引起的破坏称为化学腐蚀。
5.AA002腐蚀一般分为两大类,即化学腐蚀和( C电化学)腐蚀。
6.AA002( D负电)性越强的金属,越容易受腐蚀。
7.AA003 凡是在溶解或熔融状态下能导电的物质称为( B电解质)。
8.AA003 当研究埋地管道的电化学腐蚀时,总是把土壤看作( D )电解质)。
9.AA003 电解质能导电,是在( C电场)作用下阴离子、阳离子运动的结果。
10. A A004埋地管道所处土壤埋深不同,腐蚀最容易发生在管道( B下部)。
11.AA004架空管道腐蚀的主要媒介是( D水)。
12. A A004埋地金属管道的腐蚀主要为( D电化学)腐蚀。
13. A A005在存在着直流、交流干扰电源的场合,将会( C加重)地下金属管道的腐蚀。
14. A A005如果管道周围有( A硫酸盐还原菌)活动时,在钢铁金属表面产生的腐蚀产物是黑色的,并发出臭鸡蛋味。
15. A A005如果管道周围有硫代硫酸盐存在时,( B好氧菌)与硫代硫酸盐反应生成硫酸,从而腐蚀管道。
16. A A006埋地管道防腐绝缘层结构为一层底漆、三层沥青、两层玻璃丝布、一层塑料布。
该防腐绝缘层为( C普通)级。
17. A A006我国埋地管道沥青防腐涂层结构的厚度大于或等于( A 4mm )。
18. A A006为了提高管道防腐绝缘层的强度和热稳定性,在沥青层中间包扎一层或多层玻璃布作为( B加强)材料。
19. A A007埋地管道防腐绝缘层电阻率应不小于( A 104Ω·m)。
20. A A007埋地管道与电解质溶液相接触,经过一定时间后,可以获得一个稳定的电位值,这个电位值称为( D腐蚀电位)。
矿物型导热油
Quality inspection report
概述:本产品是将优质原油经过催化裂化、常压蒸馏、减压蒸馏、脱蜡、精制等工序生产出来的基础油为原料,再通过调和、添加等工艺制成的一种能够作为传热介质的有机物。
项目质量指标试验方法
运动粘度(40℃),mm2/s
28-32 GB/T265
┅产品介绍┅
本系列产品是采用加氢原料经过超深度精制后得到的白色油,无色无味无荧光的透明液体。
本系列产品不含任何添加剂水份和机械杂质。
具有良好的防锈性、冷却性、润滑性和清洗性等四大功能。
良好的耐热性。
正茂石化矿物油具有长碳链式或带侧链的开链烃,其组成包含了很多种化合物。
矿物油的生产工艺相对比较简单,货源充足,价格便宜,广泛应用于沥青加热、木材加工、橡胶硫化、医药、食品等工业生产用热,是中、低温加热系统的理想选择。
矿物型导热油部分用途:
工业领域 应用工业及装置
橡塑工业 热压、压延、挤压、硫化、人造皮革加工、薄膜加工 精细化工 医药、农药中间体、防老剂、表面活性剂、香料等合成 油脂化工 脂肪酸蒸馏、油脂分解、蒸馏、浓缩、硝化
闪点(闭口) ℃ ≥
200
GB/T3536
倾点,℃ ≤
-18 GB/T3535
颜色,赛氏号 ≥
+30 GB/T 3555
固态石蜡
通过 GB/T0134 稠环芳烃,紫外吸光度/ cm (260-350nm ) ≤ 0.1 GB/T11081
易碳化合物 通过 GB/T7364 硫化物
通过 GB/T0136 密度(20℃),kg/m 3
841.8 GB/T0604
机械杂质及水份 无
目测 外观
无色、无荧光、透明
的油状液体
目测
化纤工业聚合反应、熔融纺纱、热固、纤维整理
造纸工业热熔融机、波纹板加工机、干燥机
木材加工复合板压制、干燥机
电器加工电线及电缆制造
能源工业废热回收、太阳能利用、反应堆取热
食品工业粮食干燥、食品烘烤
空调工业家庭暖房
化工及石油化工聚合、分解、蒸馏、浓缩、蒸发、熔融装置等建筑及建材工业沥青融化、保温、石膏板烘干
纺织印染工业热熔染色、热定型、烘干装置。